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A kernel theorem from the Hankel transform
in Banach spaces

C. K. LI*

Department of Mathematics and Computer Science, Brandon University, Brandon,
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(Received 24 February 2004; in final form 9 April 2004)

One of the cornerstones in distribution theory was the kernel theorem of Schwartz in 1957, which
showed that every bilinear continuous functional f (ϕ, ψ) on the space D(�1) × D(�2) can be rep-
resented by a linear continuous functional g on the space D(�1 × �2). Zemanian [Zemanian, A.H.,
1972, Realizability Theory for Continuous Linear Systems (New York: Academic Press).] extended
the theorem to a more general type of product space DRn × V where V is a Fréchet space. His work
was based on the fact that the space DRn is an inductive limit space and the convolution product is
well defined in DKj

. In this paper, we study a new product space Hµ × A, where Hµ is the testing
space for the classical Hankel transform and A is a Banach space, and derive the kernel theorem
which is considered as a unified form for integral transforms such as Mellin, Laplace, Hankel and
the K-transform by choosing particular Banach spaces for A. Using the Hankel transform of arbitrary
order and pseudo-integrals, we find a generalized solution in H ′

µ for the following differential equation:

d2

dx2
u −

(
1 + 4µ2 − 1

4x2

)
u = −√

xJµ(x) (1)

where Jµ(x) is the Bessel function of first kind and order µ �= −1, −2, −3, . . ..

Keywords: Hankel transform; Zemanian space; Kernel theorem; Generalized function

2000 Mathematics Subject Classification: Primary: 46F10

1. Introduction

The natural framework for a realizability theory of continuous linear systems in physics is
distribution theory. Since the signals in the systems of interest take their values in Banach
spaces, Zemanian introduced Banach-space-valued distributions in ref. [2] for this purpose.
This is more general than that of scalar distributions.

Let m be an n-tuple each of whose components is either a non-negative integer or ∞. Also,
let K be a compact subset in Rn and A is a Banach space. The space Dm

K(A) denotes the linear
space of all functions φ from Rn into A such that supp φ ⊂ K , and for every integer vector
k ∈ Rn with 0 ≤ k ≤ m, φ(k) is continuous. Dm

K(A) is assigned the topology generated by the
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566 C. K. Li

collection {γk | 0 ≤ k ≤ m} of seminorms, where

γk(φ)
�= sup

t∈K

‖φ(k)(t)‖A.

When all the components of m are ∞, we denote Dm
K(A) by DK(A). Moreover, we set

Dm
K(C) = Dm

K where C is a complex plane and DK(C) = DK . Now let {Kj }∞j=1 be compact
subsets of Rn such that Kj ⊂ Kj+1, ∪∞

j=1Kj = Rn, and every compact subset J ⊂ Rn is
contained in some Kj . We define

Dm(A) = Dm
Rn(A) =

∞⋃
j=1

Dm
Kj

(A).

This space, which is independent of choices of Kj , possesses the inductive-limit topology.
Furthermore, it has the closure property since Dm

Kj
(A) is complete.

Given any two topological vector spaces A and B, [A; B] denotes the linear space of all
continuous linear mappings of A into B. The element of B assigned by f ∈ [A; B] to φ ∈ A

is denoted by 〈f, φ〉. [A; B] is supplied with the topology of uniform convergence on bounded
sets in A. ‖·‖B denotes the norm in any Banach space B and I is the open interval (0, ∞).
Other notations will be introduced as the need arises.

Applying the interpolation theory, Zemanian described the following local structure
property.

THEOREM 1.1 Let f ∈ [Dm(A); B] and K be a compact interval in Rn. Then there exists an
integer p ∈ Rn with 0 ≤ p ≤ m and a continuous [A; B]-valued function h on K such that,
for all φ ∈ D

m+[2]
K (A),

〈f, φ〉 =
∫

K

h(t)Dp+[2]φ(t) dt.

In general, p and h depend on f and K .

Then the following kernel theorem in proved.

THEOREM 1.2 If T m and T m(A) are normal spaces (i.e. D is dense in T m and D(A) is T m(A),
respectively), then there exists a bijetion from [T m(A); B] onto [T m; [A : B]] defined by

〈g, ψ〉a �= 〈f, ψa〉 ψ ∈ T m, a ∈ A

where g ∈ [T m; [A; B]] and f ∈ [T m(A); B].

Tiwari [3] followed the method of Zemanian in defining Banach-space-valued distribu-
tions for which a Mellin transform can be used. Several properties including a Mellin-type
convolution theorem were proved. These results are similar to those of Zemanian [2].

To make this paper as self-contained as possible, we introduce a dense subspace µDI (A)

(which is proposed by Koh and Li [8, 9]) of Hµ(A). It does not have an inductive-limit topology.
The local structure theorem is no longer discussed in [Hµ(A); B]. However, with a different
method, we show that there is still a bijection from [Hµ(A); B] onto [Hµ; [A; B]] from which
we derive a kernel theorem as a ‘root’ of a wide range of integral transforms by applying two
lemmas given in ref. [2]. Furthermore, we provide a direct and simple proof for the inverse
Hankel transform which states that for any fixed real number µ and any positive integer k
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Kernel theorem from the Hankel transform 567

such that µ + k ≥ −1/2, we have hµ, k = h−1
µ, k . Finally we solve equation (1) in the abstract

by the Hankel transform of arbitrary order and pseudo-integrals, and show that

h−1/2(M−1/2φ) = −
(

2

π

)1/2

φ(0+) + yh1/2(φ)

which re-describes a formula for the case µ = −1/2 in Zemanian’s book [1].

