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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 187 { 197A COMMUTATIVE NEUTRIX CONVOLUTION OFDISTRIBUTIONS AND THE EXCHANGE FORMULABrian Fisher, Emin �Oz�ca�g, and Li Chen KuanAbstract. The neutrix convolution product f � g of two distributions f and g inD0 is de�ned to be the neutrix limit of the sequence f(f�n) � (g�n)g, provided thelimit exists, where f�ng is a certain sequence of functions �n in D converging to 1.The neutrix product (Ff)�(Fg) in Z 0, where F denotes the Fourier transform, isde�ned to be the neutrix limit of the sequence fF (f�n):F (g�n)g, whereF (f�n) = F (f) � �n; F (g�n) = F (g) � �n; �n = F (�n)and f�ng is a sequence of functions in Z converging to the Dirac delta function. Itis proved that the exchange formulaF (f � g) = F (f)�F (g)then holds. Some examples are given.In the following, D denotes the space of in�nitely di�erentiable functions withcompact support and D0 denotes the space of distributions de�ned on D.The convolution product of certain pairs of distributions in D0 is usually de�nedas follows, see for example Gel'fand and Shilov [4].De�nition 1. Let f and g be distributions in D0 satisfying either of the followingconditions:(a) either f or g has bounded support,(b) the supports of f and g are bounded on the same side.Then the convolution product f � g is de�ned by the equation(1) h(f � g)(x); �(x)i = hg(y); hf(x); �(x + y)iifor arbitrary test function � in D.1991 Mathematics Subject Classi�cation : 46F10.Key words and phrases: distribution, ultradistribution, neutrix convolution product, neutrix,neutrix limit, Fourier transform, exchange formula.Received June 14, 1991. 187



188 BRIAN FISHER, EMIN �OZ�CA�G, AND LI CHEN KUANIt follows that if the convolution product f � g exists by De�nition 1 then thefollowing equations hold: f � g = g � f;(2) (f � g)0 = f � g0 = f 0 � g:(3)De�nition 1 is rather restrictive and in order to de�ne further convolution productsof distributions, Jones in [5] gave the following de�nition.De�nition 2. Let f and g be distributions in D0 and let � be an in�nitely di�er-entiable function satisfying the following conditions:(i) � (x) = � (�x);(ii) 0 � � (x) � 1;(iii) � (x) = 1; jxj � 12 ;(iv) � (x) = 0; jxj � 1:Let fn(x) = f(x)� (x=n); gn(x) = g(x)� (x=n)for n = 1; 2; : : : . Then the convolution product f � g is de�ned as the limit of thesequence ffn � gng, providing the limit h exists in the sense thatlimn!1hfn � gn; �i = hh; �ifor all � in D.Note that in this de�nition the convolution product fn � gn exists by De�nition1 since fn and gn both have bounded supports. It is clear that if the convolutionproduct f �g exists by this de�nition, then equation (2) holds. However, equations(3) need not necessarily hold since Jones proved that1 � sgnx = x = sgn x � 1and (1 � sgn x)0 = 1; 10 � sgnx = 0; 1 � (sgnx)0 = 2:Many convolution products could still not be de�ned by De�nition 2 and thefollowing modi�cation of De�nition 2 was given in [3]:De�nition 3. Let f and g be distributions in D0, let�n(x) = 8><>: 1; jxj � n;� (nnx� nn+1); x > n;� (nnx+ nn+1); x < �n;where � is as in De�nition 2 and let fn = f�n, gn = g�n. Then the neutrixconvolution product f � g is de�ned to be the neutrix limit of the sequence ffn �gng, provided the limit h exists in the sense thatN�limn!1 hfn � gn; �i = hh; �i



