
Journal of Interconnection Networks
Vol. 19, No. 4 (2008) 487–505
c© World Scientific Publishing Company

AVERAGE-CASE “MESSY” BROADCASTING

CHENKUAN LI

Department of Mathematics and Computer Science

Brandon University

Brandon, MB, Canada, R7A 6A9

lic@BrandonU.ca

THOMAS E. HART

Department of Computer Science

University of Toronto

Toronto, ON, Canada, M5S 3G4

KEVIN J. HENRY

Department of Mathematics and Computer Science

Brandon University

Brandon, MB, Canada, R7A 6A9

IAN A. NEUFELD

Department of Mathematics and Computer Science

Brandon University

Brandon, MB, Canada, R7A 6A9

Received 27 August 2004

Revised 26 November 2006

Current studies of “messy” broadcasting have so far concentrated on finding worst-case times.

However, such worst-case scenarios are extremely unlikely to occur in general. Hence, determining

average-case times or tight upper bounds for completing “messy” broadcasting in various network

topologies is both necessary and meaningful in practice. In this paper, we focus on seeking the

average-case “messy” broadcast times of stars, paths, cycles, and d-ary trees, and finding good

upper bounds for hypercubes. Finally, we derive a recursive formula to express the average-

case time for a specific “messy” broadcast model on a complete graph using a classical occupancy

problem in probability theory, and provide a nice simulation result which indicates that this model

behaves like classical broadcasting.

Keywords: “Messy” broadcasting; network topology; hypercube; d-ary tree; average-case analysis.

1. Introduction

Broadcasting is an information dissemination problem in which we model a computer net-

work using a graph G = (V, E). The main motivation of broadcasting research is to provide

a theoretical structure for general interconnection networks for multiprocessor computers.

One vertex, the originator, has a message which it must distribute to all other vertices. A

487

488 C. Li et al.

vertex v may communicate with any other vertex adjacent to v, and communication takes

place in discrete time units. There are many variants of the broadcasting problem (classi-

cal broadcasting, k-broadcasting, reliable broadcasting, etc.); a survey of these problems is

given in [10]. “Messy” broadcasting is the variant which is the subject of this paper.

In the classical broadcast model, it is assumed that every vertex in a network broadcasts

optimally. Such a model therefore requires either

• a leader who knows the network’s topology and coordinates the actions of all members

during the entire broadcasting process, which seems unrealistic in practice; or,

• that each vertex must have a coordinated set of protocols with respect to any origi-

nator, the space to store these protocols, and each message must be labeled with the

originator and the time at which the message was sent.

“Messy” broadcasting does away with these assumptions, instead assuming that the net-

work’s vertices have no knowledge of the network’s topology, and that when a vertex receives

a message it knows neither the originator of the message, nor the time at which the message

was sent. The vertices are therefore unable to devise any sophisticated broadcast scheme,

but the network can be built more cheaply and easily. This variant of broadcasting was

introduced by Ahlswede, Haroutunian, and Khachatrian in [1]. The worst case problems on

various network topologies such as paths, cycles, hypercubes, and d-ary trees were studied

by Harytyunyan and Liestman in [9]. Hart and Harytyunyan derived the “messy” broadcast

times for complete bipartite graphs and improved the lower bound for “messy” broadcast

times on hypercubes of arbitrary dimension in [8]. In [2], Comellas, Harutynyan, and Liest-

man determined the exact values and bounds for the broadcast times on multi-dimensional

directed tori.

A survey of existing methods of communication in usual networks was given by P. Fraig-

niaud and E. Lazard [6] which focused on the study of complete networks, the ring, the

torus, the grid, the hypercube, the cube connected cycle, undirected de Bruijn graphs, the

star graph, the suffle-exchange graph, and the butterfly graph with the constant model and

the linear model. In [11] Hromkovic, Klasing, Monien, and Peine summarized the main

techniques and results relating to broadcasting and gossiping problems using a one-way

communication mode.

At each time unit every informed vertex broadcasts randomly to a neighbor which it

believes is uninformed. There are three models of “messy” broadcasting, and each makes

different assumptions about how a vertex v comes to believe that its neighbor u is informed:

• Model M1: v believes that u is informed iff u is informed.

• Model M2: v believes that u is informed iff either v has informed u or u has informed

v.

• Model M3: v believes that u is informed iff v has informed u.