2. The spaces [Hµ(A); B] and [Hµ; [A; B]]

In order to extend the classical Hankel transform of Zemanian to Banach-space-valued
generalized functions, we define Hµ(A) as follows.

DEFINITION 2.1 Let A be a Banach space and x be a real variable restricted to I . For each
real number µ, we say any φ(x) ∈ Hµ(A) iff it is a smooth (infinitely differentiable) mapping
from I into A, and for each pair of non-negative integers m and k

γ
µ

m,k(φ)

= sup

x∈I

(1 + x2)m

∥∥∥∥∥
(

1

x
D

)k

[x−µ−1/2φ(x)]
∥∥∥∥∥

A

< ∞.

Obviously, Hµ(A) is a linear space. The topology of Hµ(A) is that generated by {γ µ

m, k}∞m, k=0
.

Let

µDI (A) = {φ ∈ Hµ(A)|suppφ bounded} ⊂ Hµ(A).

THEOREM 2.1 The subspace µDI (A) is dense in Hµ(A) for all µ ∈ R.

Proof Let λ(x) ∈ DI such that λ(x) = 1 for 0 < x ≤ 1 and λ(x) = 0 for x ≥ 2 (obviously
this function can be constructed by a convolution). For arbitrary φ(x) ∈ Hµ(A) and each pair
of non-negative integers m and k, we consider

xm(x−1D)kx−µ−(1/2)
[
λ
( x

N

)
φ(x) − φ(x)

]

= xm+1
k∑

ν=0

(
k

ν

)
(x−1D)k−νx−µ−(1/2)φ

(x−1D)ν[λ(x/N) − 1]
x

.

Therefore,

sup
x∈I

∥∥∥xm(x−1D)kx−µ−(1/2)
(
λ
( x

N

)
φ(x) − φ(x)

)∥∥∥
A

≤
k∑

ν=0

(
k

ν

)
sup
x∈I

∥∥xm+1(x−1D)k−νx−µ−(1/2)φ
∥∥

A
· sup

x≥N

∣∣∣∣ (x−1D)ν[λ(x/N) − 1]
x

∣∣∣∣ .
It follows from φ ∈ Hµ(A) that supx∈I ‖(x−1D)k−νx−µ−(1/2)φ‖A is bounded.

Since λ(x) and its derivatives are bounded, it follows that

sup
x≥N

∣∣∣∣ (x−1D)ν[λ(x/N) − 1]
x

∣∣∣∣ −→ 0 as N −→ ∞,

for fixed k and 0 ≤ ν ≤ k, whence our assertion. �
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568 C. K. Li

We should point out that Zemanian in ref. [4] introduced the testing function spaces Bµ,b

and Bµ while defining the Hankel transform on the space Yµ. Indeed, Bµ = µDI (C) in terms
of set equality.

Hµ(A) is not a ρ-type testing function space in the sense of Zemanian [2]. To see this,
we choose φ(x) = xµ+(1/2)e−x2

a0, a0 ∈ A and a0 �= 0. Then for all ψ which is smooth from
I into A with compact support contained in I , γ

µ
0,0(φ − ψ) ≥ ‖a0‖/2 > 0. This means the

balloon {
θ |θ ∈ Hµ(A) and γ

µ
0,0(φ − ψ) ≤ ‖a0‖

3

}

does not contain any element of Dm(A). Thus our result is true.
The following lemmas will be used subsequently (see refs. [1] and [2]).

LEMMA 2.1 Let V , W be locally convex spaces, and � and P generate families of seminorms
for topologies of V and W , respectively. Let f be a linear mapping of V into W . Then the
following assertions are equivalent:

(1) f is continuous.
(2) f is continuous at the origin.
(3) For every continuous seminorm ρ on W , there exists a continuous seminorm γ on V such

that ρ(f (θ)) ≤ γ (θ) for all θ .
(4) For everyρ ∈ P , there exists a constantM > 0 and a finite collection {γ1, γ2, . . . , γm} ⊂ �

such that

ρ(f (θ)) ≤ M max
0≤k≤m

γk(θ)

for all θ ∈ V .

LEMMA 2.2 For µ ≥ −1/2, the conventional Hankel transform hµ is an automorphim on
Hµ(A).

Proof Consider all integrals in a Banach space and the rest is as in ref. [1, Theorem 5.4-1,
p. 141]. �

THEOREM 2.2 Every f ∈ [Hµ(A); B] uniquely defines a g ∈ [Hµ; [A; B]] by the equation

〈g, θ〉a �= 〈f, θa〉 θ ∈ Hµ, a ∈ A

for all µ ∈ R.

Proof Fixing upon some θ ∈ Hµ we define a mapping jθ of A into B by jθa = 〈f, θa〉 for
all a ∈ A. It readily follows that jθ is linear. By Lemma 2.1 (4), there exist positive integers
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Kernel theorem from the Hankel transform 569

m0, k0 and constant M > 0 such that

‖jθa‖B = ‖〈f, θa〉‖B ≤ M max
0≤k≤k0

0≤m≤m0

γ
µ

m,k(θa),

where

γ
µ

m,k(θa) = sup
x∈I

∥∥xm(x−1D)kx−µ−(1/2)θa
∥∥

A
= ‖a‖A sup

x∈I

∣∣xm(x−1D)kx−µ−(1/2)θ
∣∣ .

