

A Kernel Theorem on the Space [$H_{\mu} \times A$; B]

Author(s): E. L. Koh and C. K. Li

Source: Proceedings of the American Mathematical Society, Vol. 123, No. 1 (Jan., 1995), pp.

177-182

Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2160624

Accessed: 27/08/2013 22:29

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

A KERNEL THEOREM ON THE SPACE $[H_{\mu} \times A; B]$

E. L. KOH AND C. K. LI

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Recently, we introduced a space $[H_{\mu}(A); B]$ which consists of Banach space-valued distributions for which the Hankel transformation is an automorphism (The Hankel transformation of a Banach space-valued generalized function, Proc. Amer. Math. Soc. 119 (1993), 153-163). One of the cornerstones in distribution theory is the kernel theorem of Schwartz which characterizes continuous bilinear functionals as kernel operators. The object of this paper is to prove a kernel theorem which states that for an arbitrary element of $[H_{\mu} \times A; B]$, it can be uniquely represented by an element of $[H_{\mu}(A); B]$ and hence of $[H_{\mu}; [A; B]]$. This is motivated by a generalization of Zemanian (Realizability theory for continuous linear systems, Academic Press, New York, 1972) for the product space $D_{R^n} \times V$ where V is a Fréchet space. His work is based on the facts that the space D_{R^n} is an inductive limit space and the convolution product is well defined in D_{K_i} . This is not possible here since the space $H_{\mu}(A)$ is not an inductive limit space. Furthermore, D(A) is not dense in $H_{\mu}(A)$. To overcome this, it is necessary to apply some results from our aforementioned paper. We close this paper with some applications to integral transformations by a suitable choice of A.

1. Introduction

In 1957, L. Schwartz showed that every bilinear continuous functional $f(\varphi, \psi)$ on the space $D(\Omega_1) \times D(\Omega_2)$ may be represented by a linear continuous functional g on the space $D(\Omega_1 \times \Omega_2)$, i.e.,

$$f(\varphi, \psi) = g(\varphi \times \psi)$$
 for $\varphi \in D(\Omega_1)$, $\psi \in D(\Omega_2)$

where $(\varphi \times \psi)(x_1, x_2) = \varphi(x_1) \cdot \psi(x_2)$ for $x_i \in \Omega_i$, i = 1, 2.

Zemanian extended the theorem to a more general type of product space $D_{R^n} \times V$. Let V be the strict inductive limit of a sequence $\{v_j\}_{j=1}^{\infty}$ of Fréchet spaces, and let $\{K_j\}_{j=1}^{\infty}$ be a sequence of compact intervals in R^n such that $K_j \subset \operatorname{int}(K_{j+1})$ for every j and $\bigcup K_j = R^n$. We let $H \triangleq D_{R^n}(V)$ denote the linear space of all smooth V-valued functions on R^n having compact supports. We now let $H_j \triangleq D_{K_j}(v_j)$ be the linear space of all $h \in H$ such that $h(R^n) \subset v_j$ and supp $h \subset K_j$. Thus $H_j \subset H_{j+1}$ for every j, and $H = \bigcup_{j=1}^{\infty} H_j$.

©1994 American Mathematical Society 0002-9939/94 \$1.00 + \$.25 per page

Received by the editors April 16, 1993; this paper was presented on January 15, 1994 at the 100th annual meeting of the American Mathematical Society in Cincinnati, Ohio.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46F10.

Key words and phrases. Kernel Theorem, the Hankel transformation, inductive-limit topology, generalized function.

Zemanian proved the kernel theorem as follows.

Theorem 1.1. Corresponding to every separately continuous bilinear mapping f of $D_{R^n} \times V$ into B there exists one and only one $g \in [H; B]$ such that

$$(1) f(\varphi, \psi) = g(\varphi\psi)$$

for all $\varphi \in D_{R^n}$ and $\psi \in V$. B is a Banach space and [H; B] is the linear space of all continuous linear mappings of H into B.

