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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 119, Number 1, September 1993 

THE HANKEL TRANSFORMATION 
OF BANACH-SPACE-VALUED GENERALIZED FUNCTIONS 

E. L. KOH AND C. K. LI 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. The object of this paper is to study Banach-space-valued generalized 
functions belonging to [H. (A); B] for which the Hankel transformation may 
be defined. In Realizability theory for continuous linear systems (Academic 
Press, New York, 1972), Zemanian considered certain p-type testing function 
spaces for which the Laplace transformation is defined. Tiwari (Banach space 
valued distributional Mellin transform andform invariant linear filtering, Indian 
J. Pure Appl. Math. 20 (1989), 493-504) follows Zemanian in extending the 
Mellin transform. Their works are based on the denseness of the Schwartz 
space Dm(A) in the testing function spaces of interest. This method is not 
possible here since the space Dm(A) is not dense in Hy(A), and the structure 
of Hy (A) is quite different from that of Dm(A), which has an inductive-limit 
topology. Thus, it is necessary to introduce a dense subspace y DI(A) of H. (A) 
to derive some properties of Hy (A). We then define the Hankel transformation 
on [Hy (A); B] . We end this paper with some operational formulas, which are 
analogous with those given by the first author in SIAM J. Math. Anal. 1 (1970), 
322-327. 

1. INTRODUCTION 

Zemanian studied the theory of Banach-space-valued testing functions and 
distributions in [2], which is somewhat more general than that of scalar distri- 
butions. He constructed Dm(A) as the inductive-limit space given by 

00 

Dm (A) = Dm (A) = U Dm (A) 
j=1 

where D7m (A) denotes the linear space of all smooth functions 0 from Rn into 
a Banach space A such that supp (o c Kj . Kj are compact subsets of Rn and 
Kj c Kj+I, UJO1 Kj = Rn . We assign to D7m (A) the topology generated by the 
collection {Yk; 0 < k < m} of seminorms, where Yk(b) ^ suptEK lq$(k)(t)ll 

Applying the interpolation theory, he describes the local structure property 
below. 
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154 E. L. KOH AND C. K. LI 

Theorem 1.1. Let f E [Dm(A); B] and K be a compact interval in Rn . Then 
there exists an integer p E Rn with 0 < p < m and a continuous [A; B]-valued 
function h on K such that, for all q E Dm+121 (A), 

K (f, ) = h(t)DP?[2] k(t) dt. 

In general, p and h depend on f and K. 

Finally, he mentions 

Theorem 1.2. If jm and 8m (A) are normal spaces (i.e., D is dense in ym 
and Tm (A)), then there exists a bijection from [fTm(A); B] onto [,fmf; [A; B]] 
defined by 

(g, q,)a a (f, q/a), q E Sm. a E A, 
where g E [Sm; [A; B]], f E [Tm(A); B]. 

Tiwari [3] mimics the method of Zemanian in defining Banach-space-valued 
distributions for which a Mellin transform can be given. Several properties in- 
cluding a Mellin-type convolution theorem are proved. These results are similar 
to those of Zemanian [1]. 

In this paper, we introduce a dense subspace YDI(A) of H,1(A). It does 
not have an inductive-limit topology. The local structure theorem is no longer 
discussed in [H. (A); B] . However, with a different method, we show that there 
is still a bijection from [H,(A); B] onto [H.; [A; B]]. Further, we are able 
to define the Hankel transformation of arbitrary order on H,(A), which is still 
an automorphism on H,(A). We give some operational formulas at the end of 
this paper. 

Our notation is similar to that used in [1, 2, 4]. Given any two topological 
vector spaces A and B, [A; B] denotes the linear space of all continuous 
linear mappings of A into B. The element of B assigned by f E [A; B] to 
0 E A is denoted by (f, q) . [A; B] is supplied with the topology of uniform 
convergence on bounded sets in A. 11 IB denotes the norm in any Banach 
space B. R and C are the real and complex number fields. I is the open 
interval (0, +oc). Other notation will be introduced as the need arises. 

