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Abstract

The distributionδ(k)(r − 1) focused on the unit sphereΩ of Rm is defined by

〈
δ(k)(r − 1),φ

〉 = (−1)k
∫
Ω

∂k

∂rk

(
φrm−1)

dω,

whereφ is Schwartz testing function. We apply the expansion formula∫
Ω

∂k

∂rk
φ(rω)dω = (−1)k

〈
k∑

i=0

(
k

i

)
C(m, i)δ(k−i)(r − 1),φ(x)

〉

to evaluate the product off (r) and δ(k)(r − 1) on Ω. Furthermore, utilizing the Laurent seri
of rλ and the residue of〈rλ,φ〉 at the singular pointλ = −m − 2k, we derive thatδ2(x) = 0 on
even-dimension space. Finally, we are able to imply∆k(r2k−m ln r) · δ(x) = 0 based on the fac
that r2k−m ln r is an elementary solution of partial differential equation∆kE = δ(x) by using the
generalized Fourier transform.
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1. Introduction

The sequential method (Antosik, Mikusiński, and Sikorski, 1972) and complex analy
approach (Bremermann, 1965) have been the main tools in dealing with products, p
and convolutions of distributions, such asδ2, which is needed when calculating the tran
tion rates of certain particle interactions in physics [1]. Fisher [2] has actively used J
δ-sequenceδn(x) = nρ(nx) for n = 1,2, . . . , whereρ(x) is a fixed infinitely differentiable
function onR with the following properties:

(i) ρ(x) � 0,
(ii) ρ(x) = 0 for |x| � 1,
(iii) ρ(x) = ρ(−x),
(iv)

∫ 1
−1 ρ(x)dx = 1

and the concept of neutrix limit of van der Corput to deduce numerous products, po
convolutions, and compositions of distributions onR since 1969. The technique of n
glecting appropriately defined infinite quantities and resulting finite value extracted
the divergent integral is usually referred to as the Hadamard finite part. In fact, Fi
method in the computation can be regarded as a particular application of the neutr
culus. This is a general principle for the discarding of unwanted infinite quantities
asymptotic expansions and has been exploited in context of distribution by Fisher i
nection with the problem of distributional multiplication, convolution and composition
extend such an approach from one-dimensional tom-dimensional, Li [3,4] constructed se
eral workableδ-sequences onRm for non-commutative neutrix products such asr−k · ∇δ

as well asr−k ·∆lδ, where∆ denotes the Laplacian. Aguirre [5] uses the Laurent serie
pansion ofrλ and derives a more general productr−k · ∇(∆lδ) by calculating the residu
of rλ. His approach is another interesting example of using complex analysis to o
products of distributions onRm.

The problem of defining products of distribution on a manifold (unit sphere as a
ticular example) has been a serious challenge since Gel’fand introduced special ty
generalized functions, such asP λ+ and δ(k)(P ). Aguirre [6] employs the Taylor expan
sion of distributionδ(k−1)(m2 + P) and gives a meaning of the productδ(k−1)(m2 + P) ·
δ(l−1)(m2 + P). As outlined in the abstract, the goal of this work is to attempt on a reg
productf (r) · δ(k)(r − 1) on Ω wheref (x) is a differentiable function atx = 1, as well
as to compute several new products related toδ(x) on even-dimension space by comp
analysis method, wherer = (x2

1 + x2
2 + · · · + x2

m)1/2. As a note, we also use the Hilbe
transform

φ(z) = 1

πi

+∞∫
−∞

φ(t)

t − z
dt,
whereImz > 0 to verify δ2(x) = 0 for x ∈ R.
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2. The expansion of
∫
Ω

∂k

∂rk φ(rω)dω

Let us consider the functionalrλ (see [7]) defined by(
rλ,φ

) =
∫

Rm

rλφ(x) dx, (1)

whereRe(λ) > −m andφ(x) ∈ Dm (m-dimensional Schwartz testing function space).
cause the derivative

∂

∂λ

(
rλ,φ

) =
∫

rλ ln rφ(x) dx

exists, the functionalrλ is an analytic function ofλ for Re(λ) > −m.
For Re(λ) � −m, we should use the following identity (2) to define its analytic con

uation. ForRe(λ) > 0, we could deduce

∆
(
rλ+2) = (λ + 2)(λ + m)rλ

simply by calculating the left-hand side. By iteration, we find for any integerk that

rλ = ∆krλ+2k

(λ + 2) · · · (λ + 2k)(λ + m) · · · (λ + m + 2k − 2)
. (2)