Hence

‖jθa‖B ≤ M‖a‖A max
0≤k≤k0

0≤m≤m0

γ
µ

m,k(θ)

and

‖jθ‖[A;B] ≤ M max
0≤k≤k0

0≤m≤m0

γ
µ

m,k(θ). (2)

Next, set 〈g, θ〉 �= jθ . This uniquely defines g as a mapping from Hµ into [A; B]. g is linear
because, for any a ∈ A, α, β ∈ C and θ, ψ ∈ Hµ

〈g, αθ + βψ〉a = 〈f, αθa + βψa〉 = α〈f, θa〉 + β〈f, ψa〉
= (α〈f, θ〉 + β〈g, ψ〉)a.

Moreover, inequality (2) implies that g is continuous. �

We let

µDI

⊙
A =

{
r∑

k=1

θkak|θk ∈ µDI , ak ∈ A and r is finite

}
.

Obviously, µDI

⊙
A ⊂ Hµ(A) and further it leads to Theorem 2.3.

THEOREM 2.3 The space µDI

⊙
A is dense in Hµ(A) for µ ≥ −1/2.

Proof Let λ(x) be defined as in the proof of Theorem 2.1. For φ ∈ µDI (A), we first show
that

λ
( x

N

)
hµ(φ) −→ hµ in Hµ(A) as N −→ ∞

for all µ ∈ R.
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570 C. K. Li

The following equation will be used in the proof (see ref. [1]):

(−1)m+kym(y−1D)ky−µ−(1/2)hµ(φ)(y)

=
∫ ∞

0
x2µ+2k+m+1[(x−1D)mx−µ−(1/2)φ(x)]Jµ+k+m(xy)

(xy)µ+k
dx. (3)

Hence

sup
x∈I

∥∥∥xm(x−1D)kx−µ−(1/2)hµ(φ)
[
λ
( x

N

)
− 1
]∥∥∥

A

≤
k∑

ν=0

(
k

ν

)
sup
x≥N

∣∣∣∣∣ (x
−1D)ν[λ( x

N
) − 1]

x

∣∣∣∣∣ sup
x∈I

∥∥xm+1(x−1D)k−νx−µ−(1/2)hµ(φ)
∥∥

A
.

By Theorem 2.1,

sup
x≥N

∣∣∣∣ (x−1D)ν[λ(x/N) − 1]
x

∣∣∣∣ −→ 0 as N −→ ∞

for fixed k and 0 ≤ ν ≤ k.
On using equation (3) and noting that Jµ+k−ν+m+1/(xy)µ+k−ν is bounded, say by Bk,ν,m,

we get

sup
x∈I

‖xm+1(x−1D)k−νx−µ−(1/2)hµ(φ)‖A

= sup
x∈I

∥∥∥∥
∫ ∞

0
y2µ+2(k−ν)+m+2[(y−1D)m+1y−µ−1/2φ(y)]Jµ+k−ν+m+1(xy)

(xy)µ+k−ν
dy

∥∥∥∥
A

.

Choose a positive integer n such that

y2µ+2(k−ν)+m+2 ≤ (1 + y2)n for all y ∈ I,

we have

sup
y∈I

‖y2µ+2(k−ν)+m+2[(y−1D)m+1y−µ−(1/2)φ(y)]‖A

≤ sup
y∈I

‖(1 + y2)n[(y−1D)m+1y−µ−(1/2)φ(y)]‖A.

Since φ ∈ µDI (A), there exists b ∈ I such that φ(x) = 0 for x ∈ [b, ∞). It follows that

sup
x∈I

‖xm+1(x−1D)k−νx−µ−(1/2)hµ(φ)‖A

≤ Bk,ν,mb sup
y∈I

‖(1 + y2)n[(y−1D)m+1y−µ−(1/2)φ(y)]‖A

is finite. Therefore,

λ
( x

N

)
hµ(φ) −→ hµ(φ) in Hµ(A) as N −→ ∞.

Secondly, we prove that µDI

⊙
A is dense in Hµ(A) for µ ≥ −1/2. For positive integer m1,

we have

√
xyJµ(xy) =

m1∑
j=0

(xy)1/2(−1)j (xy/2)µ+2j

j ! �(µ + j + 1)
+

+∞∑
j=m1+1

(xy)1/2(−1)j (xy/2)µ+2j

j ! �(µ + j + 1)
.
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Kernel theorem from the Hankel transform 571

For every φ ∈ µDI (A), the term

TN,m1 = λ
( x

N

) ∫ +∞

0
φ(t)

m1∑
j=0

(xt)1/2(−1)j (xt/2)µ+2j

j ! �(µ + j + 1)
dt N, m1 = 1, 2, . . .

belongs to µDI

⊙
A since µ ≥ −1/2. Now,

TN,m1 −
∫ ∞

0
φ(t)

√
xtJµ(xt) dt

= TN,m1 − λ
( x

N

) ∫ ∞

0
φ(t)

√
xtJµ(xt) dt

+ λ
( x

N

) ∫ ∞

0
φ(t)

√
xtJµ(xt) dt −

∫ ∞

0
φ(t)

√
xtJµ(xt) dt.

By what we have proved, for arbitrary ε > 0, there exists an N1 such that for N ≥ N1, we
have

sup
x∈I

∥∥∥xm(x−1D)kx−µ−(1/2)
[
λ
( x

N

)
hµ(φ) − hµ(φ)

]∥∥∥
A

<
ε

2
.

