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Abstract
The distributions®) (- — 1) focused on the unit sphefe of R" is defined by

k
(W@ —1),0)= Dk / a—(d)rm*l)dw,

ark
Q
whereg is Schwartz testing function. We apply the expansion formula
L Lk :
/ —¢ro)do= (D Y (,)C(m, N8*=D(r — 1), p(x)
ark pr A\
o -

to evaluate the product of (r) and §®)(» — 1) on £2. Furthermore, utilizing the Laurent series
of r* and the residue of-*, ¢) at the singular point = —m — 2k, we derive that2(x) = 0 on
even-dimension space. Finally, we are able to impfy(er*m Inr) - §(x) = 0 based on the fact
that 2~ |nr is an elementary solution of partial differential equatiohe = §(x) by using the
generalized Fourier transform.
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1. Introduction

The sequential method (Antosik, Mikunsiki, and Sikorski, 1972) and complex analysis
approach (Bremermann, 1965) have been the main tools in dealing with products, powers
and convolutions of distributions, suché&fs which is needed when calculating the transi-
tion rates of certain particle interactions in physics [1]. Fisher [2] has actively used Jones’
8-sequencé, (x) =np(nx) forn=1,2,..., wherep(x) is a fixed infinitely differentiable
function onR with the following properties:

(i) p(x) >0,
(i) p(x)=0for|x|>1,
(i) p(x) = p(—x),
(V) [lp(0)dx=1

and the concept of neutrix limit of van der Corput to deduce numerous products, powers,
convolutions, and compositions of distributions &nsince 1969. The technique of ne-
glecting appropriately defined infinite quantities and resulting finite value extracted from
the divergent integral is usually referred to as the Hadamard finite part. In fact, Fisher’s
method in the computation can be regarded as a particular application of the neutrix cal-
culus. This is a general principle for the discarding of unwanted infinite quantities from
asymptotic expansions and has been exploited in context of distribution by Fisher in con-
nection with the problem of distributional multiplication, convolution and composition. To
extend such an approach from one-dimensional-imensional, Li [3,4] constructed sev-

eral workables-sequences oR™ for non-commutative neutrix products suchras - V§
aswell as- % . A's, whereA denotes the Laplacian. Aguirre [5] uses the Laurent series ex-
pansion of-* and derives a more general product - V(A!8) by calculating the residue

of *. His approach is another interesting example of using complex analysis to obtain
products of distributions oR™.

The problem of defining products of distribution on a manifold (unit sphere as a par-
ticular example) has been a serious challenge since Gel'fand introduced special types of
generalized functions, such @& ands® (P). Aguirre [6] employs the Taylor expan-
sion of distributions*~D (m2 4 P) and gives a meaning of the produét—2 (m2 + P) -
§U=Dm?+ P). As outlined in the abstract, the goal of this work is to attempt on a regular
product £ (r) - §® (r — 1) on £2 where f (x) is a differentiable function at = 1, as well
as to compute several new products relate8(ig on even-dimension space by complex
analysis method, where= (x? + x3 + - -- +x2)Y/2. As a note, we also use the Hilbert
transform

1 +00
¢<z)=—.fmdt,
Tl

r—z

wherel,,z > 0 to verify §2(x) = 0 for x € R.



CK. Li /3. Math. Anal. Appl. 305 (2005) 97-106 99

2. Theexpansion of f, %d)(rw) do

Let us consider the functionat (see [7]) defined by

(r*.¢) = / ¢ (x)dx, (1)
Rm
whereR, (1) > —m and¢ (x) € D,, (m-dimensional Schwartz testing function space). Be-
cause the derivative

E%(rw;)=frk|nr¢(x)dx

exists, the functional® is an analytic function of. for R,(A) > —m.
For R.(A) < —m, we should use the following identity (2) to define its analytic contin-
uation. ForR,. (1) > 0, we could deduce

AP =+ 2+ myrt
simply by calculating the left-hand side. By iteration, we find for any intégiat

. Akrk+2k

' :(k+2)~--(k+2k)(/\+m)~-~()»+m+2k—2)' @)
On making following substitution of spherical coordinates in (1),
X1 =rC0%1,
X2 = r Sinf1 COSH,
x3 = r Sinf1 Sinf2 COH3,
Xm—1=r SinA1Sinds - - - sinb,,,_» c0H,,_1,
X =1 Sinf1Sin - - - sinG,,_2Sind,, _1,
we come to
00
(r’x,d)):/‘r)‘{ / ¢(ra))da)}rm_1dr, 3)
0 r=1

wheredw is the hypersurface element on the unit sphere. The integral appearing in the
above integrand can be written in the form

/ ¢ (rw) dw:/¢(rw) dw = §2,,5¢(r), 4)
r=1 2

where$2,, is the hypersurface area of the unit sphere imbedded in Euclidean space of
dimensions, andy (r) is the mean value a on the sphere of radius

In order to compute the produgt(r) - 8©(r — 1) (such as(r — 1)"* - §®(r — 1)
and sin - 8 (r — 1)) on £2, where f(r) is differentiable at = 1, we need to express
fo :—fkd)(ra)) dw in terms of a linear combination éf") (» — 1), which applies tap.
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Lemma2l Fork<m—2land¢(x) € D,

ak k k .
/ ) do = (—1)k< > (l.)am, st — 1), ¢(x)>,
2

i=0

where

c L ifi =0,
o l)_{( —Dm---(m+i—2), ifi>0.