A COMMUTATIVE NEUTRIX CONVOLUTION OF DISTRIBUTIONS 189for all � in D, where N is the neutrix, see van der Corput [1], having domainN 0 = f1; 2; : : : ; n; : : :g and range the real numbers with negligible functions �nitelinear sums of the functionsn� lnr�1 n; lnr n (� > 0; r = 1; 2; : : :)and all functions which converge to zero as n tends to in�nity.The convolution product fn �gn in this de�nition is again in the sense of De�ni-tion 1, the supports of fn and gn being bounded. The neutrix convolution productf � g clearly satis�es equation (2) if it exists, although it does not necessarily sat-isfy equations (3). A non-commutative neutrix convolution product, denoted byf ~ g was de�ned in [2].It was proved in [3] that if the convolution product f � g exists by De�nition 1,then the neutrix convolution product f � g exists andf � g = f � g:As in [4], we de�ne the Fourier transform of a function � in D byF (�)(�) = ~�(�) = Z 1�1 �(x)eix� dx:Here � = �1+ i�2 is a complex variable and it is well known that ~�(�) is an entireanalytic function with the property(4) j�jqj~�(�)j � Cqeaj�2jfor some constants Cq and a depending on ~�. The set of all analytic functions Zwith property (4) is in fact the spaceF (D) = f : 9� 2 D; F (�) =  g:The Fourier transform ~f of a distribution f in D0 is an ultradistribution in Z0,i.e. a continuous linear functional on Z. It is de�ned by Parseval's equationh ~f ; ~�i = 2�hf; �i:The exchange formula is the equality(5) F (f � g) = F (f):F (g):It is well known that the exchange formula holds for all convolution products ofdistributions f and g satisfying De�nition 1, provided f and g both have compactsupport, see for example Treves [6].



190 BRIAN FISHER, EMIN �OZ�CA�G, AND LI CHEN KUANWe now consider the problem of de�ning multiplication in Z0. To do this weneed the Fourier transform F (�n) of �n and write�n(�) = 12�F (�n);which is a function in Z. Putting  = ~�, we have from Parseval's equationh�n; �i = 12� hF (�n); F (�)i = h�n;  i:Since limn!1h�n; �i = limn!1Z 1�1 �n(x)�(x) dx = Z 1�1 �(x) dx = h1; �ifor all � in D and since F (1) = 2��, we obtainlimn!1h�n;  i = h�;  ifor all  in Z. Thus f�ng is a sequence in Z converging to the Dirac delta function�. If f is an arbitrary distribution in D0, then since �n is a function in Z, theconvolution product ~f � �n is de�ned by(6) h( ~f � �n)(�);  (�)i = h ~f (�); h�n(�);  (� + �)iifor arbitrary  in Z. If  = ~�, we have (� + �) = F [eix��(x)]and it follows from Parseval's equation thath�n(�);  (� + �)i = 12� hF (�n)(�); F (eix��)(�)i = h�n(x); eix��(x)i= Z 1�1 �n(x)eix��(x) dx(7) ! Z 1�1 eix��(x) dx =  (�):Thus limn!1h ~f � �n;  i = h ~f ;  ifor arbitrary  in Z and it follows that f ~f � �ng is a sequence of in�nitely di�er-entiable functions converging to ~f in Z0.This leads us to the following de�nition:



