
\qquad
\qquad

- Analysis of \qquad
- Results in new output polygon
- So different than select by location
\qquad
\qquad

Buffers and Setbacks

- Buffers can be applied to:
- \qquad

- and selected graphics

\qquad
\qquad
\square $\odot \quad \odot$
-
- Setbacks can be applied to:
-

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Buffers and Setbacks

- Buffer/setback distance can be set:

- By user

\qquad

- Based on features attribute value \qquad
- Single ring \qquad
- Multiple rings \qquad
\qquad

\qquad
\qquad
\qquad

Buffers and Setbacks

- Special line buffers include:
- Side Buffers \qquad
-
-
-

——n

- Ends Types
\cdot \qquad $\odot \quad$.

Buffers and Setbacks

- What about overlapping areas?
- Dissolve options:

- Result in multipart polys \qquad
\qquad

\qquad

	000
-	0.00
	00

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Map Overlay Analysis

- Manual map overlay has been used in various fields since the turn of the last century \qquad - Used:
- Tracing paper
- Velum
- Mylar
- and photographic techniques
- . . . to combine thematic map data

Map Overlay

Combines:

- \qquad
\qquad

AND \qquad

- \qquad
\qquad
\qquad
- of two or more input data layers

Map Overlay

- Requirements of input data layers:

1.
2.
3.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Map Overlay

- Type determined by feature geometry:
- Point in Polygon
- Line in Polygon
- Polygon on Polygon
- Never point on point or line on line \qquad
- First layer is referred to as \qquad
\qquad
Second layer is the \qquad
\qquad
- Always a polygon

Map Overlay

Point in Polygon

- Input = point layer \qquad
- Overlay = poly layer
- Output = pt layer w/ attributes of both pts \& \qquad polys

INPUT

OVERLAY RESULT

\qquad
\qquad
\qquad

Map Overlay

- Polygon on Polygon
\qquad
- Input = poly layer
- Overlay = poly layer
- Output = poly layer w/ intersecting polys \& attributes of both polys

INPUT

OVERLAY combines feature geometry AND attributes
 RESULT

Map Overlay

- Two ArcGIS overlay operations achieve all three:
- Union
- Intersection
- They differ only in terms of:
- \qquad
- \qquad
- Other overlay operations are just variations:
- Symmetrical Difference
- Identity

Map Overlay

Union

- Combines extents of \qquad
- Both inputs must be polygon
- Note how tables are combined, empty fields \qquad

\qquad
\qquad
\qquad
Intersection
- Combines extents of \qquad
- Input may be pt, line or poly, overlay is poly

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Map Overlay

- Symmetrical Difference
- Combines extents of \qquad
- Both inputs must be polygon \qquad

\qquad
\qquad

Map Overlay

- Identity
- Preserves extent of \qquad
\qquad
\qquad
- Input may be pt, line or poly, overlay is poly \qquad

\qquad
\qquad

Editing Tools

- By the way:
- Union and intersection are both editing \qquad tools in addition to overlay functions

POLYGONS
UNION INTERSECTION
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sources of Error

- Datum/projection errors
- Poor registration \qquad
- Topological errors - slivers and gaps
- Incompatible levels of accuracy/detail

\qquad
\qquad
\qquad
\qquad

