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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 123, Number 1, January 1995 

A KERNEL THEOREM ON THE SPACE [H. x A; B] 

E. L. KOH AND C. K. LI 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. Recently, we introduced a space [H# (A); B] which consists of Ba- 
nach space-valued distributions for which the Hankel transformation is an au- 
tomorphism (The Hankel transformation of a Banach space-valued generalized 
function, Proc. Amer. Math. Soc. 119 (1993), 153-163). One of the corner- 
stones in distribution theory is the kernel theorem of Schwartz which charac- 
terizes continuous bilinear functionals as kernel operators. The object of this 
paper is to prove a kernel theorem which states that for an arbitrary element 
of [H# x A; B], it can be uniquely represented by an element of [HY(A); B] 
and hence of [Hy; [A; B]] . This is motivated by a generalization of Zemanian 
(Realizability theory for continuous linear systems, Academic Press, New York, 
1972) for the product space DRn x V where V is a Frechet space. His work 
is based on the facts that the space DRn is an inductive limit space and the 
convolution product is well defined in DK, . This is not possible here since the 
space HS,(A) is not an inductive limit space. Furthermore, D(A) is not dense 
in H# (A) . To overcome this, it is necessary to apply some results from our 
aforementioned paper. We close this paper with some applications to integral 
transformations by a suitable choice of A . 

1. INTRODUCTION 

In 1957, L. Schwartz showed that every bilinear continuous functional 
f((o, V) on the space D(Q1) x D(Q2) may be represented by a linear con- 
tinuous functional g on the space D(Q1 x Q2), i.e., 

f((, A) = g(( x V) for ( E D(Q1), IE D(Q2) 

where ( x V)(xI, x2) = (xl) * V(x2) for xi E Qi, i= 1, 2. 
Zemanian extended the theorem to a more general type of product space 

DRn x V. Let V be the strict inductive limit of a sequence {vj }I?lI of Frechet 
spaces, and let {Kj} J??= be a sequence of compact intervals in Rn such that 

Kj c int(Kj+1) for every j and UKj = Rn . We let H - DRn(V) denote the 
linear space of all smooth V-valued functions on Rn having compact supports. 
We now let Hj - DK, (vj) be the linear space of all h E H such that h(Rn) C Vj 
and supph c Kj. Thus Hj c Hj+I for every j, and H =U `1 Hj . 
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178 E. L. KOH AND C. K. LI 

Zemanian proved the kernel theorem as follows. 

Theorem 1.1. Corresponding to every separately continuous bilinear mapping f 
of DRn x V into B there exists one and only one g E [H; B] such that 

(1) f ((o, y) = g(( y/) 
for all (0 E DRn and V/ E V. B is a Banach space and [H; B] is the linear 
space of all continuous linear mappings of H into B . 

In this paper, we consider a new product space H, x A, where H, is Zema- 
nian's space for the Hankel transformation and A is a Banach space. H, does 
not have an inductive-limit topology. Moreover, DI c H,, yet DI is not dense 
in HA,. A is a special case of V. We will show that for each element f of 
the space [H, x A; B], there is a unique element g of [H,(A); B] such that 

f(6, V/) = g((OYi). 
Our notation is similar to that used in [1, 2]. Given any two topological 

vector spaces A and B, [A; B] denotes the linear space of all continuous 
linear mappings of A into B. The element of B assigned by f E [A; B] to 
9 E A is denoted by (f, 0) . The norm in any Banach space B is denoted by 
11 IIB . R and C are the real and complex number fields. I is the open interval 

(0, oc) . Other notation will be introduced as the need arises. 

2. MAIN RESULT 

Following Zemanian, HA,(A) is defined as follows. 

Definition 2.1. Let x be a real variable restricted to I. For each real number 
,i, (9(x) E HA,(A) iff it is defined on I, takes it value in A, is smooth, and for 
each pair of nonnegative integers m and k 

Ydu k((9) = SUp IIXm(X lD)kx- 1/2(o(X) A 
M , XEI 

is finite. H, (A) is a linear space. The topology of HA,(A) is that generated by 

{Yrm,k}r ,k=OA 

Definition 2.2. (0(x) E DI(A) iff ( is defined on I, takes its value in A, is 
smooth, and for every (0 there exists b E I such that (0(x) = 0 for x E [b, oc). 
Let ,DI(A)' DI(A) n H(A). 

Let MDI ( A denote the linear space of all (0 E MDI(A) having representation 
of the form (0 = E Okak where Ok E D,DI, ak E A, and the summation is over 
a finite number of terms. 