A COMMUTATIVE NEUTRIX CONVOLUTION OF DISTRIBUTIONS 191De�nition 4. Let f and g be distributions in D0 having Fourier transforms ~f and~g respectively in Z0 and let ~fn = ~f � �n and ~gn = ~g � �n. Then the neutrix product~f�~g is de�ned to be the neutrix limit of the sequence f ~fn:~gng, provided the limit~h exists in the sense that N�limn!1 h ~fn:~gn;  i = h~h;  ifor all  in Z.In this de�nition we use ~f�~g to denote the neutrix product of ~f and ~g to distin-guish it from the usual de�nition of the product ~fn:~gn of two in�nitely di�erentiablefunctions ~fn and ~gn. If limn!1h ~fn:~gn;  i = h~h;  ifor all  in Z, we simply say that the product ~f :~g exists and equals ~h. We then ofcourse have ~f�~g = ~f :~g. It is immediately obvious that if the neutrix product ~f�~g exists then the neutrixproduct is commutative.The product of ultradistributions in Z0 also has the following property:Theorem 1. Let ~f and ~g be ultradistributions in Z 0 and suppose that the neutrixproducts ~f�~g and ~f�~g0 (or ~f 0�~g) exist. Then the neutrix product ~f 0�~g (or ~f�~g0)exists and(8) ( ~f�~g)0 = ~f 0�~g + ~f�~g0:Proof. Let  be an arbitrary function in Z. Thenh ~f�~g;  i = N�limn!1 h ~fn:~gn;  i; h ~f�~g0;  i = N�limn!1 h ~fn:~g0n;  i:Further, h( ~f�~g)0;  i = �h ~f�~g;  0i = �N�limn!1 h ~fn:~gn;  0i= �N�limn!1 h~gn; ( ~fn: )0 � ~f 0n: i= N�limn!1 h~g0n; ~fn: i +N�limn!1 h~gn; ~f 0n: iand so N�limn!1 h ~f 0n:~gn;  i = h( ~f�~g)0;  i � h ~f�~g0;  i:Hence the neutrix product ~f 0:~g exists and equation (8) follows.It follows similarly that if ~f 0�~g exists then ~f�~g0 exists.We can now prove the exchange formula.



192 BRIAN FISHER, EMIN �OZ�CA�G, AND LI CHEN KUANTheorem 2. Let f and g be distributions in D0 having Fourier transforms ~f and~g respectively in Z 0. Then the neutrix convolution product f � g exists in D0, ifand only if the neutrix product ~f�~g exists in Z 0 and the exchange formulaF (f � g) = ~f�~gis then satis�ed.Proof. We have from equation (7) thath�n(�);  (� + �)i = F (�n�)and then from equation (6) thath ~fn;  i = h ~f � �n;  i = h ~f ; F (�n�)i = 2�hf; �n�i= 2�hfn; �i = hF (fn);  ion using Parseval's equation twice. It follows that F (fn) = ~fn. Similarly, we haveF (gn) = ~gn. Now since the convolution product fn � gn exists by De�nition 1 andfn and gn both have compact supportF (fn � gn) = F (fn):F (gn) = ~fn:~gnand so on using Parseval's equation again2�hfn � gn; �i = hF (fn � gn);  i = h ~fn:~gn;  i:Suppose the neutrix convolution product f � g exists. Then2�hf � g; �i = N�limn!1 2�hfn � gn; �i = N�limn!1 hF (fn � gn);  i= N�limn!1 h ~fn:~gn;  i = h ~f�~g;  ifor arbitrary � in D and F� in Z, proving the existence of the neutrix product~f�~g and the exchange formula.Conversely, if the neutrix product ~f�~g exists then the argument can be reversedto prove the existence of the neutrix convolution product f � g and the exchangeformula. This completes the proof of the theorem.Theorem 3. The products (� + i0)�:(� + i0)� and (� � i0)�:(� � i0)� exist and(� + i0)�:(� + i0)� = (� + i0)�+�(9) (� � i0)�:(� � i0)� = (� � i0)�+�(10)for all � and � .Proof. It is well known that(11) x�+ � x�+ = B(� + 1; �+ 1)x�+�+1+