Fixing N(≥N1), then

λ
( x

N

) m1∑
j=0

(xt)1/2(−1)j (xt/2)µ+2j

j ! �(µ + j + 1)
− √

xtJµ(xt)




and its derivatives with respect to x converge to zero uniformly on every compact subset of I .
It has a uniformly bounded support. Therefore it converges in the sense of Schwartz, whose
topology is stronger than that of Hµ (see ref. [1]). It follows that there exists an L ∈ I such
that as long as m1 ≥ L, for all t ≤ b,

sup
x∈I

∣∣∣∣∣∣xm(x−1D)kxµ−(1/2)λ
( x

N

) m1∑
j=0

(xt)1/2(−1)j (xt/2)µ+2j

j ! �(µ + j + 1)
− √

xtJµ(xt)



∣∣∣∣∣∣ ≤

ε

2M1
,

where M1 = b supt∈I ‖φ(t)‖A. If M1 = 0, then there is nothing to be proved. Therefore,

sup
x∈I

∥∥∥∥xm(x−1D)kx−µ−(1/2)

[
TN,m1 −

∫ ∞

0
φ(t)

√
xtJµ(xt) dt

]∥∥∥∥
A

< ε

provided N ≥ N1 and m1 ≥ L.
Since hµ is an automorphism on Hµ(A) for µ ≥ −1/2 by Lemma 2.2, and the fact that

µDI (A) is dense in Hµ(A), it follows that hµ(µDI (A)) is dense in Hµ(A). Our assertion
follows directly from the fact that µDI

⊙
A is dense in hµ(µDI (A)). �

THEOREM 2.4 There is a bijection from [Hµ(A); B] onto [Hµ; [A; B]] defined by

〈g, θ〉a = 〈f, θa〉

where a ∈ A, g ∈ [Hµ; [A; B]] and f ∈ [Hµ(A); B], θ ∈ Hµ for µ ≥ −1/2.
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572 C. K. Li

Proof By Theorem 2.2, every f ∈ [Hµ(A); B] uniquely defines a g ∈ [Hµ; [A; B]] by the
equation

〈g, θ〉a �= 〈f, θa〉 for all µ ∈ R.

Let us consider the converse. For every φ ∈ µDI

⊙
A, we define

〈f, φ〉 =
∑

〈g, θk〉ak for φ =
∑

θkak.

It follows from the definition (well-defined) that f is linear on µDI

⊙
A. We show that f

is continuous. Indeed, for arbitrary ε > 0, as long as θa(θ ∈ µDI and a ∈ A) belongs to the
balloon {φ: γ µ

m,k(φ) < ε/M, m = 0, 1, 2, . . . , m0, k = 0, 1, 2, . . . , k0}. M, m0, k0 are defined
as follows. We infer that

‖〈f, θa〉‖B = ‖〈g, θ〉a‖B ≤ ‖a‖A · ‖〈g, θ〉‖[A;B].

By Lemma 2.1 (4), there exist M > 0, positive integers m0, k0 such that

‖〈f, θa〉‖B ≤ ‖a‖A · M max
0≤k≤k0

0≤m≤m0

γ
µ

m,k(θ) < M · ε

M
= ε.

Therefore, f is continuous at the origin. By Lemma 2.1 (2), f is continuous on µDI

⊙
A.

According to Theorem 2.3, µDI

⊙
A is dense in Hµ(A) for µ ≥ −1/2. Thus our assertion is

true. �

3. The Hankel transform on Hµ(A)

We shall use the following differential and integral operators proposed by Zemanian [1].

Nµφ(x)
�= xµ+(1/2)Dx−µ−(1/2)φ(x)

Mµφ(x)
�= x−µ−(1/2)Dxµ+(1/2)φ(x)

N−1
µ φ(x)

�= xµ+(1/2)

∫ x

∞
t−µ−(1/2)φ(t) dt.

LEMMA 3.1 Nµ is a continuous linear mapping of Hµ(A) into Hµ+1(A).
Indeed, γ

µ+1
m,k (Nµφ) = γ

µ

m,k+1(φ) for every φ ∈ Hµ(A) and every choice of m and k.

LEMMA 3.2 N−1
µ is a continuous linear mapping of Hµ+1(A) into Hµ(A).

Proof It follows from

(x−1D)kx−µ−(1/2)N−1
µ φ(x) = (x−1D)kx−µ−(1/2)xµ+(1/2)

∫ x

∞
t−µ−(1/2)φ(t) dt

= (x−1D)k−1x−µ−(3/2)φ(x),

where φ(x) ∈ Hµ+1(A) and k is a fixed positive integer. �
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Kernel theorem from the Hankel transform 573

Let µ ∈ R and positive integer k such that µ + k ≥ −1/2. Assume that φ ∈ Hµ(A). Define
hµ,k on Hµ(A) by

�(x) = hµ,k[φ(y)] �= (−1)kx−khµ+kNµ+k−1 · · · Nµ+1Nµφ(y).

Let �(x) ∈ Hµ(A) and define h−1
µ,k on Hµ(A) by

φ(y) = h−1
µ,k[�(x)] �= (−1)kN−1

µ N−1
µ+1 · · · N−1

µ+k−1hµ+kx
k�(x).

THEOREM 3.1 hµ,k is an automorphism on Hµ(A). Its inverse is h−1
µ,k , and hµ,k = hµ if

µ ≥ −1/2.