In this paper, we consider a new product space $H_{\mu} \times A$, where H_{μ} is Zemanian's space for the Hankel transformation and A is a Banach space. H_{μ} does not have an inductive-limit topology. Moreover, $D_I \subset H_{\mu}$, yet D_I is not dense in H_{μ} . A is a special case of V. We will show that for each element f of the space $[H_{\mu} \times A; B]$, there is a unique element g of $[H_{\mu}(A); B]$ such that $f(\varphi, \psi) = g(\varphi\psi)$.

Our notation is similar to that used in [1, 2]. Given any two topological vector spaces A and B, [A;B] denotes the linear space of all continuous linear mappings of A into B. The element of B assigned by $f \in [A;B]$ to $\varphi \in A$ is denoted by (f,φ) . The norm in any Banach space B is denoted by $\|\cdot\|_B$. R and C are the real and complex number fields. I is the open interval $(0,\infty)$. Other notation will be introduced as the need arises.

2. Main result

Following Zemanian, $H_{\mu}(A)$ is defined as follows.

Definition 2.1. Let x be a real variable restricted to I. For each real number μ , $\varphi(x) \in H_{\mu}(A)$ iff it is defined on I, takes it value in A, is smooth, and for each pair of nonnegative integers m and k

$$\gamma_{m,k}^{\mu}(\varphi) = \sup_{x \in I} \|x^m (x^{-1}D)^k x^{-\mu - 1/2} \varphi(x)\|_A$$

is finite. $H_{\mu}(A)$ is a linear space. The topology of $H_{\mu}(A)$ is that generated by $\{\gamma_{m,k}^{\mu}\}_{m,k=0}^{\infty}$.

Definition 2.2. $\varphi(x) \in D_I(A)$ iff φ is defined on I, takes its value in A, is smooth, and for every φ there exists $b \in I$ such that $\varphi(x) = 0$ for $x \in [b, \infty)$. Let ${}_{\mu}D_I(A) \triangleq D_I(A) \cap H_{\mu}(A)$.

Let $_{\mu}D_{I}\odot A$ denote the linear space of all $\varphi\in_{\mu}D_{I}(A)$ having representation of the form $\varphi=\sum\theta_{k}a_{k}$ where $\theta_{k}\in_{\mu}D_{I}$, $a_{k}\in A$, and the summation is over a finite number of terms.

The following result can be found in [3].

Theorem 2.1. The space $_{\mu}D_{I}\odot A$ is dense in $H_{\mu}(A)$ for all $\mu\in R$.

The following two lemmas can be found in [2].

Lemma 2.1. Let V, W be locally convex spaces and Γ and P be generating families of seminorms for the topologies of V and W, respectively. Let f be a linear mapping of V into W. The following four assertions are equivalent.

- (i) f is continuous.
- (ii) f is continuous at the origin.
- (iii) For every continuous seminorm ρ on W, there exists a continuous seminorm γ on V such that $\rho(f(\theta)) \leq \gamma(\theta)$ for all $\theta \in V$.

(iv) For every $\rho \in P$, there exist a constant M > 0 and a finite collection $\{\gamma_1, \gamma_2, \dots, \gamma_m\} \subset \Gamma$ such that

$$\rho(f(\theta)) \leq M \max_{1 \leq k \leq m} \gamma_k(\theta) \quad \textit{for all } \theta \in V.$$

Lemma 2.2. Let W be a locally convex space, and let Γ be a generating family of seminorms for the topology of W. Let V_1 and V_2 be Fréchet spaces. Let μ_1 and μ_2 be dense linear subspaces of V_1 and V_2 , respectively. Supply $V_1 \times V_2$ with the product topology and $\mu_1 \times \mu_2$ with the induced topology. Assume that f is a continuous sesquilinear mapping of $\mu_1 \times \mu_2$ into W. The continuity property is equivalent to the condition that, given any $\rho \in \Gamma$, there is a constant M > 0 and two continuous seminorms γ_1 and γ_2 on V_1 and V_2 , respectively, for which

(2)
$$\rho[f(\varphi_1, \varphi_2)] \leq M\gamma_1(\varphi_1)\gamma_2(\varphi_2), \qquad \varphi_1 \in \mu_1, \ \varphi_2 \in \mu_2.$$

We can conclude that there exists a unique continuous sesquilinear mapping g of $V_1 \times V_2$ into W such that $g(\varphi_1, \varphi_2) = f(\varphi_1, \varphi_2)$ for all $\varphi_i \in \mu_i$. Moreover, (2) holds again for f replaced by g and for all $\varphi_1 \in V_1$ and $\varphi_2 \in V_2$.

