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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 122, Number 4, December 1994 

THE HANKEL TRANSFORMATION ON My 
AND ITS REPRESENTATION 

E. L. KOH AND C. K. LI 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. The Hankel transformation was extended by Zemanian to certain 
generalized functions of slow growth through a generalization of Parseval's 
equation as 

(1) ~~~~~(hpf, ( p) = (f , hurt) 

where (0, hpda E Hy, f E H.. 
Later, Koh and Zemanian defined the generalized complex Hankel transfor- 

mation on .J/ = U ?=I Jav ,, where Jav ,. is the testing function space which 
contains the kernel function, vi~x7J0(xy). A transformation was defined di- 
rectly as the application of a generalized function to the kernel function, i.e., 
for f E 

I 

(2) (hpf)(y) = (f(x), V/x-yJ1(xy)). 

In this paper, we extend definition (2) to a larger space of generalized func- 
tions. We first introduce the test function space Man, which contains the 
kernel function and show that Hu c Ma it C Jaz ,. We then form the count- 
able union space MI, = U' 1 May,u whose dual M' has J,' as a subspace. 
Our main result is an inversion theorem stated as follows. 

Let F(y) = (hf)(y) = (f(x), V/XjJfi(xy)), f E M,#, where y is re- 
stricted to the positive real axis. Let p > - I . Then, in the sense of conver- 
gence in H., 

r 
r---=,oo J F(y)uyJ1(xy)dy. 

This convergence gives a stronger result than the one obtained by Koh and 
Zemanian (1968). 

Secondly, we prove that every generalized function belonging to Ma ,A can 
be represented by a finite sum of derivatives of measurable functions. This 
proof is analogous to the method employed in structure theorems for Schwartz 
distributions (Edwards, 1965), and similar to one by Koh (1970). 
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1086 E. L. KOH AND C. K LI 

1. INTRODUCTION 

The conventional Hankel transformation is defined by 

F(y) = hf = j f (x)\/yJ. (xy)dx, 

where 0 < y < oo, js is a real number, and J. is the Bessel function of 
the first kind and order yu. In 1966, Zemanian (see [4]) constructed a testing 
function space H. in order to extend this transformation to certain generalized 
functions. 

For each real number yu, a function (p(x) is in H. if and only if it is 
defined on 0 < x < ox, it is complex-valued and smooth, and for each pair of 
nonnegative integers m and k, 

Jnk(P)- sup Ixm(x-lD)k[X--PlI2p(x)]I 
0<x<oo 

exists (i.e., is finite). H, is a linear space. Also, each YA k is a seminorm on 
Hy. The topology of H. is that generated by {y' k}m, k=O 

The Hankel transformation h. is an automorphism on H. whenever yu > 
-2. The generalized functions in the dual H' of H, act like distributions 
of slow growth as x -+oo. Moreover, H. is the domain of the generalized 
Hankel transformation h., which is defined via (1). It follows that h. is an 
automorphism on H' . This procedure is reminiscent of Schwartz's method of 
extending the Fourier transformation to distributions of slow growth. 

In 1968, Koh and Zemanian [1] developed an alternative approach to the 
generalized Hankel transformation. For a real number M and a positive real 
number a, they constructed a testing function space Jan, as follows. 

Let Jaw, be a testing function space containing all (p(x) which are defined 
and smooth on I = (0, oo) and for which 

Tz#a((,) = sup le-ax-#-x1/2(x--l1/2Dx2x+lDx-I-12)k(()I 
xEI 

<00, k=O, 1,2,.... 

They assign to Ja,,, the topology generated by the countable multinorm 
{raloo 

lk Ik=o- 
Jaqt contains the kernel v/J.xj7yJ#(xy) as a function on 0 < x < oo for each 

fixed complex y in the strip Q = {y: I Imy I < a, y $ 0 or a negative number}. 
The Hankel transformation h., is now defined on the dual space Ja, # via (2). 

It is proved in [1] that any generalized function that has a Hankel transform 
according to (2) will also have a Hankel transform according to (1), and the two 
transforms will agree. 

The definition (2), while not as general as that of (1), is a more natural 
extension of the classical transformation because the kernel appears explicitly 
as a testing function. This leads to simpler manipulation for computational 
purposes. This could not be done in (1) because the kernel is not a member of 
H#, whatever be the value of y . 

In this paper, we define a new testing function space Ma,#, between H. 
and Ja,, ,s, namely H.1 c Ma, # C Ja, a, whereby Ma, , still contains the kernel 
function. Since a,, c Mc , definition (2) is thus extended to a larger class of 
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THE HANKEL TRANSFORMATION ON My 1087 

generalized functions. We obtain many properties of Man, s and the countable 
union M. = U', Ma,,,, . An inversion theorem and a representation for MI 
are our main results. 