Proof By Lemma 3.1 and Lemma 3.2, φ → NµNµ+1 · · · Nµ+k−1φ is an isomorphism from
Hµ(A) onto Hµ+k(A).

By Lemma 2.2, hµ+k is an automorphism on Hµ+k(A) for µ + k ≥ −1/2. It follows from
γ

µ

m,k(x
−kφ) = γ

µ+k

m,k (φ) that φ → x−kφ is an isomorphism from Hµ+k(A) onto Hµ(A). There-
fore hµ,k is an automorphism on Hµ(A). Similarly, h−1

µ,k is an automorphism on Hµ(A), and

is inverse to hµ,k because h−1
µ+k = hµ+k and the inverse of Nµ+k−1 · · · Nµ is N−1

µ · · · N−1
µ+k−1.

To prove the last statement, let φ(y) ∈ Hµ(A), µ ≥ −1/2 and consider k = 1;

hµ,1φ = −x−1hµ+1Nµφ = −x−1
∫ ∞

0
yµ+(1/2)[Dyy

−µ−(1/2)φ(y)]√xyJµ+1(xy) dy

= −x−1√xyJµ+1(xy)φ(y)|∞0 +
∫ ∞

0
φ(y)

√
xyJµ(xy) dy.

Since φ(y) is of rapid descent and
√

xyJµ+1(xy) is bounded as y → ∞, while φ(y) =
O(yµ+(1/2)) and

√
xyJµ+1(xy) = O(yµ+3/2) as y → 0+, the limit terms are zero for

µ ≥ −1/2. Thus hµ,1φ = hµφ. By induction, hµ,k = hµ for µ ≥ −1/2. �

Note that the definition of hµ,k is independent of the choice of k so long as k + µ ≥ −1/2.
Indeed if k > p ≥ −µ − (1/2), then hµ+p,k−p = hµ+p by Theorem 3.1, hence

hµ, kφ = (−1)kx−khµ+kNµ+k−1 · · · Nµφ

= (−1)px−p(−1)k−px−(k−p)hµ+p+k−pNµ+p+k−p−1 · · · Nµ+pNµ+p−1 · · · Nµφ

= (−1)px−phµ+p,k−pNµ+p−1 · · · Nµφ

= (−1)px−phµ+pNµ+p−1 · · · Nµφ

= hµ,pφ.

Zemanian claimed in ref. [1] that hu,k �= h−1
u,k when µ < −1/2. However, he did not give any

counterexample. Kerr [5] introduced complex fractional powers of Hankel transforms hα
µ in

Hµ to show that hµ = h−1
µ . In the present work, we are able to give a direct and simple proof

that hu,k = h−1
u, k for µ ∈ R with the help of the following identity [1]:

Dxx
−µJµ(xy) = −yx−µJµ+1(xy) (4)

LEMMA 3.3 Nµhµ,k(φ) = hµ+1,k(−yφ) for φ ∈ Hµ(A).
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574 C. K. Li

Proof By definition,

hu, kφ = (−1)kx−khµ+kNµ+k−1 · · · Nµ+1Nµφ(y)

= (−1)kx−khµ+ky
µ+k+(1/2)(y−1D)ky−µ−(1/2)φ(y)

= (−1)kx−k

∫ ∞

0

√
xyJµ+k(xy)yµ+k+(1/2)(y−1D)ky−µ−(1/2)φ(y) dy.

It follows that

Nµhu,k(φ) = (−1)k
∫ ∞

0
Nµx−k√xyJµ+k(xy)yµ+k+(1/2)(y−1D)ky−µ−(1/2)φ(y) dy.

By equation (4), we have

Nµx−k(xy)1/2Jµ+k(xy) = xµ+(1/2)Dx−µ−kJµ+k(xy)y1/2

= x−k√xyJµ+1+k(xy)(−y).

Hence,

Nµhu,k(φ) = (−1)kx−k

∫ ∞

0

√
xyJµ+1+k(xy)yµ+1+k+(1/2)(y−1D)ky−µ−1−(1/2)[−yφ(y)] dy

= hµ+1,k(−yφ).

�

THEOREM 3.2 Let µ be any fixed real number and let k be any positive integer such that
µ + k ≥ −1/2. Then hµ,k = h−1

µ,k .

Proof By Lemma 3.3, we have

Nµhµ,k(φ) = hµ+1,k(−yφ).

Applying Nµ+1 to both sides, we obtain

Nµ+1Nµhµ,k(φ) = Nµ+1hµ+1,k(−yφ) = hµ+2,k[(−1)2y2φ].
Repeating this process, we get

Nµ+k−1 · · · Nµ+1Nµhµ,k(φ) = hµ+k,k[(−1)kykφ].
Since µ + k ≥ −1/2, hµ+k,k[(−1)kykφ] = hµ+k[(−1)kykφ]. Therefore,

Nµ+k−1 · · · Nµ+1Nµhµ,k(φ) = (−1)khµ+k(y
kφ)

and we finally come to

hµ,k(φ) = (−1)kN−1
µ N−1

µ+1 · · · N−1
µ+k−1hµ+ky

kφ(y) = h−1
µ,k(φ).

This completes the proof. �
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Kernel theorem from the Hankel transform 575

DEFINITION 3.1 Let µ ∈ R, k positive integer such that µ + k ≥ −1/2. For any f ∈
[Hµ(A); B], the generalized Hankel transform h′

µf is defined by

〈h′
µf, φ〉 = 〈f, hµ,kφ〉, φ ∈ Hµ(A).

by Theorems 3.1 and 3.2 and the fact that h′
µ is the adjoint operator of hµ,k on Hµ(A), we

have the following corollary.