On making following substitution of spherical coordinates in (1),

x1 = r cosθ1,

x2 = r sinθ1 cosθ2,

x3 = r sinθ1 sinθ2 cosθ3,

· · ·
xm−1 = r sinθ1 sinθ2 · · ·sinθm−2 cosθm−1,

xm = r sinθ1 sinθ2 · · ·sinθm−2 sinθm−1,

we come to

(
rλ,φ

) =
∞∫

0

rλ

{ ∫
r=1

φ(rω)dω

}
rm−1 dr, (3)

wheredω is the hypersurface element on the unit sphere. The integral appearing
above integrand can be written in the form∫

r=1

φ(rω)dω =
∫
Ω

φ(rω)dω = ΩmSφ(r), (4)

whereΩm is the hypersurface area of the unit sphere imbedded in Euclidean spacm

dimensions, andSφ(r) is the mean value ofφ on the sphere of radiusr .
In order to compute the productf (r) · δ(k)(r − 1) (such as(r − 1)n · δ(k)(r − 1)

and sinr · δ(k)(r − 1)) on Ω , wheref (r) is differentiable atr = 1, we need to expres∫ k
Ω
∂
∂rk φ(rω)dω in terms of a linear combination ofδ(i)(r − 1), which applies toφ.
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Lemma 2.1. For k � m − 1 and φ(x) ∈Dm,∫
Ω

∂k

∂rk
φ(rω)dω = (−1)k

〈
k∑

i=0

(
k

i

)
C(m, i)δ(k−i)(r − 1),φ(x)

〉
,

where

C(m, i) =
{

1, if i = 0,

(m − 1)m · · · (m + i − 2), if i > 0.

Proof. We use an inductive method to show the lemma. It is obviously true fork = 0 as∫
Ω

φ(rω)dω =
∫
Ω

φ(ω)dω = 〈
δ(r − 1),φ

〉

by noting thatr = 1 onΩ . Whenk = 1, we have

〈
δ′(r − 1),φ

〉 = (−1)1
∫
Ω

∂

∂r

(
φrm−1)dω

= (−1)1
∫
Ω

∂

∂r
φ(rω)dω − (m − 1)

∫
Ω

φ(ω)dω

= (−1)1
∫
Ω

∂

∂r
φ(rω)dω − (m − 1)

〈
δ(r − 1),φ(x)

〉

and hence it holds in this case.
We assume that Lemma 2.1 is true for the casek and we need to consider〈

δ(k+1)(r − 1),φ
〉

= (−1)k+1
∫
Ω

∂k+1

∂rk+1

(
φrm−1)dω

= (−1)k+1
{∫

Ω

∂k+1

∂rk+1
φ(rω)dω +

(
k + 1

1

)∫
Ω

∂k

∂rk
φ(rω)(m − 1) dω

+
(

k + 1

2

)∫
Ω

∂k−1

∂rk−1
φ(rω)(m − 1)(m − 2) dω

+
(

k + 1

3

)∫
Ω

∂k−2

∂rk−2
φ(rω)(m − 1)(m − 2)(m − 3) dω + · · ·

+
(

k + 1

k + 1

)∫
Ω

φ(rω)
dk+1

drk+1
rm−1 dω

}
,

and note that
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(
k + 1

1

)(
k

1

)
(m − 1)2 −

(
k + 1

2

)
(m − 1)(m − 2) =

(
k + 1

2

)
(m − 1)m,

(
k + 1

1

)(
k

2

)
(m − 1)2m −

(
k + 1

2

)(
k − 1

1

)
(m − 1)2(m − 2)

+
(

k + 1

3

)
(m − 1)(m − 2)(m − 3) =

(
k + 1

3

)
(m − 1)m(m + 1),

. . . .

It follows from our hypothesis that

(−1)k+1
∫
Ω

∂k+1

∂rk+1
φ(rω)dω

=
〈
δ(k+1)(r − 1) +

(
k + 1

1

)
(m − 1)δ(k)(r − 1)

+
(

k + 1

2

)
(m − 1)mδ(k−1)(r − 1)

+
(

k + 1

3

)
(m − 1)m(m + 1)δ(k−2)(r − 1) + · · ·

+
(

k + 1

k + 1

)
(m − 1)m(m + 1) · · · (m + k + 1− 2)δ(r − 1),φ

〉
.

This completes the proof of Lemma 2.1.�
Here we would like to indicate that following the same step of Lemma 2.1 it is ea

obtain an expansion of∫
Ω

∂k

∂rk
φ(rω)dω for k � m,

in which the end term should beδ(k−m+1)(r − 1), rather thanδ(r − 1) if we ignore coeffi-
cient difference.

It was proven in [7] thatSφ(r) is infinitely differentiable forr � 0, bounded suppor
and

Sφ(r) = φ(0) + a1r
2 + a2r

4 + · · · + akr
2k + o

(
r2k

)
for any positive integerk. From (3) and (4), we obtain

(
rλ,φ

) = Ωm

∞∫
0

rλ+m−1Sφ(r) dr,

which indicates the application ofΩmx
µ
+ with µ = λ+m−1 to the testing functionSφ(r).