By a smooth function, we mean a function that possesses continuous ordinary 
derivatives of all orders at all points of its domain. The notation (f, aP) denotes 
the number assigned to a member (0 of some testing function space by a member 
f of the dual space. 

D(I) denotes the space of smooth functions that have compact support on 
I. We equip D(I) with the usual topology. Its dual D'(I) is the space of 
Schwartz distributions on I. 

E(I) denotes the space of smooth functions on I. Its dual E'(I) is the 
space of distributions with compact support on I. 

The following theorem given in [4] will be used subsequently. 

Theorem 1.1. If f(x) E LI (0, o.), if f(x) is of bounded variation in a neigh- 
bourhood of the point x = x0 > 0, if u> -' , and if F(y) is defined as the 
conventional Hankel transformation, then 

'[f(xo + 0) + f(xo - 0)] = h 1F = j F(y) xJo(xoy)dy 

Note that when pu > -2 , the conventional inverse Hankel transformation 
h-1 is defined by precisely the same formula as is the direct Hankel transfor- 
mation h.; in symbols, h,= - h 1- 

2. THE TESTING FUNCTION SPACES Ma,.u AND M 

Let a E I and yu E R. We define Mans as the space of testing functions 
(0(x) which are defined and smooth on 0 < x < 00, taking its value in C, and 
for which 

.(u)= sup e-aXxm(x-lD)kX-u-12fp(X)I <00 m, k = O 1,2 ... Ym ,k 
xEI 

We assign to Ma, m the topology generated by the countable multinorm {ym'a }. 

Ma ,u is a Hausdorff space since Yms is a norm. 
The following properties will be inferred. 
(i) Let yu > -2. For a fixed complex number y belonging to the strip 

Q = {y: I ImyI < a, y $ 0 or a negative number}, 

am J 

aym uA/J(XY)) fE May- 

Indeed, it is easily verified that (see [1]) 

Aim am (./jJ (xy)) = E aj(y)yjmxiJ.y(xy), a9ym j=0 

where the aj(M) are constants depending on Iu only. 
Considering 

(xlD)kx 8 l2xJ~i uj7J~(xy) = VyT(x-lD)kx(Pi)J (y) 

= (_l)kyk+1I2X-(u-j+k)J k(XY) 
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1088 E. L KOH AND C. K. LI 

and 

(xy) JuJ+k)J,,j+k(XY) 2,,-j+kr(M - j + k + 1) as x -0+ 

= 0[(xy)-(-j+k)-1/2exI ImYl] as x -x o0, 

it follows that 
Ya,.M (xj \IWJVyuj(xy)) < 00. 

Therefore 
- ,tgm m 

Ymk [aymWVJY"/.(xy)) < IYIjmk VOYj (xy)) < 00 

j=1 

for a fixed y E Q. 

(ii) The differential operator N A xu+112Dx--/112 is continuous from Ma, 
into Ma,,+i. Indeed 

Ym, k ( )=Ym', /k~l( 

Note: It is impossible for us to define Ny 1 on Ma,,+i. 

The differential operator MH. A x--lI2Dx1+lI2 is continuous from Ma,.,+l 
into Ma,,s. Indeed, 

ym' /k(Mujp) < 21u + k + lm k Yj(.P) +I 

(iii) Multipliers in Ma, , . Define 

0= {0(x) E C' 13C, E I for each integer v > 0, 3 integer n, , such that 

1 + Xn_ J 

For arbitrary 0 E 0 and (O E Ma,,,, we have 

k (k) (x-1D)( )x k 1/2o 

so that 
k k 

ya,# (o(P) <E ( Cv [Ym kv (P) + ya,, ((P)] 

(iv) Ma, is complete. The proof is very similar to Lemma 5.2.2 on page 
131 in [4]. 