COROLLARY 3.1 h′
µ is an automorphism on [Hµ(A); B] for all µ ∈ R.

Applying operator T
�= Nµ+k−1 · · · Nµ, we have Theorem 3.3.

THEOREM 3.3 Let A, B be two Banach spaces. There is a bijection from [Hµ(A); B] onto
[Hµ; [A; B]] defined by

〈g, θ〉a = 〈f, θa〉
where a ∈ A, θ ∈ Hµ, g ∈ [Hµ; [A; B]] and f ∈ [Hµ(A); B], µ ∈ R.

Proof For any µ ∈ R, we choose positive integer k such that µ + k ≥ −1/2. The operator
T is an isomorphism from µDI

⊙
A onto µ+kDI

⊙
A which is dense in Hµ+k(A). Also T

is an isomorphism from Hµ(A) onto Hµ+k(A). Therefore, µDI

⊙
A is dense in Hµ(A). By

Theorems 2.3 and 2.4, there is a bijection from [Hµ(A); B] onto [Hµ; [A; B]] satisfying the
preceeding equation. �

4. The kernel theorem

The following lemma can be found in ref. [2]

LEMMA 4.1 Let W be locally convex space and let � be a generating family of seminorms for
the topology of W . Let V1 and V2 be Fréchet spaces. Let µ1 and µ2 be dense linear subspaces
of V1 and V2, respectively. Supply V1 × V2, with the product topology and µ1 × µ2 with the
induced topology. Assume that f is a continuous sesquilinear† mapping of µ1 × µ2 into W .
The continuity property is equivalent to the condition that, given any ρ ∈ �, there is a constant
M > 0 and two continuous seminorms γ1 and γ2 on V1 and V2, respectively, for which

ρ[f (ϕ1, ϕ2)] ≤ Mγ1(ϕ1)γ2(ϕ2), ϕ1 ∈ µ1, ϕ2 ∈ µ2. (5)

We can conclude that there exists a unique continuous sesquilinear mapping g of V1 × V2

into W such that g(ϕ1, ϕ2) = f (ϕ1, ϕ2) for all ϕi ∈ µi . Moreover, inequality (5) holds again
for f replaced by g and for all ϕ1 ∈ V1 and ϕ2 ∈ V2.

In particular, Lemma 4.1 holds for bilinear f . Our main result is stated as follows:

THEOREM 4.1 Corresponding to every continuous bilinear mapping f of Hµ × A into B, i.e
f ∈ [Hµ × A; B], there exists one and only one g ∈ [Hµ(A); B] such that

f (ϕ, ψ) = g(ϕψ) (6)

for all ϕ ∈ Hµ and ψ ∈ A.

†A function f (x, y) is said to be sesquilinear if f (αx + βy, z) = αf (x, z) + βf (y, z) and f (x, αy + βz) =
αf (x, y) + βf (x, z).
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576 C. K. Li

Proof First of all, let us consider the converse. Since g is linear, by equation (6), f is bilinear.
Let ϕn → ϕ in Hµ, ψn → ψ in A. Then

γ
µ

m,k(ϕnψn − ϕψ)

= sup

x∈I

∥∥xm(x−1D)kx−µ−(1/2)(ϕnψn − ϕψ)
∥∥

A

≤ sup
x∈I

|xm(x−1D)kx−µ−(1/2)ϕn| · ‖ψn − ψ‖

+ sup
x∈I

|xm(x−1D)kx−µ−(1/2)(ϕn − ϕ)| · ‖ψ‖A −→ 0 as n −→ ∞

for supx∈I |xm(x−1D)kx−µ−(1/2)ϕn| is bounded by a constant which does not depend on n.
Since g is continuous on Hµ(A), it follows that f is continuous on Hµ × A.
Let f be given as in Theorem 4.1. For ϕ ∈ µDI

⊙
A, we define

g(ϕ)

=

r∑
k=1

f (θk, ak) for ϕ =
r∑

k=1

θkak.

To justify this definition, we have to show that the right-hand side does not depend on the
choice of the representation for ϕ. Let ϕ =∑s

i=1 hibi where hi ∈ µDI , bi ∈ A, be another
representation. Now, we find l linearly independent elements e1, e2, . . . , el ∈ A, such that for
each k and i,

ak =
l∑

j=1

αkj
ej and bi =

l∑
j=1

βij ej ,

where αkj
, βij ∈ C. On substituting these sums into the two representations of ϕ and invoking

the linear independence of ej , we obtain

r∑
k=1

θkαkj
=

s∑
i=1

hiβij .

Hence

r∑
k=1

f (θk, ak) =
r∑

k=1

f


θk,

l∑
j=1

αkj
ej


 =

r∑
k=1

l∑
j=1

αkj
f (θk, ej )

=
l∑

j=1

f

(
r∑

k=1

αkj
θk, ej

)
=

s∑
i=1

f


hi,

l∑
j=1

βij ej




=
s∑

i=1

f (hi, bi).