Using the following Laurent series forxλ+ aboutλ = −k,

λ (−1)k−1δ(k−1)(x) −k −k
x+ =
(k − 1)!(λ + k)

+ x+ + (λ + k)x+ lnx + · · · ,
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we can write out the Taylor’s series forSφ(r), namely

Sφ(r) = φ(0) + 1

2!S
′′
φ(0)r2 + · · · + 1

(2k)!S
(2k)
φ (0)r2k + · · ·

=
∞∑

k=0

∆kφ(0)r2k

2kk!m(m + 2) · · · (m + 2k − 2)
,

which is the well-known Pizetti’s formula and it plays an important role in previous w
of Li [3,4,8,9].

In 1991, Aguirre expressed distributionδ(k)(r − c) in terms of an infinite sum of linea
combinations of∆lδ. Please refer to reference [10] for detail.

3. The regular products on Ω

Let f (x) be a differentiable function atx = 1, we are going to computef (r) ·δ(k)(r −1)

directly onΩ by Lemma 2.1. Subsequently, we choose concrete functions asf (r) to obtain
expressions for(r − 1)n · δ(k)(r − 1) and sinr · δ(k)(r − 1).

Theorem 3.1. For k � m − 1,

f (r) · δ(k)(r − 1) =
k∑

j=0

j∑
i=0

k−j∑
s=0

(−1)j
k!

i!s!(j − i)!(k − j − s)!f
(i)(1)

· χ(m, i, j)C(m, s)δ(k−j−s)(r − 1),

where C(m, s) is given in Lemma 2.1and

χ(m, i, j) =
{

1, if i = j,

(m − 1)m · · · (m − j + i), if i < j.

Proof. Forφ(x) ∈ Dm, we need to consider〈
f (r) · δ(k)(r − 1),φ

〉
= (−1)k

∫
Ω

∂k

∂rk

(
φ(rω)f (r)rm−1)dω

= (−1)k
k∑

j=0

(
k

j

)∫
Ω

∂k−j

∂rk−j
φ(rω)

dj

drj

(
f (r)rm−1)dω

= (−1)k
k∑

j=0

(
k

j

) j∑
i=0

(
j

i

)∫
Ω

∂k−j

∂rk−j
φ(rω)f (i)(r)

dj−i

drj−i
rm−1 dω

= (−1)k
k∑(

k
) j∑(

j
)

f (i)(1)χ(m, i, j)

∫
∂k−j

k−j
φ(rω)dω.
j=0
j

i=0
i

Ω
∂r
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The theorem follows from Lemma 2.1,

∫
Ω

∂k−j

∂rk−j
φ(rω)dω = (−1)k−j

〈
k−j∑
s=0

(
k − j

s

)
C(m, s)δ(k−j−s)(r − 1),φ(x)

〉

and (
k

j

)(
j

i

)(
k − j

s

)
= k!

i!s!(j − i)!(k − j − s)! .

This completes the proof of Theorem 3.1.�
In particular, fork = 0,1, we have

f (r) · δ(r − 1) = f (1)δ(r − 1) and

f (r) · δ′(r − 1) = f (1)δ′(r − 1) − f ′(1)δ(r − 1),

respectively.
Let us choosef (x) = (x − 1)n wheren is a positive integer. Then simple calculati

implies

f (i)(1) =
{

n!, if i = n,

0, otherwise.

Therefore, forn � k � m − 1,

(r − 1)n · δ(k)(r − 1) =
k∑

j=n

k−j∑
s=0

(−1)j
k!

s!(j − n)!(k − j − s)!
· χ(m,n, j)C(m, s)δ(k−j−s)(r − 1).

Obviously

(r − 1)n · δ(k)(r − 1) = 0

for k < n.
Clearly we have, on the other hand,

1

r
· δ(k)(r − 1) =

k∑
j=0

j∑
i=0

k−j∑
s=0

(−1)j+i k!
s!(j − i)!(k − j − s)!

· χ(m, i, j)C(m, s)δ(k−j−s)(r − 1)

and

sinr · δ(k)(r − 1) =
k∑

j=0

j∑
i=0

k−j∑
s=0

(−1)j
k!sin(1+ π

2 i)

i!s!(j − i)!(k − j − s)!

· χ(m, i, j)C(m, s)δ(k−j−s)(r − 1).
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To end this section, we would like to point out that following a similar approach of T
rem 3.1, one can carry out the product off (r) andδ(k)(r2 − 1), where

〈
δ(k)

(
r2 − 1

)
, φ

〉 = (−1)k

2

∫
Ω

(
∂

2r∂r

)k(
φrm−2)dω.