Note that we assume that each informed vertex may broadcast to only one neighbor

during each time unit. Assuming that vertices may broadcast to k ≥ 2 neighbors in a single

Average-Case Messy Broadcasting 489

time unit would yield “messy” k-broadcasting, a problem which, to our knowledge, has yet

to be investigated. Since in our study the number of informed vertices may at most double

during a single time unit, no “messy” broadcast scheme can be completed in fewer than

dlog2 ne time units, where n is the number of nodes in the network in question. We consider

broadcasting to be completed when each node in the network has received the message.

We follow the notation of [1] and [9], with some additions to accommodate our average-

case analysis.

Let u ∈ G be the originator of a “messy” broadcast. We say that σ(u) is a strategy or

scheme for model Mi for i = 1, 2, 3 iff all calls in σ(u) are legitimate under model Mi, and

σ(u) informs all vertices in G. For i = 1, 2, 3, let Ωi(u) = {σ(u) | σ(u) is legitimate under

model Mi} be the set of all broadcast strategies from the originator u under model Mi.

We define ti(u) to be the maximum time of any scheme in Ωi(u), and we define ti(G) =

max{ti(u) | u ∈ G}. We also define T
σ(u)
i,u,G to be the time taken to inform all vertices in G

according to the “messy” broadcast scheme σ(u) ∈ Ωi(u). We can now define the average

“messy” broadcast time of u in G under Mi to be

E[Ti,u,G] =

∑

σ(u)∈Ωi(u) T
σ(u)
i,u,G

|Ωi(u)|
.

Furthermore, we define the average “messy” broadcast time of G under Mi to be

E[Ti,G] =

|V (G)|
∑

k=1

E[Ti,uk,G]Pr{uk}, (1.1)

where Pr{uk} is the probability of uk being the originator of a “messy” broadcast in G. Of

course, these probabilities must be chosen such that
∑|G|

k=1 Pr{uk} = 1. Throughout this

paper, we will assume that Pr{u} = 1
|G| for all u ∈ G; however, allowing the probabilities

to be chosen in other ways gives us the opportunity generalize the model by choosing a high

probability for an originator that can distribute a message quickly over a network topology,

thereby speeding up the average broadcast time.

In [9], Harutyunyan and Liestman investigated the worst-case times to complete “messy”

broadcasting under M1, M2 and M3 in hypercubes, complete d-ary trees, and some simple

graphs. These times are highly improbable for almost all popular topologies, and the prob-

ability for these worst-case times to occur is almost zero when the number of vertices in a

network is large. The objective of this paper is to open a new direction of research in the

area of “messy” broadcasting - the study of average case “messy” broadcast times, which

certainly play an important role in determining the efficiency of networks. In sections 2 and

4 we focus on finding exact values for the average case “messy” broadcast times on stars,

paths, cycles and complete d-ary trees. In section 4 we investigate the hypercube structure

and provide tight upper bounds on “messy” broadcast times under models M2 and M3,

which are far better than the worst-case times. As an example to illustrate difference be-

tween worst-case and average-case times, Theorem 3.1 of [9] states that the worst-case time

to finish “messy” broadcasting under model M3 on a d-dimensional hypercube is d(d+1)/2,

and we estimate that the probability of randomly-chosen “messy” broadcast scheme taking

490 C. Li et al.

Fig. 1. A star graph on 9 vertices.

Fig. 2. Messy broadcasting in star graphs under models M1 and M2. We adopt the convention of drawing

the originator in black.

this many time units is far less than 1/dd, which vanishes very quickly when d is increasing.

However, the average-case time we find in Section 3 is significantly better and is bounded

by

(d + 1)

d
∑

j=1

1

j
= Θ(d log d).

In addition, we believe that the average “messy” broadcast time for a complete graph is

dlog ne + 2 (see Section 5), which is much faster than the worst-case time of n − 1, where

n is the total number of vertices. Our intuition is guided by simulations we performed for

several graphs under all three models, which we validate by the proofs presented in this

paper.

2. Simple Graphs

In order to demonstrate the techniques and considerations required when examining average-

case “messy” broadcasting times, we first look at the analysis of some simple graphs.

For these simple graphs, we can calculate average-case “messy” broadcast times in a very

straightforward manner.

2.1. Stars

The star Sn has n vertices. One of these vertices (the central vertex) has degree n− 1,

and the others have degree 1. S9, the star on 9 vertices, is shown in Fig. 1. Stars are

particularly simple to analyze, since the number of possible “messy” broadcast schemes is

very small.