A COMMUTATIVE NEUTRIX CONVOLUTION OF DISTRIBUTIONS 193for �; �; �+ �+ 1 6= �1;�2; : : : , where B denotes the Beta function.Further, see Gel'fand and Shilov [4],(12) F (x�+) = iei��=2�(�+ 1)(� + i0)���1for � 6= �1;�2; : : : . On using the exchange formula, it follows from equations (11)and (12) that�ei(�+�)�=2�(� + 1)�(� + 1)(� + i0)���1:(� + i0)���1 == B(� + 1; �+ 1)iei(�+�+1)�=2�(� + � + 2)(� + i0)�����2for �; �; �+�+1 6= �1;�2; : : : , the product (�+i0)���1:(�+i0)���1 existing sincethe convolution product x�+ �x�+ exists. Equation (9) now follows for �; �; �+� 6=0; 1; 2; : : : .Now suppose that �; �; �+ � > �1 and put(� + i0)�n = (� + i0)� � �n(�):Then since (� + i0)� = ��+ + ei�����;see [4], it follows that f(� + i0)�n:(� + i0)�ng is a sequence of locally summablefunctions which converges to the locally summable function (�+ i0)�+� . Equation(9) follows for �; �; �+ � > �1 .Now suppose that equation (9) holds when �k� 1 < � < �k, for some positiveinteger k, and � + � = 0;�1;�2; : : : . This is certainly true when k = 0. Thenlimn!1(� + i0)�n:(� + i0)�n = (� + i0)�+�;by our assumption when �k � 1 < � < �k. It follows thatlimn!1[(� + i0)�n _(� + i0)�n]0 == limn!1[�(� + i0)��1n :(� + i0)�n + �(� + i0)�n:(� + i0)��1n ]= (�+ �)(� + i0)�+��1and so limn!1(� + i0)��1n :(� + i0)�n = (� + i0)�+��1:Equation (9) follows by induction for � 6= �1;�2; : : : and �+ � = 0;�1;�2; : : : .We are �nally left to prove equation (9) for the case � = r = �1;�2; : : : and� = s = 0; 1; 2; : : : . Sinceln(� + i0) = ln j�j+ i�H(��)



194 BRIAN FISHER, EMIN �OZ�CA�G, AND LI CHEN KUANand (� + i0)s = �sfor s = 0; 1; 2; : : : , see [4], are locally summable functions, it follows as above thatif ln(� + i0)n = ln(� + i0) � �n(�);then the sequence fln(�+ i0)n:(�+ i0)sng converges to the locally summable func-tion (� + i0)s ln(� + i0). Thuslimn!1[ln(� + i0)n _(� + i0)sn]0 == limn!1[(� + i0)�1n :(� + i0)sn + s ln(� + i0)(� + i0)s�1n ]= [(� + i0)s ln(� + i0)]0= s(� + i0)s�1 ln(� + i0) + (� + i0)s�1;see [4], and so limn!1(� + i0)�1n :(� + i0)sn = (� + i0)s�1:Equation (9) follows for � = �1 and � = 0; 1; 2; : : : . Another induction argumentshows that equation (9) holds for � = �1;�2; : : : and � = 0; 1; 2; : : : . Thiscompletes the proof of the theorem.Corollary 1.(13) ��r:�s = �s�rfor r = 1; 2; : : : and s = 0; 1; 2; : : : and(14) �(r�1)(�):�s = ( 0; s � r;(�1)s(r�1)!(r�s�1)! �(r�s�1)(�); r > sfor r = 1; 2; : : : and s = 0; 1; 2; : : : .Proof. Since (� + i0)s = �sfor s = 0; 1; 2; : : : and (� + i0)�r = ��r + i�(�1)r(r � 1)! �(r�1)(�)for r = 1; 2; : : : , see [4], it follows from equation (9) that(� + i0)�r:�s = ( �s�r ; s � r;�s�r + i�(�1)r+s(r�s�1)! �(r�s�1)(�); r > s= ��r :�s + i�(�1)r(r � 1)! �(r�1)(�):�s;the product clearly being distributive with respect to addition. Equating real andimaginary parts, equations (13) and (14) follow.