However, if we letP = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q (wherep + q = m) and define

〈
δ(k)(P ),φ

〉 = (−1)k

∞∫
0

[(
∂

2r∂r

)k{
rp−2ψ(r, s)

2

}]
r=s

sq−1 ds,

whereψ(r, s) = ∫
φ dωp dωq , dωp anddωq are the elements of surface area on the

sphere inRp and Rq , respectively. A challenge problem is how to deduce the sing
productP n · δ(k)(P ) at x = 0. The author welcomes and appreciates any discussion
interested readers.

4. On even-dimension space

Using the Laurent expansion ofrλ atλ = −m − 2j ,

rλ = Ωm

(2j)!(λ + m + 2j)
δ(2j)(r) + Ωmr−2j−m

+ Ωm(λ + m + 2j)r−2j−m ln r + · · · ,
Aguirre [5] derived the following identity:

δ(2j)(r) = (2j)!
Ωm

lim
λ→−m−2j

(λ + m + 2j)rλ

= (2j)!
Ωm

Resλ=−m−2j rλ = (2j)!Γ (m/2)

22j j !Γ (m/2+ j)
∆j δ(x) (5)

from the below fact

Resλ=−m−2j

〈
rλ,φ

〉 = ΩmΓ (m/2)

22j j !Γ (m/2+ j)

〈
∆jδ,φ

〉
in [7].

Lemma 4.1. The power δ2(x) = 0 in space of even dimension.

Proof. It follows from identity (5) thatδ(r) = δ(x) by settingj = 0. Sincem is even, there
exists a positive integerj such thatm = 2j . Thus

δ2(x) = δ(r) · δ(r) = 1

Ωm

lim
λ→−m

(λ + m)rλ · 1

Ωm

lim
λ→−m

(λ + m)rλ

1 2 2λ
=
Ω2

m

lim
λ→−m

(λ + m) r
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= 1

Ω2
m

lim
s→−m−m

(
s

2
+ m

)2

rs sets = 2λ

= 1

4Ω2
m

lim
s→−m−m

(s + m + m)2rs

= 1

4Ω2
m

lim
s→−m−2j

(s + m + 2j)2rs

= 1

4Ω2
m

lim
s→−m−2j

(s + m + 2j) lim
s→−m−2j

(s + m + 2j)rs

= 1

4Ωm

lim
s→−m−2j

(s + m + 2j)
δ(m)(r)

m! = 0.

On the other hand, we can follow a different approach to show thatδ2(x) = 0 for x ∈ R by
applying the Hilbert transform

φ(z) = 1

πi

+∞∫
−∞

φ(t)

t − z
dt, whereφ ∈D(R),

whereImz > 0.
Indeed from Cauchy’s representation of distribution, we have〈

δ2(x),φ(x)
〉 = lim

ε→0+ Re

〈
δ2(z − iε),φ(z)

〉
∆= lim

ε→0+ Re

1

(2πi)2

∮
|z−iε|=ε/2

φ(z)

(z − iε)2
dz.

By Cauchy’s integral formula, we come to

〈
δ2(x),φ(x)

〉 = lim
ε→0+ Re

1

2πi

φ′(iε)
(2− 1)! = Re

1

2πi
φ′(0) = 0.

Thereforeδ2(x) = 0. �
Theorem 4.1. The product ∆k(r2k−m ln r) · δ(x) = 0 in space of even dimension if 2k > m.

Proof. We complete it by applying Lemma 4.1 if we are able to show thatr2k−m ln r is an
elementary solution of partial differential equation

∆kE = δ(x). (6)

Taking the Fourier transform of (6), we have

(−1)kρ2kV = 1, whereρ2 =
∑

σ 2
j , (7)

whereV denotes the Fourier transform ofE.
From above, we may write the Laurent expansion ofρλ at the singular pointλ =
−m − 2k as
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–

ρλ = a−1

λ + m + 2k
+ a0 + a1(λ + m + 2k) + · · · , (8)

wherea−1, a0, a1, . . . are given by

a−1 = Ωm

δ(2k)(ρ)

(2k)! , a0 = Ωmρ−2k−m, a1 = Ωmρ−2k−m lnρ, . . . .

We multiply Eq. (8) term by term byρ2k+m and then letλ → −2k −m. As above, the left-
hand side converges to unity. On the right-hand side all the terms higher than the
vanish in the limit and the second termρ2k+ma0 remains constant, and if we assume t
ρ2k+ma−1 �= 0, the first term increases without bound. But this would contradict the
equation in which all the other terms are finite, so we could conclude thatρ2k+ma−1 = 0,
and therefore that

ρ2k+ma0 = 1.

Using the following identity

F
[
rλ0 ln r

] = C′ρ−λ0−m + Cρ−λ0−m lnρ,

we derive the solution of Eq. (6) is

Ar2k−m ln r + Br2k−m.

However, the second term may be dropped since it is annihilated by the operator∆k . Thus
r2k−m ln r is an elementary solution of (6). This completes the proof.�
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