Theorem 2.1. E[T1,Sn
] = E[T2,Sn

] = n− 1, and E[T3,Sn
] = n− 1 + n−2

n
.

Proof. Let u denote the central vertex of Sn, and let the other vertices of Sn be enumerated

v1, v2, . . . , vn−1.

Average-Case Messy Broadcasting 491

For models M1 and M2, all legitimate broadcast schemes obviously complete in exactly

n − 1 time units, as can be confirmed by examining Fig. 2. Hence, E[T1,Sn
] = E[T2,Sn

] =

n− 1.

The analysis is slightly more complicated for model M3. If the originator is u, then

broadcasting must complete in n − 1 time units, since u must call its n − 1 neighbors at

times 1, 2, . . . , n− 1. If the originator is vi for some i, then we must consider two cases:

Case 1: Once u is informed, it broadcasts to vertices vj (j 6= i) at times 2, 3, . . . , n− 1,

and broadcasting therefore completes in n− 1 time units since all nodes are informed.

Case 2: Once u is informed, it broadcasts to vi at time j, for some j in the range

2 ≤ j ≤ n− 1. Broadcasting therefore completes in n time units.

Given that vi is the originator, the probability that Case 1 occurs is the probability

that u does not inform vi at time 2, 3, . . . , n− 1. Given that u has not informed vi at time

2, 3 . . . , t−1, the probability of this occurring at time t is n−t
n−t+1 . Thus, the probability that

Case 1 occurs is given by

n− 2

n− 1
×

n− 3

n− 2
×

n− 4

n− 3
× · · · ×

2

3
×

1

2
=

1

n− 1
.

Hence,
E[T3,vi,Sn

] = Pr{Case 1} × (n− 1) + Pr{Case 2} × n
= n− 1

n−1 .

For the star Sn, we thus have, by Eq. (1.1), that,

E[T3,Sn
] =

E[T3,u,Sn]+
∑n−1

i=1
E[T3,vi,Sn]

n

= n− 1 + n−2
n

.

Note that this last result could be simplified to n− n
2 ; however, we leave it as n−1+ n−2

n

to show more clearly the base cost of n− 1 plus the cost of n−2
n

due to poor choices made

while broadcasting.

2.2. Paths

A path Pn is a graph on n vertices labeled v0, v1, . . . , vn−1 where vertex vk is connected

to vertex vk+1 for k = 0, 1, . . . , n − 2. Paths are only marginally more complex to analyze

than the stars.

Theorem 2.2. E[Ti,P1
] = 0 and E[Ti,P2

] = 1 for i = 1, 2, 3, E[T1,P3
] = E[T2,P3

] = 2, and

E[T3,P3
] = 7

3 . For n ≥ 4,

E[T1,Pn
] = E[T2,Pn

] =

{

3
4n− 1

n
if n is even

3
4n− 3

4n
if n is odd, and

E[T3,Pn
] =

{

9
8n− 3

4 −
1
n

if n is even
9
8n− 3

4 −
7
8n

if n is odd.

492 C. Li et al.

Proof. The results for n < 4 are easy to verify. To prove E[T1,P3
] = 7

3 we must consider

two cases. The first, when v1 is the originator, is the simplest. At times k = 1, 2, v1 sends

the message to v0 and v2 with broadcasting completing in 2 time units. This case occurs

with probability 1
3 as each vertex is equally likely to begin broadcasting. The second case,

when v0 or v2 originates can procede in two possible ways depending on whether or not v1

sends the message back to the originator before passing it to the last vertex. If v1 sends

back to the originator then broadcasting completes in 3 time units. Otherwise broadcasting

completes in 2 time units. Each of these cases occur with equal probability making the

average time to complete 2.5 time units. Combining these times yields

E[T1,P3
] = 2×

1

3
+ 2.5×

2

3
=

7

3
.

We now consider the general case. In Pn, if a vertex vk is informed then the only way

for an adjacent vertex to be informed is if it was the vertex that informed vk , or vk was the

vertex that informed it. Thus, Ω1(u) = Ω2(u) for all u ∈ Pn for all n; that is, models M1

and M2 are equivalent for paths. We will consider these models first.

Consider the case in which v0 is the originator. Broadcasting must then complete in

n− 1 time units; similarly for vn−1. If v1 is the originator, then broadcasting may complete

in either n−1 or n−2 time units, depending on whether v1 broadcasts to v0 or v2 at time 1.