Furthermore, g is linear. Indeed, let ϕ1, ϕ2 ∈ µDI

⊙
A such that ϕ1 =∑r

k=1 θkak, ϕ2 =∑s
i=1 hibi . Then ϕ1 + ϕ2 =∑r+s

k=1 θ ′
ka

′
k , where θ ′

k = θk, a′
k = ak for 1 ≤ k ≤ r , θ ′

r+i =
hi, a′

r+i = bi for 1 ≤ i ≤ s.

g(ϕ1 + ϕ2)

=

r+s∑
k=1

f (θ ′
k, a

′
k) =

r∑
k=1

f (θ ′
k, a

′
k) +

r+s∑
k=r+1

f (θ ′
k, a

′
k)

= g(ϕ1) + g(ϕ2).

Obviously, g(αϕ) = αg(ϕ) for α ∈ C.
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Kernel theorem from the Hankel transform 577

Now, we show that g is uniformly continuous on µDI

⊙
A. Indeed, for any ε > 0,

as long as ϕψ (ϕ ∈ µDI and ψ ∈ A) belongs to the balloon {ϕ: γ
µ

m,k(ϕ) < ε/M, m =
0, 1, . . . , m0, k = 0, 1, . . . , k0}, then there exist M > 0, positive integer m0, k0 such that

‖g(ϕψ)‖B ≤ ‖f (ϕ, ψ)‖B ≤ Mγ
µ

m0,k0
(ϕ)‖ψ‖A < ε.

This follows from Lemma 4.1. Thus g is uniformly continuous at the origin. By Lemma 2.1
(3), g is uniformly continuous on µDI

⊙
A. Since µDI

⊙
A is dense in Hµ(A), we are able

to extend g to Hµ(A).
For any ϕ ∈ Hµ, Theorem 2.3 enables us to construct ϕn ∈ µDI such that ϕn → ϕ in Hµ.

Therefore from

g(ϕnψ) = f (ϕn, ψ) ψ ∈ A

and letting n → +∞, we get g(ϕψ) = f (ϕ, ψ). Such g is unique. This completes the proof.
�

By applying Theorems 3.3 and 4.1, we establish the kernel theorem.

THEOREM 4.2 Corresponding to every continuous bilinear mapping f of Hµ × A into B, i.e
f ∈ [Hµ × A; B], there exists one and only one g ∈ [Hµ; [A; B]] such that

f (ϕ, ψ) = 〈g, ϕ〉ψ,

where ϕ ∈ Hµ, ψ ∈ A.

5. A root of integral transforms

We always take B = C in the following examples.

Example 1 (Laplace transform) We choose A = Lp(0, +∞) in Theorem 4.2. Since
[Lp(0, +∞); C] = Lq(0, +∞) where p, q are conjugate numbers satisfying 1/p + 1/q = 1.
By applying the theorem, we know that for any f ∈ [Hµ × Lp; C], there exists a unique
g ∈ [Hµ; Lq] such that f (ϕ, ψ) = 〈g, ϕ〉ψ where ϕ ∈ Hµ, ψ ∈ Lp.

Define a family of function gs(s ∈ I ) on Hµ by 〈gs, ϕ〉 = ϕ(
√

sx), x ∈ I . Then gs ∈
[Hµ; Lq]. In fact, ∫ ∞

0
|ϕ(

√
sx)|q dx =

∫ ∞

0
|ϕ(u)|q 2u

s
du < ∞

since ϕ ∈ Hµ. The topology of Hµ is stronger than that of Lq . Hence the assertion follows.
Therefore,

f (ϕ, ψ) = 〈g, ϕ〉ψ =
∫ ∞

0
ϕ(

√
sx)ψ(x) dx.

Set µ = −1/2, then ϕ = e−t2 ∈ H−1/2, and

f (e−t2
, ψ) =

∫ ∞

0
e−sxψ(x) dx

which is the Laplace transform on Lp.
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578 C. K. Li

Example 2 (A discrete transform) We take A = lp in Theorem 4.2. By using the fact
[lp; C] = lq , it follows that for f ∈ [Hµ × lp; C], there exists a unique g ∈ [Hµ; lq] such
that f (ϕ, ψ) = 〈g, ϕ〉ψ where ϕ ∈ Hµ, ψ ∈ lp.

We define 〈gs, ϕ〉 = {isϕ(i)}+∞
i=1 for s ∈ R. Then gs ∈ [Hµ; lq] since ϕ(x) is a rapid decent

function. From Theorem 4.2, we have

f (ϕ, ψ) =
∞∑
i=1

isϕ(i)yi

where ψ = {yi}∞i=1 ∈ lp.

Example 3 (Mellin transform) Set A = {ψ ∈ C∞
I |∃ polynomial Pψ such that |xψ | ≤ Pψ }

and the norm is defined as ‖ψ‖ = supx∈I |e−xxψ(x)|. It is easily verified that A is a Banach
space. We define 〈g, ϕ〉ψ = ∫∞

0 ϕ(x)ψ(x) dx, where ψ ∈ A.
In particular, ψs = xs−1 ∈ A for s > 0. We get a Mellin transform on Hµ(µ ≥ −1/2)

f (ϕ, ψs) =
∫ ∞

0
ϕ(x)xs−1 dx,

where s > 0.

Example 4 (Hankel transform) Set A = {ψ(x) ∈ C∞
I |ψ is bounded} and the norm is

defined as ‖ψ‖ = supx∈I |ψ(x)|. It follows that A is a Banach space. We define 〈g, ϕ〉ψ =∫∞
0 ϕ(x)ψ(x) dx, where ψ(x) ∈ A.

In particular, ψy(x) = √
xyJµ(xy) ∈ A for y > 0. We have the Hankel transform

f (ϕ,
√

xyJµ(xy)) =
∫ ∞

0
ϕ(x)

√
xyJµ(xy) dx.