In particular, Lemma 2.2 still works for bilinear f. Our main result is stated as follows.

Theorem 2.2. Corresponding to every continuous bilinear mapping f of $H_{\mu} \times A$ into B, i.e., $f \in [H_{\mu} \times A; B]$, there exists one and only one $g \in [H_{\mu}(A); B]$ such that

$$f(\varphi, \psi) = g(\varphi \psi)$$

for all $\varphi \in H_{\mu}$ and $\psi \in A$.

Proof. First of all, let us consider the converse. Since g is linear, by (3), f is bilinear. Let $\varphi_n \to \varphi$ in H_μ and $\psi_n \to \psi$ in A. Then

$$\begin{split} \gamma_{m,k}^{\mu}(\varphi_{n}\psi_{n} - \varphi\psi) &\triangleq \sup_{x \in I} \|x^{m}(x^{-1}D)^{k}x^{-\mu - 1/2}(\varphi_{n}\psi_{n} - \varphi\psi)\|_{A} \\ &\leq \sup_{x \in I} |x^{m}(x^{-1}D)^{k}x^{-\mu - 1/2}\varphi_{n}| \cdot \|\psi_{n} - \psi\| \\ &+ \sup_{x \in I} |x^{m}(x^{-1}D)^{k}x^{-\mu - 1/2}(\varphi_{n} - \varphi)| \cdot \|\psi\|_{A} \to 0 \quad \text{as } n \to \infty \end{split}$$

for $\sup_{x\in I} |x^m(x^{-1}D)^k x^{-\mu-1/2} \varphi_n|$ is bounded by a constant which does not depend on n.

Since g is continuous on $H_{\mu}(A)$, it follows that f is continuous on $H_{\mu} \times A$. Let f be given as in Theorem 2.2. For $\varphi \in {}_{\mu}D_{I} \odot A$, we define

$$g(\varphi) \triangleq \sum_{k=1}^{r} f(\theta_k, a_k)$$
 for $\varphi = \sum_{k=1}^{r} \theta_k a_k$.

To justify this definition, we have to show that the right-hand side does not depend on the choice of the representation for φ . Let $\varphi = \sum_{i=1}^s h_i b_i$ where $h_i \in {}_{\mu}D_I$, $b_i \in A$, be another representation. Now, we find l linearly independent elements $e_1, e_2, \ldots, e_l \in A$ such that, for each k and i,

$$a_k = \sum_{j=1}^l \alpha_{k_j} e_j$$
, $b_i = \sum_{j=1}^l \beta_{i_j} e_j$

where α_{k_j} , $\beta_{i_j} \in C$. Upon substituting these sums into the two representations of φ and invoking the linear independence of e_i , we obtain

$$\sum_{k=1}^r \theta_k \alpha_{k_j} = \sum_{i=1}^s h_i \beta_{i_j}.$$

Hence,

$$\sum_{k=1}^{r} f(\theta_{k}, a_{k}) = \sum_{k=1}^{r} f\left(\theta_{k}, \sum_{j=1}^{l} \alpha_{k_{j}} e_{j}\right) = \sum_{k=1}^{r} \sum_{j=1}^{l} \alpha_{k_{j}} f(\theta_{k}, e_{j})$$

$$= \sum_{j=1}^{l} f\left(\sum_{k=1}^{r} \alpha_{k_{j}} \theta_{k}, e_{j}\right) = \sum_{i=1}^{s} f\left(h_{i}, \sum_{j=1}^{l} \beta_{i_{j}} e_{j}\right)$$