Hence E[T1,v1,Pn
] = n− 2+ 1

2 . If vi is the originator for i ≤ n
2 , then broadcasting completes

in either n− i or n− (i + 1) time units depending on whether vi broadcasts to vi−1 or vi+1

at time 1. Because each case occurs with equal probability, E[T1,vi,Pn
] = n − (i + 1) + 1

2 .

The case for i > n
2 is symmetric.

If n is even, then

n−1
∑

i=0

E[T1,vi,Pn
] = 2

n
2
−1
∑

i=0

E[T1,vi,Pn
]

= 2((n− 1) + (n− 2 + 1
2) + (n− 3 + 1

2) + · · ·+ (n− n
2 + 1

2))
= 3

4n2 − 1.

Hence, for even n,

E[T1,Pn
] =

∑n−1
i=0 E[T1,vi,Pn

]

n
=

3
4n2 − 1

n
=

3

4
n−

1

n
.

The result follows similarly for odd n.

We now turn our attention to model M3, first considering vertex v0. There are n−1 edges

between v0 and vn−1. Hence, when v0 is the originator, it needs at least n − 1 time units

in order to inform all vertices in Pn. Each of the n− 2 vertices v1, v2, . . . , vn−2 may, upon

being informed, broadcast either in the direction of v0 or vn−1; that is, for 1 ≤ i ≤ n − 2,

vertex vi may broadcast first to vi−1, or to vi+1, and either case occurs with probability
1
2 . For each vertex vi that broadcasts first in the direction of vi−1, 1 time unit is wasted.

Hence,

E[T3,v0,Pn
] = n− 1 +

n− 2

2
.

Average-Case Messy Broadcasting 493

It follows by symmetry that E[T3,v0,Pn
] = E[T3,vn−1,Pn

].

Vertex v1 has 1 vertex on one side, and n−2 vertices on the other. If v1 is the originator,

and it broadcasts first to v0, then it wastes 1 time unit. By an analysis similar to the case

in which v0 is the originator,

E[T3,v1,Pn
] = n− 2 +

n− 3

2
+

1

2
= E[T3,vn−2,Pn

].

From our analysis of models M1 we have E[T1,vi,Pn
] = n − (i + 1) + 1

2 . We can modify

this expression for M3 by taking into account that after time 1, the average time needed

to forward the message is now 1.5 due to possibly sending the message back where it came

from. Thus,

E[T3,vi,Pn
] = n− (i + 1) +

n− (i + 2)

2
+

1

2
.

Hence, for even n,

∑n−1
i=0 E[T3,vi,Pn

] = 2((n− 1 + n−2
2) + (n− 2 + n−3

2 + 1
2) + · · ·

+(n− n
2 +

n−(n
2
+1)

2 + 1
2)).

For odd n, vertex v n+1

2

has n−1
2 vertices on either side. Hence,

E[T3,v n+1
2

,Pn
] = (

n + 1

2
− 1) +

(n+1
2)− 2

2
+ 1 =

3n− 1

4
,

and we have
∑n−1

i=0 E[T3,vi,Pn
] = 2((n− 1 + n−2

2) + (n− 2 + n−3
2 + 1

2) + · · ·

+(n− n−1
2 +

n−(n−1

2
+1)

2 + 1
2)) + 3

4 (n + 1)− 1.

Simple calculations imply that

E[T3,Pn
] =

{

9
8n− 3

4 −
1
n

if n is even
9
8n− 3

4 −
7
8n

if n is odd.

This completes our proof.

Paths also give us an opportunity to demonstrate very easily that many worst-case

“messy” broadcast times are highly improbable. It was proven in [9] that t3(Pn) = 2n− 3,

but this worst-case time occurs only when the originator is v0, and, for 1 ≤ i ≤ n − 2,

vi broadcasts to vi−1 before broadcasting to vi+1, or, by symmetry, when the originator is

vn−1 and, for 1 ≤ i ≤ n− 2, vi broadcasts to vi+1 before broadcasting to vi−1.

Corollary 2.1. Pr{T3,v0,Pn
= 2n− 3} = Pr{T3,vn−1,Pn

= 2n− 3} = 1
2n−2 .

Proof. Assume, without loss of generality, that v0 is the originator. Each vertex vi,

1 ≤ i ≤ n− 2, broadcasts to vi−1 before broadcasting to vi+1 with probability 1
2 , and these

are independent events. The worst-case time of 2n− 3 occurs only when each vi broadcasts

first to vi−1. There are n− 2 vertices between v0 and vn−1 that must first send the message

494 C. Li et al.

Fig. 3. Average-case messy broadcasting in cycles of odd and even cardinality under model M3.

back to vi−1, each doing so with probability 1
2 . Hence, the probability of the worst-case

time occuring is 1
2n−2 .