2. THE CORRESPONDENCE BETWEEN [Hm(A); B] 
AND [He; [A; B]] FOR > 

Following Zemanian, H. (A) is defined as follows: 

Definition 2.1. Let x be a real variable restricted to I. For each real number 
,U, 4)(x) E Hm(A) iff it is defined on I, takes its values in A, is smooth, and 
for each pair of nonnegative integers m and k 

Y/ k()-_ |X( D)kX-y 1/2?0(X) IIA YMn ,k(4') SU 
sup 

m( 
xEI 

is finite. H,(A) is a linear space. The topology of H,(A) is that generated by 
{rmnk}rn,k=O 

Definition 2.2. 0(x) E DI(A) iff q is defined on I, takes its value in A, is 
smooth, and for every q there exists b E I such that 0(x) = 0 for x E 
[b, +oc) . Let Y DI (A) DI (A) n H. (A). 
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BANACH-SPACE-VALUED GENERALIZED FUNCTIONS 155 

Theorem 2.1. The subspace 1DI(A) is dense in H,(A) for all yu E R . 
Proof. Let i(x) E DI(C) such that i(x) = 1 for 0 < x < 1 and i(x) = 0 for 
x > 2. 

For arbitrary q(x) E H, (A) and each pair of nonnegative integers m and k 
we consider 

xm(X-1D)kX-I- l/2 [A(x/N)+(X) - +(x)] 

-=Xm~l x) Dk (X I D)v[A(xl/N)-1] 
v=O 

Therefore, 

SUp I|xm (x-lD)kX-I-112 (2(x/N)q(x) - /(x)) IA 
xEI 

< E V Sup | |xM+ l(X-l D) k-v x-A-1/2 OIJ - lSU P |( )W[ xlN 

It follows from q E Hu (A) that 

sup II(x-lD)k-vX--1/2I01A 
XEI 

is finite. 
Since i(x) and its derivatives are bounded, it follows that 

sup (x-lD)v[A(x/N) - 1] -l 0 as N- o00, for fixed k and 0 < v < k, 
x>N X 

whence our assertion. 
H,1(A) is not a p-type testing function space in the sense of Zemanian [2]. 

To see this, we choose q(x) = xl+l/2e-x2ao, ao E A and ao $ 0. Then for 
all tV, which is smooth from I into A with compact support contained in I, 
y14 O(- A) > 11aoII/2 > 0. This means the balloon 

{6; 6 E H,1(A), 2)y 0( - 0) < I1aoII/3} 
does not contain any element of Dm(A). Thus our result is true. 

The following lemmas will be used subsequently (see [1, 2]). 

Lemma 2.1. Let V, W be locally convex spaces, and let F and P generate 
families of seminorms of the topologies of V and W, respectively. Let f be a 
linear mapping of V into W. The following four assertions are equivalent: 

(i) f is continuous. 
(ii) f is continuous at the origin. 
(iii) For every continuous seminorm p on W, there exists a continuous semi- 

norm y on V such that p(f(6)) < y(6) for all 0. 
(iv) For every p E P, there exists a constant M > 0 and a finite collection 

Y152 ... , ym} cF such that 

p (f(6))?<M max Yk (0) 
O<k<m 

for all 0 E V. 

Lemma 2.2. For yu > -, the conventional h, is an automorphism on H, (A). 
Proof. Very similar to Theorem 5.4.-I, p. 141 of [1]. 
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156 E. L. KOH AND C. K. LI 

Theorem 2.2. Every f E [H,1(A); B] uniquely defines a g E [H,1; [A; B]] 
through the equation 

(g, O)a O(fOa), 0 E H , aEA, 
for all j E R. 
Proof. Fixing upon some 0 E H. we define a mapping jo of A into B by 
j0a = (f, Oa) for all a E A. It readily follows that jo is linear. By Lemma 
2.1 (iv) there exist positive integers mO, ko and a constant M > 0 such that 

jjoajIB = 11I(f, Oa)IIB <M max 2,11 (Qa) 
O<k<ko m, k(a 
o<m<mO 

where 

Y/t (Qa) = sup Ixm(.(X-1D)kX-\,-11/26aJ1A M 
~~XEI 

= IlallA SUp IXm(X-lD)kx-t-1/26. 
xEI 

Hence 
jjjoajB < MjjajjA Omax YM,k(0) 

O<k<ko 
o<M<M0 

and 

(2.1) le II[A; B] < M max Y2' k(0) 
o<m<mo 

Next, set (g, 0) joo. This uniquely defines g as a mapping from H,, into 
[A; B]. g is linear because, for any a E A, c, ,B E C, and 0, i E H11 

(g, oaG + ,Bq/)a = (f, caxa + fiqia) = a(f, Oa) + fl(f, qia) 
= (ae(g, 0) + fl(g, yi))a. 