Proof. We use an inductive method to show the lemma. It is obviously truk fof as

/qb(ra))da) = f P (@) do=(5(r — 1), )
by noting thatr = 1 on$2. Whenk = 1, we have

(§'r—1),¢)= (—1)1/ aa—r(m’"—l) do
2
:(—1)1/ aa—r¢(ra))da)— (m —1)[¢(w)da)
2 2

3
= (_1)1/ S ¢ (re)do— (m - D -1, ¢x))
2

and hence it holds in this case.
We assume that Lemma 2.1 is true for the dased we need to consider

(5(k+1) r—1), ¢>
—(—1 k+1 L—H— m—1 d
=D ark+1 (¢r" ") deo

k+1 ok
=(—1)k+1{ ” k+l¢(ra))da)—|—( —i]t )/ kd)(rw)(m Ddow
2

1¢>(ra)) m—-—1(m—-2)dw

and note that
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(kil)(i)(m—l)z— (k;1)<m—1>(m—2)= (kzl)w—l)m,

k+ 1\ (k 5 k+1\ (k-1 5
()G =(57) (1 Jen -2

+ (k—gl)(m —DH(m —2)(m —3) = <k;1>(m —Dm(m + 1),

It follows from our hypothesis that

kL ﬁ d
D [ e tre)do
2

- <5(k+1> r—1)+ (k Jlr 1) (m—18P ¢ -1

+ (k er 1) (m—ms* Vi —1)

+ (k Jg 1) (m—Dmm +1s* 2@ -1+

+(Zii)(m—1)m(m—|—1)-~~(m+k+1—2)8(r—1),¢>.

This completes the proof of Lemma 2.10

Here we would like to indicate that following the same step of Lemma 2.1 it is easy to
obtain an expansion of

8k
/ —¢(rw)dw fork>=m,
ark
2
in which the end term should B&~"*D (- — 1), rather thars (r — 1) if we ignore coeffi-
cient difference.
It was proven in [7] thatSy () is infinitely differentiable forr > 0, bounded support,
and
Sp(r) = ¢(0) +arr? +azr* + -+ aer® + o(r%)
for any positive integek. From (3) and (4), we obtain

e ¢]

(r)‘,qb) = Qm/r)‘+m71S¢(r) dr,
0

which indicates the application mmxi with © = A +m — 1 to the testing functiofy (r).
Using the following Laurent series fmi abouth = —k,

(_1)k—18(k—l) ()C)

—k —k
o lx K Inx 4o
k—Dio 4k o TeAhrTines

A
Xy =
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we can write out the Taylor’s series f6g(r), namely

" 1 (2k)
Sp(r) = $(0) + = S¢(O) LR O)r%

o0

-y Ak (0)r2k
o :Ozkk!m(m+2)---(m+2k—2)’

which is the well-known Pizetti’s formula and it plays an important role in previous work
of Li [3,4,8,9].

In 1991, Aguirre expressed distributiéft) (- — ¢) in terms of an infinite sum of linear
combinations ofA’s. Please refer to reference [10] for detail.

3. Theregular productson £

Let f(x) be a differentiable function at= 1, we are going to computg(r)-8® (r — 1)
directly ons2 by Lemma 2.1. Subsequently, we choose concrete functiofig-aso obtain
expressions fotr — 1)" - % (» — 1) and sinr - §© (r — 1).

Theorem 3.1. For k <m — 1,

j k—=j _ Xl '
50 _ ZZZ _ G
fn)- 80 == pararar Vg —oe—j=o! @

x(m. i, HC(m,s)8* =9 — 1),

where C(m, s) isgivenin Lemma 2.1and

1, ifi =,
XOWED =N n = Do — j+ i), ifi <.

Proof. For¢(x) € D,,, we need to consider
(fr) -89 ¢ -1),9)
ak
=(—1)k/—(¢(rw)f(r)rm*1) do

- ak J di _
= Xz:( ) )m(f(r)rm 1)da)
k J —i
Z( )Z( ) Py J¢(rw)f<'>(r) P tdow
=0 i=0
AL
= Z(J)Z( )f(l)(l)x(m i ])/ P Jd)(ra))da)

i=0
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The theorem follows from Lemma 2.1,

k—j D k— ,
/ O proydo= <—1)k—f'< (k ] / )C<m, )84 (r = 1), ¢<x>>
0

ark—J
2

GO ==
j)\i s )il =Dk —j—s)!