The following result can be found in [3]. 

Theorem 2.1. The space ,D1 (0 A is dense in H,4(A) for all U E R. 

The following two lemmas can be found in [2]. 

Lemma 2.1. Let V, W be locally convex spaces and F and P be generating 
families of seminorms for the topologies of V and W, respectively. Let f be a 
linear mapping of V into W. The following four assertions are equivalent. 

(i) f is continuous. 
(ii) f is continuous at the origin. 

(iii) For every continuous seminorm p on W, there exists a continuous semi- 
norm y on V such that p(f(0)) < y(0) for all 0 E V . 
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(iv) For every p E P, there exist a constant M > 0 and a finite collection 
JYl , Y2, ., yn c r' such that 

p(f(O)) < M max Yk(0) for all 0 E V. 
1<k<m 

Lemma 2.2. Let W be a locally convex space, and let F be a generating family 
of seminorms for the topology of W. Let V1 and V2 be Frechet spaces. Let ,1I 
and Y2 be dense linear subspaces of V1 and V2, respectively. Supply V1 x V2 

with the product topology and Yi x ii2 with the induced topology. Assume that 
f is a continuous sesquilinear mapping of ul x Y2 into W. The continuity 
property is equivalent to the condition that, given any p E F, there is a constant 
M > 0 and two continuous seminorms yl and Y2 on V1 and V2, respectively, 
for which 

(2) P4f(01, (02)] < My1((0l)y2((02), (01 E l1, (02 E l2. 

We can conclude that there exists a unique continuous sesquilinear mapping g 
of V1 x V2 into W such that g(( 01, (02) = f (( I , (02) for all ( i E pig. Moreover, 
(2) holds again for f replaced by g and for all (0I E V1 and (02 E V2 

In particular, Lemma 2.2 still works for bilinear f . 
Our main result is stated as follows. 

Theorem 2.2. Corresponding to every continuous bilinear mapping f of Hy x A 
into B, i.e., f E [H, x A; B], there exists one and only one g E [HA,(A); B] 
such that 

(3) f ((0, V/) = g((0Y/) 
for all ( E H. and yi E A. 
Proof. First of all, let us consider the converse. Since g is linear, by (3), f is 
bilinear. Let (0n -- (0 in H, and V, V in A. Then 

YM ,k(9nV< n - (yI) suplxm(x-lDxl/(nVn - ()HA 
xEI 

? SUp lxm(x-lD)kx- 1/2(n-| 11HVIn -V 
xEI 

+ SUP lxm(x-lD)kX-Ju-1/2 ((0 - ~9)1 . 1 V11A 
- 0 as n --+ oc 

xEI 

for supxI lxm(x-l1D)kX-/u-1/2 (0n I is bounded by a constant which does not 

depend on n. 

Since g is continuous on H, (A), it follows that f is continuous on H, x A. 

Let f be given as in Theorem 2.2. For ( E JUDI (3 A, we define 

r r 

g(9) f A Z(Ok, ak) for (0 = Zokak. 
k=l k=i 

To justify this definition, we have to show that the right-hand side does 

not depend on the choice of the representation for (0. Let (0 = Z9 hibi 
where hi E A4DI, bi E A, be another representation. Now, we find 1 linearly 

independent elements el, e2, ..., el E A such that, for each k and i, 

/ / 

ak=Zi akej, bi =ZEi,ej 
j=l j=l 
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where ak, / liJ E C . Upon substituting these sums into the two representations 
of (0 and invoking the linear independence of e , we obtain 

r S 

E Okakj = 

Zhifii,. k=l1~ 

Hence, 

r r r 

Zf( fk ak) =Z f Ok ak, ej E E Ckj f A , ej) 
k=l k=l j=1 k=l j= 

f 

f( EZa kOke) Zf( 
)hiZ/3i~ej J=1 k=l i=l j=l 

S 

= Zf(hi, bi) 
i=l1 

Furthermore, g is linear. Indeed, let (01, (02 E YDI 0 A such that 01 = 

Zr1 = kak (02 = = hibi. Then (01 + (02 = ZrVs 0' a' , where O' =k 
ak =ak for 1 < k < r and O' hi, ai= bi for 1 < i < s. Hence, 

r+s r r+s 

g((1 + (02) Ef(O, a)) = Ef(O ) a + E f(O , a) 
k=l k=1 k=r+l 

= g((01) + g((02). 