The K-transform can follow similarly.

6. An approach for equation (1)

By direct computation, we have

MµNµ = d2

dx2
− 4µ2 − 1

4x2
= M−µN−µ.

Obviously, differential equation (1) can be converted to

u − MµNµu = √
xJµ(x).

Clearly,

〈hµδ(y − 1), φ(x)〉 = 〈δ(y − 1), hµφ〉

=
∫ ∞

0

√
xJµ(x)φ(x) dx = 〈√xJµ(x), φ(x)〉

which leads to

hµ[√xJµ(x)] = δ(y − 1)

since hµ = h−1
µ for µ ≥ −1/2.
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Kernel theorem from the Hankel transform 579

Applying the Hankel transform hµ on both sides of u − MµNµu = √
xJµ(x), we get

(1 + y2)hµ(u) = hµ[√xJµ(x)] = δ(y − 1) (7)

where the generalized function δ(y − a) for a > 0 is defined on Hµ by

〈δ(y − a), φ(x)〉 = φ(a), φ ∈ Hµ.

It follows from equation (7) that

hµ(u) = δ(y − 1)

1 + y2
= 1

2
δ(y − 1). (8)

Now applying the Hankel inverse to equation (8), we have

u = 1

2
h−1

µ [δ(y − 1)] = 1

2
hµ[δ(y − 1)] = 1

2

√
xJµ(x),

since h−1
µ = hµ for µ ≥ −1/2. Therefore u = (1/2)

√
xJµ(x) is a solution in Hµ for

differential equation (1). For µ < −1/2, we need the the following two identities in ref. [1, 6]

Dxx
µJµ(xy) = yxµJµ−1(xy) (9)

√
xyJµ(xy) ∼

√
2

π
cos
(
xy − µπ

2
− π

4

)
x −→ ∞ (10)

as well as the following lemmma.

LEMMA 6.1 For any φ ∈ Hµ and ψ(x)

= (x−1D)kx−µ−(1/2)φ(x), the following two state-

ments are satisfied for each non-negative integer k:
(1) The limit limx→0+ ψ(x) exists (and hence is finite). In particular, limx→0+ φ(x) = φ(0+)

for µ = −1/2 and k = 0.
(2) ψ(x) is of rapid descent as x → ∞ [i.e. ψ(x) → 0 faster than any power of 1/x as

x → ∞].

Proof Left for interested readers. �

Assume that µ �= −1, −2, . . . and let k be any positive integer such that µ + k ≥ −1/2
(note that µ + k − j �= 0 for any 0 ≤ j ≤ k). We symbolically compute hµ, k δ(y − 1) using
integration by parts and abandon all divergent terms xµ+k−j Jµ+k−j (x) (if any) as x → 0+,
according to pseudo-integrals defined in Zemanian’s book [7],

〈hµ,kδ(y − 1), φ(x)〉 = 〈δ(y − 1), hµ,kφ(x)〉

= (−1)k+1
∫ ∞

0
xµ+kJµ+k−1(x)(x−1D)k−1x−µ−(1/2)φ(x) dx.

This procedure is permissible since the limit terms are equal to zero using identities (9), (10)
and Lemma 6.1. Repeating this process k − 1 times, we get

〈hµ,kδ(y − 1), φ(x)〉 =
∫ ∞

0

√
xJµ(x)φ(x) dx = 〈√xJµ(x), φ(x)〉.
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Hence, for any µ ∈ R,

hµ,kδ(y − 1) = √
xJµ(x). (11)

Changing hµ,k to hµ and following the previous steps for µ ≥ −1/2, we get

hµ,k(u) = 1

2
δ(y − 1)

and therefore, from Theorem 3.2,

u = 1

2
h−1

µ,kδ(y − 1) = 1

2
hµ,kδ(y − 1) = 1

2

√
xJµ(x).

To see that (1/2)
√

xJµ(x) is a solution of differential equation (1), we notice that

MµNµ

√
xJµ(x) = −√

xJµ(x).

Indeed, Nµ

√
xJµ(x) = −x1/2Jµ+1(x). It follows that

Mµ(−x1/2Jµ+1) = −x−µ−(1/2)D[xµ+1Jµ+1(x)]
= −x−µ−(1/2)xµ+1Jµ(x)

= −√
xJµ(x)

using identity (9). Hence u = (1/2)
√

xJµ(x) is a solution in Hµ for differential equation (1)
when µ �= −1, −2, −3, . . .. We leave interested readers the case for µ = −1, −2, −3, . . . ,

which shall produce one δ function term in equation (11).
In conclusion, we point out a very minor error in Zemanian’s book, in which he constructed

the following operational formula

hµ(Mµφ) = yhµ+1φ

for µ ≥ −1/2. However, it is not quite correct for µ = −1/2. Indeed,

h−1/2(M−1/2φ) = √
y

∫ ∞

0
φ′(x)

√
xJ−1/2(xy) dx

= φ(x)
√

xyJ−1/2(xy)
∣∣∞
0+ + y

∫ ∞

0
φ(x)

√
xyJ1/2(xy) dx

= −
√

2

π
φ(0+) + yh1/2(φ),

since

lim
x→0+

√
xyJ−1/2(xy) =

√
2

π
for y ∈ I,

which is not equal to zero. Note that there exists φ ∈ H−1/2 such that φ(0+) �= 0. For example,
φ(x) = e−x2 ∈ H−1/2 and φ(0+) = 1.
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