2.3. Cycles

A cycle Cn on n vertices is a path on n vertices with an additional edge added between

v0 and vn−1. Fig. 3 shows the cycles C6 and C7.

Theorem 2.3. Let Cn be a cycle on n vertices. Then,

E[T1,Cn
] = E[T2,Cn

] = dn
2 e, and

E[T3,Cn
] =

{

3n−2
4 if n is even

3n−1
4 if n is odd.

Proof. Without loss of generality, assume that v0 is the originator and that v0 informs v1

at time k = 1 and vn−1 at time k = 2. In models M1 and M2, at time k ≥ 3 the message

is passed from from vertex vk−1 to vk and from vertex vn−k+2 to vn−k+1. Thus, at time

dn
2 e all vertices on the path v0, v1, . . . , vdn

2
e are informed as well as all vertices on the path

v0, vn−1, . . . , vdn
2
e−1. Hence, all vertices are informed and broadcasting is completed at time

dn
2 e.

The results for model M3 can be derived similarly, taking into account that the average

time to pass a message from vk to vk+1 is 1.5 due to the potential time spent sending the

message back to vk−1.

3. Hypercubes

Let Qd denote the binary hypercube of dimension d. We define hypercubes as follows: The

graph Qd has 2d vertices. These vertices are labeled with binary strings of length d. Two

vertices are connected iff their labels differ by exactly one bit. For example, (1000 . . .01) and

(0000 . . .01) are connected, but (1010 . . .01) and (0000 . . .01) are not. We will, in general,

denote the label of a vertex u by (u1u2 . . . ud), where ui ∈ {0, 1} for i = 1, 2 . . . , d, and the

edge between vertices u and v by (u, v).

Average-Case Messy Broadcasting 495

(000...000)

(000...001) (100...000)

(000...011) (110...000)

(001...111) (111..100)

(011...111) (111...110)

(111...111)

Q

Q

Q

Q

Q

Q

0

1

2

d-2

d-1

d

.....

.....

.

.

.

.

.

.

.

.

.

.

Fig. 4. The levels of the hypercube Qd.

Hypercubes are interesting for a number of reasons. They are not only of theoretical

interest, but are a popular topology for real-world interconnection networks. Hypercubes

also have optimal performance under the classical broadcasting model; in fact, hypercubes

are minimum broadcast graphs [3] and [6].

Under “messy” broadcasting, however, the worst case performance of hypercubes is Θ(d2)

for models M2 and M3, and the worst case time for model M1 is between Θ(d) and Θ(d2)

[9]. To our knowledge, finding the exact value of t1(Qd) remains an open problem. In the

following, we focus on tightly estimating E[T3,Qd
] and E[T2,Qd

]; these average bounds are

good benchmarks for the performance of hypercubes under “messy” broadcasting. Finding

or approximating E[T1,Qd
] is future work.

We denote the d + 1 levels of Qd by Q0, Q1, . . . , Qd, where Qi is the set of all vertices

u ∈ Qd such that u’s label contains exactly i 1’s (see Fig. 4). For example, (1010 . . .0) ∈ Q2

and (1111 . . .1) ∈ Qd. The number of binary strings in Qi is
(

d

i

)

= d!
i!(d−i)! ; in particular,

Q0 = {(000 . . .0)} and Qd = {(111 . . .1)}.

Before moving further we must establish the following identity.

Lemma 3.1. If d and i are both integers and d > i then

i−1
∑

m=0

(d− i + m− 1)!

m!
=

i(d− 1)!

(d − i)i!
.

496 C. Li et al.

Proof. We proceed by induction on i. Clearly, when i = 1 we have

i−1
∑

m=0

(d− i + m− 1)!

m!
=

(d− 1 + 0− 1)!

0!
= (d− 2)!

and
i(d− 1)!

(d − i)i!
=

1(d− 1)!

(d− 1)1!
= (d− 2)!.

Hence, the identity holds for i = 1. Assuming the identity holds for i we must now show

that it also holds for i + 1, i.e.,

(i+1)−1
∑

m=0

(d− (i + 1) + m− 1)!

m!
=

(i + 1)(d− 1)!

(d− (i + 1))(i + 1)!
.