Moreover, (2.1) implies that g is continuous. 

Let IADIOA denote the linear space of all (o E ,AD(A) having representations 
of the form (o = Z Okak where Ok E 11DI, ak E A, and the summation is over 
a finite number of terms. 

Theorem 2.3. The space 1DI (3 A is dense in H. (A) for 1 > 1 

Proof. Let A(x) be defined as in the proof of Theorem 2.1. For (o E MDI(A), 
we first show that 

A(x/N)h,((o) -- h,(qp) in H,(A) as N - +oo for allyu E R. 
The following equation will be used (see [1]): 

(-1 )m+kym (y -D)ky-1,- 11/2/h ((P) (y) 

(2.2) = Co12( X 2+2k+m+(x-D)mX--k/2 (X)] +k+m(XY) dx. 

Hence 

sup xm(X lD)kX1l/2h(so) [h (N) - I] 
XEI N A 

(k'\k jp(x-1D)v[A(x/N) - 1] Xl(xDkvx1l/h9) 
=0\V/x>N XEI 
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BANACH-SPACE-VALUED GENERALIZED FUNCTIONS 157 

By what we have proved in Theorem 2.1, 

sup (x-OD)[(xN)- 1] 0 asN-*oo forfixed k andO<v < k. 
x>N X 

Using equation (2.2) and noting that J1+k-v+m+ l (xy)/(xy)L+k-v is bounded, 
say by Bk ,V m , we get 

sup iXm+l (X-lD)k-vX-U-11/2h ((O)JA 
xEI 

= SUp|| 
? 

y2I+2(k-v)+m+2[(y- 1D)m+lY- /2 (y)1 ] 
fi 

+k-v~m() dy 
XEI Jo(yI+A 

Choosing a positive integer n such that 

y2/+2(k-v)+m+2 < (1 + y2), for all y E I 

we have 

sup JJy2I+2(k-v)+m+2[(y-1 D)m+1y-- 1/29 (y)IIA 
yEI 

< sup ff(l + y2)n[(y-lD)m+ly-I- l/2 Sp(y)]ffA 
yEI 

Since O E ,pD1(A), there exists b E I such that (p(x) = 0 for x E [b, +oo). It 
follows that 

sup lIXm+l (X-lD)k-vX-l-1/2h#((P)IIA 
xEI 

< Bk ,v, mb sup 11(1 + y2)n[(y-'D)m+1y-P- /29 (Y)]Il 
yEI 

is finite. Therefore, 

A(xIN) hp() >- hp(9) in H. (A) as N +oo. 

Second, we prove that ,D, ? A is dense in H1 (A) for ,> - I . For a positive 
integer m I, we have 

y (xy)1/2(-_)j(xy/2)'4+2j + (Xy)112(_ )j(xyl2)u+ 

j=0 jFjjl) j=m?1 I G1j 

For every (0 E #DI (A), the term 

(X=A f t+ (Xt)__2(-_)__ Xt_2)__ +2j_ 
TN,m =l N ((t) =O j! F(u+ j +) dt 

where N, ml = 1, 2, ..., belongs to ,1DIOA since ,u > -2 Now 

{+00 

TN,mI- ((t)VtJp(xt) dt 

= TNmi- ' (-N) j; (t)v7xtJ# (xt) dt 

+ Vt f?00 / +00 

+ ,~ (i)] (O(t) VxKtJp (x t) d t -] (0(t) v/x--Jp (x t) dt . 
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158 E. L. KOHANDC. K. LI 

By what we have just proved, for arbitrary e > 0, there exists an N1 such that 
for N > N1 , we have 

sup IXm (x-lD)kx-y- 12[(x/N)hu((o) - hu(()]IIA < e/2. 
xEI 

Fixing N (> N1), then 

X x M) 
I 

(Xt)11 2(_ )j (xtl2) u -2j V xt)] 