This completes the proof of Theorem 3.1

k—

§s=

and

In particular, fork =0, 1, we have

fr)-8¢r—=1H=fOS(r—-1) and
f@)-8r—-D=fD8r—-1 - fDsr—-1),

respectively.
Let us choosef (x) = (x — 1) wheren is a positive integer. Then simple calculation
implies

, | ifi =
=10 grermise
Therefore, fom <k <m —1,
- k k—j k!
(= DT D= ;;f‘ Ty Ty

cx(m,n, HC(m, )8* 19 —1).
Obviously
r—1"-8Vr-1=0

fork <n.
Clearly we have, on the other hand,

J ok—j
k!
= a(k) -1 —1)/t
r=b= ;,ZOX;)( STy Y

cx(m,i, )HCm, )8 779 = 1)

and
J k—j
k!'sin(1+ %i)
*) —1)/
sinr - 80 (- — 1) = ,2(:)202;)( Y G DG =

x(m,i, ))C(m,s)8* =9 —1).
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To end this section, we would like to point out that following a similar approach of Theo-
rem 3.1, one can carry out the productfad) ands® (-2 — 1), where

(—Dk a\*
(80 (r* - 1), ¢)= > /<2rar> (¢r"?) do.
2

However, if we letP = xf +--- 4+ x5 —x2,, —--- — x>, (wherep + ¢ = m) and define

z k
o) =0 [|(55) {rp—z—wg” | s
0 r=s

wherey (r,s) = [ ¢ dw,dw,, dw, anddw, are the elements of surface area on the unit
sphere inR, and R,, respectively. A challenge problem is how to deduce the singular
productP” - 8 (P) atx = 0. The author welcomes and appreciates any discussion from
interested readers.

4. On even-dimension space

Using the Laurent expansion of atA = —m — 2j,
A 2m

CHI A+ m+2j)

+ QO 4+m+2))r M Inr -,

8@ (r) + 2yr—2m

Aguirre [5] derived the following identity:

S(zn(,):(;j)’ lim G+ m 4 2j)r

m A—>—m—2j
@2 @H\C(m/2)
= / ReS»:—m—ZjVAZZ».{—/.
2 241 jIT (m/2+ j)

from the below fact

Al (x) (5)

2T (m/2)

__2emf L) Aj
22fj!F(m/2+j)(A 5.9)

ReS—_m2j(r", ¢)=
in [7].
Lemma 4.1. The power §2(x) = 0 in space of even dimension.

Proof. It follows from identity (5) thats (r) = §(x) by settingj = 0. Sincem is even, there
exists a positive integer such thatn = 2. Thus

82(x) =8(r) - 8(r) = i fim (x+m)r Qi lim (. 4 m)r*

m m—)m

1
=— lim A +m*?
91121 A—)—m( +m) d
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—1 lim S+ 25 sets =21
?s%mmz mn r =

1 lim (s +m+m)?°
4[22 s—>—m—m

1 lim (s+m+2j)2rs
492 s—>—m—2

=i lim (s+m+2j5) lim (s+m+2j)r5
493, s—>—m—2j s—>—m—2j
§m)

= 2y, M8 Em A2 »? (r) =0

On the other hand, we can follow a different approach to showsftia) = 0 for x € R by
applying the Hilbert transform

t
o) =— m dt, where¢ € D(R),
i t—
—00
wherel,,z > 0.
Indeed from Cauchy’s representation of distribution, we have

(82(x), ¢ () = im R(8%(z —i#), 9 (2)
: 1 $(2)
o Re 22 ?{ z—ie2 "

lz—ie|=¢/2

A

By Cauchy'’s integral formula, we come to

1 ¢'lie)
‘2ri 2-1!

1,
(62x), ¢(X))— I|m Rem—o 0=

Therefores?(x) =0. O
Theorem 4.1. The product AK (%~ Inr)-§(x) = 0in space of even dimension if 2k > m.

Proof. We complete it by applying Lemma 4.1 if we are able to show t#at” Inr is an
elementary solution of partial differential equation

AYE = 8(x). (6)
Taking the Fourier transform of (6), we have
(-D*p%*v =1, wherep®= Zo-z, (7

whereV denotes the Fourier transform Bf
From above, we may write the Laurent expansionpbfat the singular poing =
—m — 2k as
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A a-1
A+m+ 2k
wherea_1, ag, a1, ... are given by

5@ (0) —2k—m —2k—m
va ap = 2 p s a1 = 2up Inp,

We multiply Eq. (8) term by term by%+*" and then lek. — —2k — m. As above, the left-

hand side converges to unity. On the right-hand side all the terms higher than the second
vanish in the limit and the second ted*t"ag remains constant, and if we assume that
pZtma_1 =0, the first term increases without bound. But this would contradict the limit
equation in which all the other terms are finite, so we could concludeothat'a_1 =0,

and therefore that

p2k+ma0 =1

P +ao+ar(A+m+2k) +---, (8)

a_1=

Using the following identity
F[r*Inr]=C'p~*0™" + Cp~** " Inp,

we derive the solution of Eq. (6) is
ArZ=ming 4 Bré—m,

However, the second term may be dropped since it is annihilated by the opafafbinus
r%~mInr is an elementary solution of (6). This completes the proa.
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