Substituting d = x + 1 into the left hand side and splitting off the m = i term yields

i−1
∑

m=0

(x− i + m− 1)!

m!
+

(x− 1)!

i!
.

Applying our inductive hypothesis to the sum, this simplifies to

i(x− 1)!

(x− i)i!
+

(x− 1)!

i!
.

Substituting x = d− 1 back into the above leaves us with

i(x− 1)!

(x − i)i!
+

(x− 1)!

i!
=

i(d− 2)!

(d− i− 1)i!
+

(d− 2)!

i!

which simplifies to
(d− 2)!(d− 1)

(d− i− 1)i!
=

(i + 1)(d− 1)!

(d− (i + 1))(i + 1)!
.

Hence, the identity holds for all i ≥ 1 and the result is proved.

In order to analyze broadcasting in the hypercube we must first introduce the idea of the

initial path of a broadcast. If vertex v0 = (00 . . .0) originates the broadcast it will inform

some vertex v1 in level one at time 1. We define v2 to be the first vertex in level two that

is informed by v1. In general, we define vi to be the first node in level i that is informed by

vi−1. The path continues until we reach we reach vertex vd = (11 . . . 1). The sequence of

vertices v0, v1, . . . , vd is defined as the initial path. It is important to note that other paths

the broadcast follows may propagate through the levels of the hypercube at different speeds

than the initial path.

Lemma 3.2. Let Xi be the random variable denoting the amount of time needed to pass a

message from a vertex in level i to a vertex in level i + 1 for i = 0, 1, 2, . . . , d − 1 on the

initial path. Then,

E[Xi] =
d + 1

d− i + 1
.

Average-Case Messy Broadcasting 497

Proof. Using the expected value formula, we first calculate E[X1], E[X2], and E[X3] as

follows:

E[X1] = 1 ∗ Pr{X1 = 1}+ 2 ∗ Pr{X1 = 2}

=
d− 1

d
+ 2 ∗

(

1

d
∗

d− 1

d− 1

)

=
d + 1

d
,

E[X2] = 1 ∗ Pr{X2 = 1}+ 2 ∗ Pr{X2 = 2}+ 3 ∗ Pr{X2 = 3}

=
d− 2

d
+ 2 ∗

(

2

d
∗

d− 2

d− 1

)

+ 3 ∗

(

2

d
∗

1

d− 1
∗

d− 2

d− 2

)

=
d + 1

d− 1
,

E[X3] = 1 ∗ Pr{X3 = 1}+ 2 ∗ Pr{X3 = 2}+ 3 ∗ Pr{X3 = 3}+ 4 ∗ Pr{X3 = 4}

=
d− 3

d
+ 2 ∗

(

3

d
∗

d− 3

d− 1

)

+ 3 ∗

(

3

d
∗

2

d− 1
∗

d− 3

d− 2

)

+4 ∗

(

3

d
∗

2

d− 1
∗

1

d− 2
∗

d− 3

d− 3

)

=
d + 1

d− 2
.

Continuing in this fashion we arrive at:

E[Xi] =
d− i

d
+

i+1
∑

j=2

(

j ∗

(

j−2
∏

k=0

i− k

d− k

)

∗
d− i

d− j + 1

)

.

Obviously,
j−2
∏

k=0

i− k

d− k
=

i!(d− j + 1)!

d!(i− j + 1)!
.

Hence, we have

E[Xi] =
d− i

d
+

i!(d− i)

d!

i+1
∑

j=2

j(d− j)!

(i− j + 1)!
.

Next, we make the substitution m = i− j + 1

E[Xi] =
d− i

d
+

i!(d− i)

d!

i−1
∑

m=0

((i + 1)−m)(d− (i + 1−m))!

m!
.

Clearly,

E[Xi] =
d− i

d
+

i!(d− i)

d!

(

(i + 1)
i−1
∑

m=0

(d− i + m− 1)!

m!
−

i−1
∑

m=1

(d− i + m− 1)!

(m− 1)!

)

.

498 C. Li et al.

Applying Lemma 3.1 to the left sum we can simplify the above to

E[Xi] =
d− i

d
+

i!(d− i)

d!

(

(i + 1)
i(d− 1)!

(d − i)i!
−

i−1
∑

m=1

(d− i + m− 1)!

(m− 1)!

)

.

Next, we re-index the remaining sum so that it starts at m = 0 and make the substitution

d = x− 1

E[Xi] =
d− i

d
+

i!(d− i)

d!