NJL-~ j!FOj j+ 

and its derivatives with respect to x converge to zero uniformly on every com- 
pact subset of I. It has a uniformly bounded support. Therefore it converges 
in the sense of Schwartz, whose topology is stronger than that of HA (see [1]). 
It follows that there exists an L E I such that as long as ml > L, then for all 
t < b, 

sup XM(x- ID)kX-u- 112,A X 
MI[ (Xt) 112(- I)j (xtl2 ),+2j VI'-- ]J Xt 

5E1 N E~ [x ! FRu +1i+ 1) - 

C 

- 2Mk 

where M1 = b SUptei II(t)HIA . If M1 = 0, then there is nothing to be proved. 

Therefore, 

sup Xm(X lD)kX 8uI/2 [TNmM +0 } ,*(t)JJ (xt) dtl < e 

provided N > Ni, m > L. 
Since h, is an automorphism on Hu (A) for ,u > -- by Lemma 2.2 and 

AD(A) is dense in H,(A), it follows that hu(uDI(A)) is dense in H,(A). Our 
assertion follows directly from the fact that # DI 0 A is dense in h (u DI (A)) . 

Theorem 2.4. There is a bijection from [Hu(A); B] onto [Hu; [A; B]] defined 
by 

(g, O)a= (f, Oa) 

where a E A, g E [H; [A; B]], and f E [H(A); B], 0 E H, for p > - . 

Proof. By Theorem 2.2, every f E [Hu(A); B] uniquely defines a g E 
[Hu; [A; B]] through the equation 

(g, 0)aA(f, Oa) for all ,u E R. 

Let us consider the converse. For every o E ,#1DI 0 A, we define 

(f'o) =(g, Ok)ak for (o= E Okak . 

It follows from the definition that f is linear on ADI o A. We wish to show 
that f is continuous. Indeed, for arbitrary e > 0, as long as Oa (0 E AcI, 
a E A) belongs to the balloon {fo; Y'uk(O) < c/M, m = 0 ..., IMO, 
k = 0, 1, ..., ko}. M, MOi, ko are defined as follows. We infer that 

11(f; Oa)||B = 11(g, 0)aJIB < J|aJJA * 11(g, O)II[A;B]- 
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BANACH-SPACE-VALUED GENERALIZED FUNCTIONS 159 

By Lemma 2.1 (iv), there exist M > 0 and positive integers mOi, ko such that 

II(f, Oa)IIB < IIaIIAM Mka<x 
P 

k(0)< M./M = 

0<m:mo 

Therefore f is continuous at the origin. By Lemma 2.1 (ii), f is continuous on 
DI A. According to Theorem 2.3, #DI ( A is dense in H (A) for u > -! 

Thus our assertion is true. 

3. THE HANKEL TRANSFORMATION hl ON H,(A) 
AND THE CORRESPONDENCE BETWEEN [Hu(A); B] AND [H,; [A; B]] 

FOR ARBITRARY ,U 

We shall use the following differential and integral operators due to Zemanian 
[1]: 

N A Xy 1 a~/2 18-/2 (p X) N,udo(x) DxAu 

M4o(X) AX-y-12DX"+12(p(X) 

NA-1(o(x) xA + l/2 J t""?o(t) dt. 
00 

Lemma 3.1. N,, is a continuous linear mapping of Hy,(A) into H,1, (A). 

Indeed, y"+,k(N, ) = yu, k+l(P) for every (0 E HI,(A) and every choice of 

m and k. 

Lemma 3.2. N1 I is a continuous linear mapping of H+ (A) into H,, (A). 

Proof. Assume that qp(x) E H+ (A) and k is a fixed positive integer. Then 

(x-lD)kx-1- /2N,1 ((x) = (x-lD)kx-Il12xX#+l12 J t-" -112 (t) dt 

= (xlD)k-lx-!-312(x). 

Hence 

m ,k(Nu m(P) = Ym' kI((9) k = , 2,3, ..., m = 0, 1, 2, . 