$$= \sum_{i=1}^{s} f(h_{i}, b_{i})$$

Furthermore, g is linear. Indeed, let φ_1 , $\varphi_2 \in {}_{\mu}D_I \odot A$ such that $\varphi_1 = \sum_{k=1}^r \theta_k a_k$, $\varphi_2 = \sum_{i=1}^s h_i b_i$. Then $\varphi_1 + \varphi_2 = \sum_{k=1}^{r+s} \theta_k' a_k'$, where $\theta_k' = \theta_k$, $a_k' = a_k$ for $1 \le k \le r$ and $\theta_{r+i}' = h_i$, $a_{r+i}' = b_i$ for $1 \le i \le s$. Hence,

$$g(\varphi_1 + \varphi_2) \triangleq \sum_{k=1}^{r+s} f(\theta'_k, a'_k) = \sum_{k=1}^{r} f(\theta'_k, a'_k) + \sum_{k=r+1}^{r+s} f(\theta'_k, a'_k)$$

= $g(\varphi_1) + g(\varphi_2)$.

Obviously $g(\alpha \varphi) = \alpha g(\varphi)$ for $\alpha \in C$.

Now we wish to show that g is uniformly continuous on ${}_{\mu}D_{I}\odot A$. Indeed, for arbitrary $\varepsilon>0$, as long as $\varphi\psi$ $(\varphi\in{}_{\mu}D_{I},\ \psi\in A)$ belongs to the balloon $\{\varphi\colon\gamma_{m,k}^{\mu}(\varphi)<\frac{\varepsilon}{M}\ ,\ m=0\,,\,1\,,\ldots\,,\,m_{0}\,,\ k=0\,,\,1\,,\ldots\,,\,k_{0}\}$, then there exist M>0 and positive integers m_{0} , k_{0} such that

$$\|g(\varphi\psi)\|_{B} \leq \|f(\varphi, \psi)\|_{B} \leq M\gamma_{m_{0}, k_{0}}^{\mu}(\varphi)\|\psi\|_{A} < \varepsilon.$$

This follows from Lemma 2.2. Thus g is uniformly continuous at the origin. By Lemma 2.1(iii), g is uniformly continuous on ${}_{\mu}D_{I} \odot A$. Since ${}_{\mu}D_{I} \odot A$ is dense in $H_{\mu}(A)$, we can extend g to $H_{\mu}(A)$ uniquely.

For arbitrary $\varphi \in H_{\mu}$, Theorem 2.1 enables us to construct $\varphi_n \in {}_{\mu}D_I$, such that $\varphi_n \to \varphi$ in H_{μ} . Therefore, from $g(\varphi_n \psi) = f(\varphi_n, \psi)$, $\psi \in A$, and letting $n \to \infty$ we get $g(\varphi \psi) = f(\varphi, \psi)$. Such a g is unique. This completes the proof. \square

We invoke the following theorem (see [3]) to establish the kernel theorem.

Theorem 2.3. There is a bijection from $[H_{\mu}(A); B]$ onto $[H_{\mu}; [A; B]]$ defined by $(g, \theta)a = (f, \theta a)$ where $a \in A$, $\theta \in H_{\mu}$, $g \in [H_{\mu}; [A; B]]$, and $f \in [H_{\mu}(A); B]$.

Theorem 2.4 (Kernel Theorem). Corresponding to every continuous bilinear mapping f of $H_{\mu} \times A$ into B, i.e., $f \in [H_{\mu} \times A; B]$, there exists one and only one $g \in [H_{\mu}; [A; B]]$ such that $f(\varphi, \psi) = (g, \varphi)\psi$ where $\varphi \in H_{\mu}$ and $\psi \in A$.

3. Some applications of the kernel theorem

We always take B = C in the following examples.

Example 1 (Laplace transformation). We choose $A = L^p(0, \infty)$ in Theorem 2.4. Since $[L^p(0, \infty); C] = L^q(0, \infty)$ (p, q are conjugate numbers), by applying the kernel theorem, we know that for arbitrary $f \in [H_\mu \times L^p; C]$, there exists a unique $g \in [H_\mu; L^q]$ such that $f(\varphi, \psi) = (g, \varphi)\psi$ where $\varphi \in H_\mu$, $\psi \in L^p$.