(

(i + 1)
i(d− 1)!

(d− i)i!
−

i−2
∑

m=0

(x− i + m− 1)!

m!

)

.

Using the fact that

i−2
∑

m=0

(x− i + m− 1)!

m!
=

i−1
∑

m=0

(x− i + m− 1)!

m!
−

(x− 2)!

(i− 1)!

we can apply Lemma 3.1 to the above to get

E[Xi] =
d− i

d
+

i!(d− i)

d!

(

(i + 1)
i(d− 1)!

(d− i)i!
−

(x − 1)!i

(x − i)i!
+

(x − 2)!

(i− 1)!

)

.

Substituting x = d + 1 back into the equation yields

E[Xi] =
d− i

d
+

i!(d− i)

d!

(

(i + 1)
i(d− 1)!

(d − i)i!
−

d!i

(d− i + 1)i!
+

(d− 1)!

(i− 1)!

)

which can be simplified to

E[Xi] =
d + 1

d− i + 1
.

This completes the proof.

Theorem 3.1. E[T3,Qd
] ≤ (d + 1)

d
∑

j=1

1

j
= Θ(d log d).

Proof. Using the symmetry of hypercubes, we assume, without loss of generality, that

v0 = (00 . . . 0) is the originator. We first show that the average number of time units

necessary for (11 . . . 1) to be informed is less than or equal to 1+ (d+1)
∑d

j=2
1
j
. One thing

we should point out, is that broadcasting does not complete in general even if the furthest

vertex (11 . . . 1) from the originator has been informed.

Let X be the random variable denoting the total amount of time spent to inform vertex

(11 . . . 1) from the originator on the initial path. Then X = X0 + X1 + · · ·+ Xd−1 and the

expected value of X is

E[X] = E[X0] + E[X1] + E[X2] + · · ·+ E[Xd−1]

= 1 +
d + 1

d
+

d + 1

d− 1
+ · · ·+

d + 1

2

= 1 + (d + 1)
d
∑

j=2

1

j
.

Average-Case Messy Broadcasting 499

Since we are tracing only one of many paths from the originator to vertex (11 . . . 1), we

must take into account that on average some of the other paths will be faster than our initial

route. Therefore, the average number of time units to inform vertex (11 . . . 1) is less than

or equal to 1 + (d + 1)
∑d

j=2
1
j
, which is only the average speed of the initial route.

Because broadcasting is not necessarily completed by time 1 + (d + 1)
∑d

j=2
1
j

when ver-

tex (11 . . . 1) is informed by our initial path, we allow an additional d time units to pass

so that every vertex in Qd can complete broadcasting to its neighbors in the levels above

and below it. Each vertex in Qd is connected to d other vertices, so these d additional time

units ensure that each informed vertex can broadcast to each of its d neighbors. Since we

have already formed an initial path, one or more vertices (all, or nearly all in the upper

levels) are informed in each level, so vertices in all levels are broadcasting simultaneously

to their d neighbors during these d time units ensuring that broadcasting does indeed com-

plete. Therefore, the average-speed of this route is an upper bound for the average-case

broadcasting time. This completes the proof of Theorem. 3.1

We must admit that the above result is only an upper bound of average-case broadcasting

time and our simulation of M3 supports an even stronger conclusion of Θ(d), rather than

Θ(d log d). Unfortunately, we are unable to provide an actual proof at this moment.

Theorem 3.2. E[T2,Qd
] ≤ d

d
∑

j=1

1

j
= Θ(d log d).

Proof. Mimicking the proof of Theorem 3.1, we note that under model M2, no vertex ever

informs the vertex (or vertices) that informed it. Thus, the average amount of time needed

to pass a message from a vertex on level i to a vertex on level i + 1 is d
d−i+1 . Hence, the

average-case time to form an initial path from the originator to vertex (11 . . . 1) is less than

or equal to 1 + d
∑d

j=2
1
j

= Θ(d log d). We allow d− 1 additional time units to pass, rather

than d, accounting for the fact that no vertex will ever call back to the one that informed it.

This extra time ensures that the broadcast completes after the initial path is formed.

Unfortunately, it seems impossible to deal with M1 in the same manner due to difficulties

of computing expected values of E[Xi] on any initial path, because some vertices have been

informed at level of i− 1 with unknown probabilities.