A similar result for the case k = 0 can be derived as follows: 
r.o 

iixmx-ju-112N;- ((X)IIA -< Xm 
M 

||t-y 112(,(t) IIA dt 

< I ltmt-#-12(,(t) IIA dt 

< 1 t2(tm+l + tm+2)t-#-312((t) dt 

<J[0 ldt sup II(tm+l + tm+3)t ,IA(t)IIA. 
0 l+t2 tEI 

Therefore 

Y,,0(Nfu71P)< ? , m m=0, 1,2,. 

It follows from the above that N;1 is a continuous linear mapping of Hl+1 (A) 

into H,,(A). 
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160 E. L. KOH AND C. K. LI 

Let ,u E R and let k be a positive integer such that ,u + k > - 2 Assume 
that (o E Hu (A) and define hu,1k on H, (A) by (see Koh [4]) 

1)(x) = h,, kM((Y)) 
I 

(_ )kX-k hu+k Nu+k- I N+ I N# ( (y) 

Let 1D(x) E H, (A) and define h' on H, (A) by 

sp (y) = h7-j (I(X)) 
A 

(- )kN-Ny1 N ** N,-k1 hhh+kXkID(X). 

Theorem 3.1. h,, k is an automorphism on H,(A). Its inverse is h-j" and 

h#,k= h, if '-U 2- 

Proof. By Lemmas 3.1 and 3.2, (o -- N,1Nu+l .. o+k-I(P is an isomorphism 
from H# (A) onto H,u+k(A). 

By Lemma 2.2, h+k is an automorphism on H,1+k(A) for ,u + k > -2 
It follows from y k(xPk ) = y# 

+k 
() that (o -- x-k is an isomorphism 

from H,1+k(A) onto H# (A). Therefore h#, k is an automorphism on H# (A). 
Similarly h7-" is an automorphism on H# (A) and is inverse to h,,k because 

hu+k = hu+k and the inverse of N .+k1. N# is N 1j N.. ,u~~~k- I u~1+k-1 
To prove the last statement, let (o(y) E H,1(A), u > - 2, and consider k = 1; 

h, 1,o = -xh1+lNusp = -x-1 j Y/+1/2[DY y1- 1/2 O(y)] f J# 1+(xy) dy 

= -X 1 VjJ+I(xY)o(y)I( + j p o(y)v'Ixy J# (xy) dy 

Since (o(y) is of rapid descent and v'xj7Ju+1(xy) is bounded as y - oo, 
while qp(y) = O(y"+1/2) and vixT3Ju+1(xy) = O(y#+3/2) as y -+ O+, the limit 
terms are zero for u > - I . Thus hu, 1I = h# ,1. By induction, h,1k = h# for 

- > --. 

Note that the definition of h,1 k iS independent of the choice of k so long 
as k +,u > . Indeed, if k > p > -u - ,then h,1+p, k-p = h#+p by Theorem 
3. 1; hence 

hu, k = (-1)kX-kh,+kNu+kl- I N# ( 

- (-1 )P P(-1 )k Px(k P)h,+p+kpN,+p+kp p NkNp-1 ... N# +p N N+p 1N 

(-1)Px Ph,+p,k-pNu+p-1 N#(P 

- (-1)Px-Ph#+pN#+pl1 N# p = hJ, p o. 

Definition 3.1. Let ,u E R and k be a positive integer such that ,u + k > - 2 

For any f E [H#(A); B], the generalized Hankel transform h'f is defined by 

(h'f, (p) = (f, h,#,k~O), (o E H(A). 

By Theorem 3.1 and the fact that h' is the adjoint operator of hu1 k on 
H#(A), we have 

Theorem 3.2. h' is an automorphism on [H#(A); B] for all , E R. 
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BANACH-SPACE-VALUED GENERALIZED FUNCTIONS 161 

Applying operator T- N,1+k1 ... Ny, we have 

Theorem 3.3. Let A and B be two Banach spaces. There is a bijection from 

[H,,(A); B] onto [H.; [A; B]] defined by 

(g, O)a= (f, Oa) 
where aEA, 0 EO H, g E [HM; [A; B]], andf E [Hm(A); B], y ER. 

Proof. For arbitrary ,u Y R, we choose a positive integer k such that ,u + k > 

-2..The operator T is an isomorphism from aD1 0 A onto M+kD, O A, which 
is dense in HM+k(A). Also T is an isomorphism from H, (A) onto HL+k(A). 
Therefore, AD, 0 A is dense in H,(A). By Theorems 2.3 and 2.4, there is a 
bijection from [H, (A); B] onto [H,; [A; B]] satisfying the above equation. 