Obviously g(a(o) = ag((0) for a E C. 
Now we wish to show that g is uniformly continuous on YDI (0) A. Indeed, 

for arbitrary e > 0, as long as (0 V (p E ,4DI, V E A) belongs to the balloon 
{(o: 2t k((P) < MI m = 0, 1, ..., iMO, k = 0, ..., ko}, then there exist 
M > 0 and positive integers moi, ko such that 

jjg((py)lB < 11f((, V)I)B ? MYmO 
U 

O(9)HIIHIA < 6 

This follows from Lemma 2.2. Thus g is uniformly continuous at the origin. 
By Lemma 2.1 (iii), g is uniformly continuous on PD1 0 A. Since PD1 0 A is 
dense in H. (A), we can extend g to H. (A) uniquely. 

For arbitrary (0 E H., Theorem 2.1 enables us to construct ( n E JDI, such 
that (0 n -- ( in H. . Therefore, from g((on VI) = f ((pn, V), VI E A, and letting 
n -+ oc we get g((0V/) = f((0, VI). Such a g is unique. This completes the 
proof. O 

We invoke the following theorem (see [3]) to establish the kernel theorem. 

Theorem 2.3. There is a bijection from [H,(A); B] onto [H.; [A; B]] defined 
by (g, O)a = (f, Oa) where a E A, 0 E Hp, g E [H; [A; B]], and f E 
[Hu(A); B]. 

Theorem 2.4 (Kernel Theorem). Corresponding to every continuous bilinear 
mapping f of Hp x A into B, i.e., f E [H. x A; B], there exists one and 
only one g E [Hp,; [A; B]] such that fG(, VI) = (g, (0)V/ where (0 E H. and 
VI E A. 
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3. SOME APPLICATIONS OF THE KERNEL THEOREM 

We always take B = C in the following examples. 

Example 1 (Laplace transformation). We choose A = LP(O, oc) in Theorem 
2.4. Since [LP(O, oc); C] = Lq(O, 0o) (p, q are conjugate numbers), by ap- 
plying the kernel theorem, we know that for arbitrary f E [H. x LP; C], there 
exists a unique g E [H,; Lq] such that f((o, V/) = (g, (o)yI where (0 E Hp, 

E E LP. 
Define a family of functions g5 (s E I) on H. by (gs, (0) = 0(V( ), X E I; 

then g, E [Hm ; Lq]. In fact, 

A 1(V,) I dx = X (9(u) -du < 
00 

p 2 s 
since (9 E Hm . The topology of H, is stronger than that of Lg. Hence the 
assertion follows. 

Therefore, 

f(o, VI) = (g, o )V = j (vs) V(x) dx. 

Set then =e-' E H 1/2, and 
00 

f(et2, )=j sxV (Vx)dx 

which is the Laplace transformation on LP. 

Example 2. We take A = iP in Theorem 2.4. By using the fact [iP ; C] = lg. it 
follows that for f E [Hp, x iP; C], there exists a unique g E [Hmn i;] such that 

f((o, VI) = (g , (0) V 

where (0 E H,4 and VI E iP. 
We define 

(gs, (0) = {JiS((i)}1+= for s E R. 

Then gs E [Hm; 1"] since (0(x) is a rapid decent function. And 
00 

f((0, i)s= Zis0(i)YL 
1=1 

where V = {Yl }I li E iPf' 

Example 3 (Mellin transformation). Set 

A = {VI E Cf; 3 polynomial P. such that IxVI < Pa}. 

The norm is defined as 
11 V11 = sup le-xxV(x)J. 

xEI 

It is easily verified that A is a Banach space. We define 

(g, ) VI = j( (x)VI(x) dx 

where w E A. 
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182 E. L. KOH AND C. K. LI 

In particular, Y/s = XS-1 E A for s > 0. We get the following Mellin 
transformation on H,4 ( -u> I ) 

f((o, Vs) = J (x)xs-)ldx 

where s > 0. 

Example 4 (Hankel transformation). Set 

A = {y(x) E C7'; q is bounded}. 

The norm is defined as 11V/11 = SuPXEI yIV(x)l . 
It follows that A is a Banach space. We define 

(g, (o)y = J( (x) V(x)dx 

where VI(x)eA. 
In particular, qIy(X) = Vf/7JM(xy) E A for y > 0. We have the Hankel 

transformation 

f ((, :XftjfU(xy)) = j (o(x)jxjyJu(xy) dx. 
0 
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