Define a family of functions g_s $(s \in I)$ on H_{μ} by $(g_s, \varphi) = \varphi(\sqrt{sx}), x \in I$; then $g_s \in [H_{\mu}; L^q]$. In fact,

$$\int_0^\infty |\varphi(\sqrt{sx})|^q dx = \int_0^\infty |\varphi(u)|^q \frac{2u}{s} du < \infty$$

since $\varphi \in H_{\mu}$. The topology of H_{μ} is stronger than that of L^{q} . Hence the assertion follows.

Therefore,

$$f(\varphi, \psi) = (g, \varphi)\psi = \int_0^\infty \varphi(\sqrt{sx})\psi(x) dx.$$

Set $\mu = -\frac{1}{2}$; then $\varphi = e^{-t^2} \in H_{-1/2}$, and

$$f(e^{-t^2}, \, \psi) = \int_0^\infty e^{-sx} \psi(x) \, dx$$

which is the Laplace transformation on L^p .

Example 2. We take $A = l^p$ in Theorem 2.4. By using the fact $[l^p; C] = l^q$, it follows that for $f \in [H_u \times l^p; C]$, there exists a unique $g \in [H_u; l^q]$ such that

$$f(\varphi, \psi) = (g, \varphi)\psi$$

where $\varphi \in H_{\mu}$ and $\psi \in l^p$.

We define

$$(g_s, \varphi) = \{i^s \varphi(i)\}_{i=1}^{+\infty} \text{ for } s \in R.$$

Then $g_s \in [H_\mu; l^q]$ since $\varphi(x)$ is a rapid decent function. And

$$f(\varphi, \psi) = \sum_{i=1}^{\infty} i^{s} \varphi(i) y_{i}$$

where $\psi = \{y_i\}_{i=1}^{\infty} \in l^p$.

Example 3 (Mellin transformation). Set

$$A = \{ \psi \in C_I^{\infty} ; \exists \text{ polynomial } P_{\psi} \text{ such that } |x\psi| \le P_{\psi} \}.$$

The norm is defined as

$$\|\psi\| = \sup_{x \in I} |e^{-x}x\psi(x)|.$$

It is easily verified that A is a Banach space. We define

$$(g, \varphi)\psi = \int_0^\infty \varphi(x)\psi(x) dx$$

where $\psi \in A$.

In particular, $\psi_s = x^{s-1} \in A$ for s > 0. We get the following Mellin transformation on H_{μ} $(\mu \ge -\frac{1}{2})$

$$f(\varphi, \psi_s) = \int_0^\infty \varphi(x) x^{s-1} dx$$

where s > 0.

Example 4 (Hankel transformation). Set

$$A = \{ \psi(x) \in C_I^{\infty}; \ \psi \text{ is bounded} \}.$$

The norm is defined as $\|\psi\| = \sup_{x \in I} |\psi(x)|$.

It follows that A is a Banach space. We define

$$(g, \varphi)\psi = \int_0^\infty \varphi(x)\psi(x) dx$$

where $\psi(x) \in A$.

In particular, $\psi_y(x) = \sqrt{xy}J_\mu(xy) \in A$ for y > 0. We have the Hankel transformation

$$f(\varphi, \sqrt{xy}J_{\mu}(xy)) = \int_0^\infty \varphi(x)\sqrt{xy}J_{\mu}(xy) dx.$$

REFERENCES

- 1. A. H. Zemanian, Generalized integral transformations, Interscience, New York, 1968.
- 2. _____, Realizability theory for continuous linear systems, Academic Press, New York, 1972.
- 3. E. L. Koh and C. K. Li, The Hankel transformation of a Banach-space-valued generalized function, Proc. Amer. Math. Soc. 119 (1993), 153-163.

Department of Mathematics and Statistics, University of Regina, Regina, Canada S4S 0A2

E-mail address: ELKOH@max.cc.uregina.ca
E-mail address: LICHEN@meena.cc.uregina.ca