(v) H,, C Ma,,, for all ,u E R, a E I. And the topology of H, is stronger 
than that induced on it by Ma,,, . Indeed, e-ax < 1 on (0, 00) and ya 'jU() < 

Ym, k()- 

Our space Ma, # is a subspace of Ja, , and has a stronger topology than that 

induced on it by Ja,, . 
To see Ma,,, C Ja,,,, we note that 

k 

(3) ~~X-ju-112Skv bjX2j(X- D)k+jX- 
u 

12(, (3) V = E Dj 
j=0 
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THE HANKEL TRANSFORMATION ON My 1089 

where S. = x-8- l2Dx2P+lDx-P- lI2, and the constants bj depend on iu only. 
It follows that 

k 

Tk ' b 2j, k~j 
j=0 

for any (0 E Ma, ,. This implies our assertion. 
Note that H. is a proper subset of Maw. Indeed, ./ifj7Jp(xy) E Ma,, as 

was already shown in (i), but ./ixjyJ. (xy) ? H, since it is not of rapid descent. 
Also, Ma,,, is a proper subset of Jab,,. In fact, we define 

f eax, X> 1 
oI(x)= smooth 1/2<x<1, 

10 0< x< 1/2. 

Let (0 = x+ 1/2(oI(x), then (0(x) E Ja,, . By equation (3) we have 

k 

e-axX-.-1/22Sk(0 = Ebje-axx2j(x lD)k+jX-u-12(o. 

j=0 

When x > 1 
k 

e axXI.u-I2S( - ~ axx2jI xDk iax. e- X-/- J25 V = E bje-ax i (x 1 D) + je 
j=0 

It is easily verified that 

(x-lD)k+jeax = C(k, j)x-(2k+2j)+laeax + + ak+jX-k-jeax, 

where C(k, j) is a constant depending on k, j. 
It follows that T"'a, (() < 0, but y ((o) ? supa[, ,0) IeaxxeaxI = 0 . 
(vi) If a > b > 0, then Mb,,. c Ma,,, and the topology of Mb,, is stronger 

than that induced on it by Ma, , . This follows immediately from the inequality 

Em,k ()< m, k )fr EM - 

(vii) D(I) c Ma,, and the topology of D(I) is stronger than that induced 
on it by Ma, ,. By the way, we point out that D(I) is not dense in Ma, P. 

(viii) For every choice of Iu and a, Ma,,, c E(I). Moreover, it is dense in 
E(I) because D(I) is dense in E(I). 

(ix) For each f E Map, there exist a pair of nonnegative integers mo, ko 
and a positive constant C such that for (P E Ma,,, 

I Vf, ()I < C max au(P) 
O<k<A; mo 

We turn now to the definition of a certain countable-union space MG,,, (for 
short M/1) that arises from the Ma,, spaces. Our subsequent discussion takes 
on a simpler form when the space M/1 is used in place of the Ma, , spaces. Let 
{av I 0 be a monotonically increasing sequence of positive numbers tending to 
a. Here a = 00 is allowed. By virtue of note (vi), {Ma,,,p}lJI is a sequence 
of Frdchet spaces such that Mal,,, C Ma2, c , and such that the topology 
of May,,, is stronger than that induced on it by Ma+i,,. Let M,,, (= M/1) = 
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1090 E. L. KOH AND C. K. LI 

U' I May, denote the countable-union space generated by the above sequence 
of spaces. Thus, a sequence {on}np converges in M. to (0 iff for some fixed 
a>, (PnX (oEMake and Pn )-/p in Mawp. 

We assign to M. the usual weak convergence concept. Accordingly, a se- 
quence {jf}>0I1 converges in 

I 
if there exists an f E My such that, for 

every (0 E M/ 

I (fv , (p) - (f , (p) I- 0 as v x- o. 

The following lemmas are immediate. 

Lemma 2.1. For any fixed complex number y belonging to Q = {y: I Im y l < a, 
y $ 0 or a negative number} 

am 
(IX 

ta m (p EM1 
mm=O, 1,2 .... 

Lemma 2.2. For every choice of a > 0, H. c M. and convergence in H. 
implies convergence in M/. 

3. THE GENERALIZED HANKEL TRANSFORMATION ON M' 

Let ii > In view of (vi), to every f E Ma there exists a unique real 
number af possibly af = ox such that f E 

I 
if b < af and f M 

if b > af . Therefore, f E . We define the Mth order Hankel transform 

hmf as the application of f to the kernel v/xRjJm(xy); i.e., 

F(y) = (hyf)(y) = (f(X), .jJ,(xy)), 

where y E Qf = {y: I ImyI < Uf, y $ 0 or a negative number}. The strip Qf 
will be called the region of definition for F(y). 

The following results given in [5] will be needed. 

Lemma 3.1. Let a be a fixed positive number. For all y in the strip Q = 

{y: I ImyI < a, y $ 0 or a negative number}, for 0 < x < o, andfor 2> -2 

e-ax(xy)-mxm Jp(xy) ? 4, 

where A4 is a constant with respect to x and y. 