A COMMUTATIVE NEUTRIX CONVOLUTION OF DISTRIBUTIONS 195Corollary 2.(15) ��r�1=2+ :��r�1=2� = (�1)r�2(2r)! �(2r)(�)for r = 0; 1; 2; : : : .Proof. It follows from equation (9) that(� + i0)�r�1=2:(� + i0)�r�1=2 = (� + i0)�2r�1= h��r�1=2+ � i(�1)r��r�1=2� i : h��r�1=2+ � i(�1)r��r�1=2� i= ��2r�1 � i�(2r)!�(2r)(�)for r = 0; 1; 2; : : : . Expanding and equating the imaginary parts gives equation(15).Corollary 3.(16) ��r:�(r�1)(�) = (�1)r(r � 1)!2(2r � 1)! �(2r�1)(�)for r = 1; 2; : : : .Proof. It follows from equation (9) that(� + i0)�r � (� + i0)�r = (� + i0)�2r= ���r + i�(�1)r(r � 1)! �(r�1)(�)� � ���r + i�(�1)r(r � 1)! �(r�1)(�)�= ��2r + i�(2r � 1)!�(2r�1)(�)for r = 1; 2; : : : . Expanding and equating imaginary parts gives equation (16).Theorem 4. The neutrix product ��+��(s)(�) exists and(17) ��+��(s)(�) = 0for real � 6= 0;�1;�2; : : : and s = 0; 1; 2; : : : .Proof. It was proved in [3] thatx�+ � xs = 0; x�� � xs = 0for real � 6= 0;�1;�2; : : : and s = 0; 1; 2; : : : . Thus(x� i0)� � xs = (x�+ + e�i��x��) � xs = 0



196 BRIAN FISHER, EMIN �OZ�CA�G, AND LI CHEN KUANfor real � 6= 0;�1;�2; : : : and s = 0; 1; 2; : : : . On applying the exchange formulato this equation we get ����1+ ��(s)(�) = 0for real � 6= 0;�1;�2; : : : and s = 0; 1; 2; : : : , sinceF [(x� i0)�] = 2�e�i��=2�(��) ����1+for � 6= 0;�1;�2; : : : and F (xs) = 2(�i)s��(s)(�)for s = 0; 1; 2; : : : , see Gel'fand and Shilov [4]. Equation (17) follows immediately.Corollary 1. The neutrix product �����(s)(�) exists and�����(s)(�) = 0for real � 6= 0;�1;�2; : : : and s = 0; 1; 2; : : : .Proof. The result follows immediately from equation (17) on replacing x by �xin equation (17).Theorem 5. The neutrix product (� � i0)��(� + i0)� exists and(18) (� � i0)��(� + i0)� = ��+�+ + ei(���)���+��for real �; � 6= 0;�1;�2; : : : .Proof. It was proved in [3] thatx���1+ � x���1� = B(� + �+ 1;��)x�����1� +B(� + �+ 1;��)x�����1+for real �; � 6= 0;�1;�2; : : : . Applying the exchange formula to this equation andusing equation (12) and the equationF (x��) = �ie�i��=2�(� + 1)(� � i0)���1we getei(���)�=2�(��)�( � �)(� � i0)��(� + i0)� == ei(�+�)�=2B(� + � + 1;��)�(�� � �)(� � i0)�+�++ e�i(�+�)�=2B(� + �+ 1;��)�(�� � �)(� + i0)�+�and so (� � i0)��(� + i0)� = ei�� sin(��) cosec [(� + �)�](� � i0)�+�++ e�i�� sin(��) cosec [(�+ �)�](� + i0)�+�= ��+�+ + ei(���)���+�� ;proving equation (18) for real �; � 6= 0;�1;�2; : : : .



A COMMUTATIVE NEUTRIX CONVOLUTION OF DISTRIBUTIONS 197References[1] van der Corput, J.G., Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60),291-398.[2] Fisher, B., Neutrices and the convolution of distributions, Zb. Rad. Prirod.-Mat. Fak., Ser.Mat., Novi Sad 17 (1987), 119-135.[3] Fisher, B., Li Chen Kuan, A commutative neutrix convolution product of distributions, Zb.Rad. Prirod.-Mat. Fak., Ser. Mat., Novi Sad, to appear.[4] Gel'fand, I.M., Shilov, G.E., Generalized functions, Academic Press . I, (1964).[5] Jones, D.S., The convolution of generalized functions, Quart. J. Math. Oxford Ser. (2) 24(1973), 145-163.[6] Treves, F., Topological vector spaces, distributions and kernels, Academic Press (1970).B. Fisher and E. �Oz�ca�g Li Chen KuanDepartment of Mathematics Department of Mathematics and StatisticsThe University, Leicester University of ReginaLE1 7RH, England Regina, S4S 0A2, Canada


		webmaster@dml.cz
	2012-05-10T10:38:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