4. SOME OPERATIONAL FORMULAS 

We now establish certain transformation formulas relating to the Bessel-type 
differential operator MuN, which are similar to those obtained in [4], but on 
H# (A) . 

Lemma 4.1. Let u be a fixed real number and k a positive integer > -j - 2 

Then for every (0 E H#(A), hy+1,k(N#(q) = -xh#,k( (). 

Proof. By definition 

hu+l k(N, ) = (N( l)kx-kh+l+kNy+l+k ...N,4+1NujP 

- -xhA, k+I((P) = -xh, k((p)- 

Turning to the linear operator Mu, we prove that qp Mm (0 is a continuous 
linear mapping of HU+1 (A) onto H,1(A). Indeed, for ( E H,4+1 (A) and any 
choice m and k 

Ymk (~uf )= up |x (x1 )kX-2u-1 DX2j+2X-#-312 (X n ,k(M(P~) = sup IX(XU + ( XI 
xEI 

= sup II(21u+ 2)xm(xl'D)kX-,,3/2(p(X) 
XEI 

+ xm(x- lD)kX2(X-'D)x-# 312(p(X) 1IA 

= * = sup 112(M + k + l)Xm(X-lD)kX-,-312(O(X) 
xEI 

+XM+2 (x-1 D)k+X-j-3/22 ((X) IIA 

? 2 |,u + k + lI|yJoU k (( ) + Ymr+2,k+l((0) 

This implies our assertion. 

Lemma 4.2. Let u and k be as in Lemma 4.1. Then for every q' E H+1 (A) 

h,, k (M# 1() = xh,+ 1, k (P)- 

Proof. Using the relation 

NM+k- I N#+ 1 N ( (x) = Xu+k+l12(X- 1 D)kX-y 112((X) 

we have 

h,1,k(M,1(0) = (l)kX-kj J (Xy)y+k+1/y2 (y-1D)k+1y-#-1-112 ( dy 

(4.1) + (-)kx-k(2,u + 2k + 2) 
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We now show that xh,#+ 1,k((O) reduces to (4.1). Indeed 

xh1 l, kG(f) = (- l)kX-k+l j x/iiJ+k+i (Xy)y,,+k+l+l/2(y- lD)ky-I-312 (o dy. 

From the formula (see [5]) 

J,+k+ I (XY) =-X-1yA+kDykJ +k (Xy) 

and an integration by parts, we obtain 

xh, +l ,k((P) = (_l)k+IX-k+1/2 

x j y2#+2k+2(y-lD)ky-y1-3/2p . D[y-ukJL+k(xy)] dy 

= (-i)k+1x-k+1/2 { u+k+2 J -#-3/20 

-J 
j 

yLkJU+k(XY) 

xD[y21u+2k+2(y-D D)k * y-'-3/2(p] dy } 
The limit terms vanish because (o E Hu+1 (A). Since 

D[y21+2k+2(y- lD)ky-1-3/2op] = y211+2k+3(y- lD)k+ly-#-3/2 

+ (2u + 2k + 2) . y2,u+2k+l (y- l D)y-/i-3/2(p, 

we see that xh,1#+1,k((O) equals the right-hand side of (4.1). This completes the 
proof. 

Lemma 4.3. Let y be anyfixed real number and k a positive integer >?- -2 
Then, for every (o E H# (A), 

h, k (M,1N,# ) = -X2h,, k ( ()- 

Proof. From Lemmas 4.1 and 4.2. 

Similarly, we can show 

Lemma 4.4. Let u be any fixed real number and k a positive integer > -U - 

Then, for every o EH(A), 

M# N# hu, k o = hu, k(-X2(o). 

Theorem 4.1. For any real yu and f E [H, (A); B], 

MN#h' f = h [-x2f]. 

Proof. It follows from Lemma 4.3 that 

(h' [-X2f ], (p) = (-X2f, h#,k(O) = (f, -x2h#1,k(O) = (f, h#,/k(M,#N,#e0)) 
= (h'f, M,1N#() = (M#NVh' , (o). 
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