Lemma 3.2 (Boundedness of F(y) ). F(y) is bounded on any cut strip {y: I Im yI 
< a, < a < af, y $ 0 or a negative number} according to 

IF(y)l < aYA1P(lyl), 

where Pa(lyI) is a polynomial depending only on a. 

Lemma 3.3 (Analyticity of F(y)). F(y) is an analytic function in Q = {y 
Imyl < a < Uf, y $0 or a negative number} and 

DyF(y) = (f(x), a Adz iJp(xy))- 

Theorem 3.1. Let f E M' (f E H., and I > - .Then 

((f(x), ~ftj7Jm (xy)), (0(y)) =(f(x), j y(xy)((y)dy), y E I. 
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THE HANKEL TRANSFORMATION ON My 1091 

Proof. Since (f(x), V/-yjJm(xy)) is of slow growth as y -x 00 by Lemma 3.2, 
and is Lebesgue integrable on 0 < y < Y for Y E (0, ox) by Lemma 3.3, we 
can write 

(4) ((f(x), ~fjXyJU(xy)), (0(y))= j (f(x),VjJA(xy)) ((y)dy 

since (0 E Ha. 
Our theorem will be proven when we show that 

j (f(x), VftyjJu(xy)) ((y)dy = (f(x) j ((y)vrixJ,(xy)dy) 

Consider the Riemann sum 

(5)~ ~ E (v m ) AX), V J. ( ) 

This sum converges to the integral f0Y (y)(f(x),yJ,(xy))dy for the 
integrand is continuous on 0 < y < Y. Moreover, since (0(y) is of rapid 
descent while (f(x), ,r/xiJ,(xy)) is bounded by a polynomial in IjI, the last 
integral converges to the right-hand side of (4) as Y x0. 

On the other hand, we are able to write (5) as 

(6) (x) yE( m ( 
- 

4 J, (xoY 
and show that, as m and then Y -x 00, (6) converges to 

(f~~~~~~~~~~~~~x),~~~~~~~~~~~( A (y) ~iJ-xy~ d 

Indeed, by taking the operator (x-lD)kx-m-l12 under the integral and the sum- 
mation signs, we have 

(7) 

ym ' {jk (Y)Vi uJ(xy)dv m (vml) x2J 
(Xmv)}} 

Y 
=sup e-ax r{ (| (y)( -)kyk+lI2x-(u+k)JP+k(xy)dy 

- Y ( ()k ( )+2k+ 1/2 y ( (u+k) (xy - ) 
-- E (0 

tV -)-1 tvt m J.+k tXV - 

Because of the factor e-axxm and the boundedness of (Xy)-(P+k) J+k(xy) 
on 0 < xy < o, given an E > 0, there exists an X such that for all x > X, 
the quantity under the supremum sign is less than e for every m. Now, on 
0 < x < X, 0 < y < Y, the expression (0(y)yu+2k+l12(xy)-.+k J+k(xy) is 

uniformly continuous, hence the Riemann sum on the right-hand side of (7) 
converges to the integral uniformly on 0 < x < X as m -x 00. Thus, (6) 
converges to (f(x), fj' (0(y) j/xyJ,(xy)dy) as m -x 0. 
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1092 E. L. KOH AND C. K. LI 

Finally, we show that f y (Dxy4yJ.(xy)dy -O 0 as Y -- ox in My. This 
is because of the following inequalities: 

e-axx (x- D)kx-1/2 J (y) yJ,(xy)dy 
J00 

l (p(y)e-axXm (-1 )kyu+2k+112 (xy)-(Pu+k) J+k(XY)dY 

< AJ (y)yu+2k+lI2 dy -- 0. 

The last inequality is due to Lemma 3.1. 

Inversion and uniqueness. We now state an inversion theorem for our general- 
ized Hankel transformation. 

Theorem 3.2. Let F(y) = (f(x), .jiJ4(xy)), f E M', y E I. Let u > -. 

Then, in the sense of convergence in H' 
or 

f(x) = jimr F(y)VlJ(xy)dy. 
Proof. Let (0(x) E Hm, we wish to show that 

(I F(y)>lftjJu(xy)dy, (p(x)) 

tends to (f(x), (p(x)) as r -- 00. Since F(y) is smooth and .4/IrJ,(xy) is 
bounded on 0 < xy < 00, it follows that fJor F(y)xyJm4(xy)dy is continuous 
and bounded with respect to x. Hence we have 

(Jr F(y x JTJ(xy) dy (0(x) = 100 JF(Y)v/ yJ( xy) dy(0(x)dx 

By Fubini's theorem we can change the order of integration and obtain 
0oo rr 

(((x) J F(y)u/jJ(xy)dydx 
(8) or ro0 

J(f(x) . ftj7JU(xy)) J (ux>\fjJ(xy)dxdy. 

Set (D(y) = fo o(x)>$1jJu(xy)dx. Then bD(y) E H. since u > -2 
By Theorem 3.1, the right-hand side of (8) can be written as 

(f(x) X tJ.(xy) J (ux)vJ(xy)dxdy). 

Now, we wish to show 
r roo 

Lr(X) = j /J(ty) j 0(x)J(xy)dxdy 

converges in M. to (0(t) as r -oo. 
By the last part of the proof of Theorem 3.1, we get 

Jr r 

lim /' -xJy(xy)(y)dy=J VI-xy J 
u~~i~jJ,(xy)bD(y)dy = (0(x). 

The last equality is due to Theorem 1.1. 

As a result of the inversion theorem, we have the following theorem. 
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THE HANKEL TRANSFORMATION ON M1 1093 

Theorem 3.3. Let F(y) = huf = G(y) = hug for y E I, then f = g in the 
sense of equality in H'. 

Now, we come to prove a characterization theorem for the generalized func- 
tion in Ma,.U 

Theorem 3.4. A functional f is in Ma if and only if there exist bounded 
measurable functions gmk(x) defined on I, for m = 0, 1, 2, ..., imO and 
k = O 1, 2, ... , ko, where mO and ko are nonnegative integers depending on 
f, and such that 

/MO, kO k\ 

(9) ( P) = K Xnk x112 (-D!)l {eax xm(-D)gmk(X)} 
, 

(x) 
M=0,~ k=0 

for every ( E Ma,. 
Proof. Let f E Ma , . By using the property (ix), there exist a pair of nonneg- 
ative integers mo, ko, and a positive constant C such that for (0 E Ma,.u 

I(fPo)I?C max Ya au((t,) = C max sup le-axxm(x-lD)kx--1/2 

O<m<mo O<m<m 

Since (0 E Ma, , there exists Cm k > 0 such that 

sup le-axxm+2(x-lD)kx-.ul2VoI < Cm, k for fixed a and u. 
xEI 

It follows that 
lim e-axxm(x- 1D)kx-.u-12ep = 0; 

x-goo 
hence 

x 

e-axxm(x-lD)kx-.lI2( - J Dt{e-attm(t-lD)kt-.ul12( (t)}dt. 

From 

Dt{e attm (t- D)kt- .112q (t)} 
= Dt{e-attm}(t- lD)kUt-.ulI2(o(t) + e-attm+ l (t- D)k+l t-u- 112 ((t) 

and the fact that (o E Ma, ,#, it follows that 

J IDt{e at (tt D)kt u-I2(t)}Idt 

= IIDt{eattm(tUlD)kt u#12o(t)}|IIL(o, oc) 

is finite, where 11 IIL,(0,oo) denotes the norm on the space LI(O, o) . Then we 
have 

(10) I(fP )I < C max I |Dt{e-attm(t-lD)kt-.ulI2o(t)}I |L (0,oo) 
0?k~ko 

Define an invective map F1: Ma,. 4 FiMa,.u by 

( -+ (Dt{e-attm(t-lD)kt-u-I12(0(t)}) m = 0, 1, ... , mo, 

k=O,1 ,...,ko. 
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1094 E. L. KOH AND C. K. LI 

F1 Ma,, is endowed with the topology induced on it by the product space 
Amok = (L1(O, oo))(m0+l)(ko+l) 

Define F2: FiMa,g -- C by Fl -p (f, CD). By virtue of (10), F2 is a 
continuous linear mapping. 

By applying the Hahn-Banach theorem, F2 can be extended to Amoko. 
Therefore, since Am' is isomorphic to (Loo(0, oo))(ko+1)(mO+1) (see Treves 
[6]), there exist (ko + 1)(mo + 1) bounded measurable functions gm, k (x)(m = 
0, 1, 2, ..., io, k = 0, 1, 2, ... , kco) , such that 

F2 (FIp) (f , (o) E (gm,k(X), Dx{e-axXm(x-lD)kX-#-12(D}) 
m=0, k=O 

/ m0 ,ko k\ 

= 
9 E 

X-gz-12 (-D- X xme-ax(-D)gM Isk(X)1 i )P 
m=0, k=O 

On the other hand, we assume f is defined by (8). Obviously f is linear. 
Let (n -+ 0 in Mafi then Dx{e-axxm(x-lD)kx--I12(pn} converges to 0 in 
L1 (0, o) . This completes the proof. 
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