Feige, Peleg, Raghavan and Upfal [4] found high-probability bounds for broadcasting

in a hypercube under a slightly different model: At each step, every vertex that knows of

the message chooses one of its neighbors in Qd uniformly at random, and informs it of the

message. Let Hd be the number of time units required for broadcasting to complete. Then

Hd = Θ(d) is true with probability 1− 1/2d.

4. Complete d-ary Trees

According to [9], a full d-ary tree can be defined recursively as follows: A full d-ary tree is

either a single vertex (the root), or it consists of a distinguished vertex (the root) with d

500 C. Li et al.

Fig. 5. T3,3.

children, each of which is the root of a full d-ary tree. A complete d-ary tree is a full d-ary

tree such that every leaf is at the same distance (h-1) from the root (the height of such a

d-ary tree is h). We use Td,h to denote the complete d-ary tree of height h and define the

depth of a node to be its distance from the root. The ternary tree T3,3 is shown in Fig. 5.

Theorem 4.1. Let u be the originator in the complete d-ary tree Td,h. Then

E[T3,u,Td,h
] =



















d + d2+2d
d+1 (h− 2) if u is the root,

1 + d− 1
d

+ (d+2)(3d+1)
2(d+1) (h− 2) if u is a leaf,

d+2
2 i + d− 1

d
+ d2+2d

d+1 (h− 2) if u is at ith depth

for i = 1, 2, · · · , h− 2.

Proof. Let us first consider case 1: the originator u is the root. It then takes d time units

for u to inform its d children. Without loss of generality, we assume that the right-most

child, which we will call v, is the last to be informed. Under model M3, at each time unit

every vertex must transmit the message to one of its neighbors to which it has not yet sent

the message. Thus, each vertex that is not the root or the last leaf to be informed must

send the message once along each of its d+1 (or 1, if the node is a leaf, and not the last leaf

to be informed) edges. Hence, v takes d + 1 time units to broadcast to its d + 1 neighbors,

and, on average, d + 1− 1
d+1 time units to inform its d children due to the contribution of

u.

The same argument applies to subsequent vertices, down to and including the vertices

whose children are leaves. We therefore get that the average time is

d + (d + 1−
1

d + 1
)(h− 2) = d +

d2 + 2d

d + 1
(h− 2).

Now we assume the originator is a leaf (case 2) which has distance h− 1 from the root.

Obviously it takes one time unit to inform its parent and d+2
2 (1

d+1 + 2
d+1 + · · ·+ d+1

d+1 = d+2
2

according to the expected value formula) time units to go to each higher level up to the

root. Thus, it needs 1 + d+2
2 (h − 2) to reach the root from the leaf. Since one child of the

root has been informed, it only takes d − 1
d

time units on average for the root to pass a

message to its all d children. The rest follows from case 1. We sum the total broadcasting

time as

1 +
d + 2

2
(h− 2) + d−

1

d
+

d2 + 2d

d + 1
(h− 2)

which proves case 2.

Average-Case Messy Broadcasting 501

Case 3, in which the originator is neither the root nor a leaf, follows easily.

We can similarly derive the following:

Theorem 4.2. Let u be the originator in the complete d-ary tree Td,h. Then

E[T1,u,Td,h
] = E[T2,u,Td,h

] =















d(h− 1) if u is the root,
d + 3d+1

2 (h− 2) if u is a leaf,
d+1
2 (i− 1) + d(h− 1

2) if u is at ith depth
for i = 1, 2, · · · , h− 2.

Proof. If u is the root, it takes d time units for the message to fully propagate to the next

level of the tree. Multiplying this by the h− 1 levels the message must pass through yields

d(h− 1) time units for broadcasting to complete.

If u is a leaf, one time unit is spent broadcasting to level h−2, and d+1
2 (h−2) time units

are spent on average propagating the message up to the root. Once the message reaches

the root it takes d− 1 time units to propagate to each child of the root, and d(h− 2) time

units for the message to travel back down the tree. Summing each of these times yields our

result.

Finally, if u is neither the root nor a leaf, at the beginning it takes d+2
2 time units on

average for the message to move up one level, as no adjacent nodes are informed, and d+1
2

time units to move up subsequent levels, as exactly one adjacent node is informed. Thus, the

time to inform the root is d+2
2 + d+1

2 (i−1). The rest follows from our previous analysis.

5. Complete Graphs under Model M1

We now turn our attention to the average-case analysis of model M1 on Kn, the complete

graph on n vertices. For convenience, let these vertices be enumerated v0, v1, . . . , vn−1.

We assume at time k that r vertices are informed and n − r are uninformed. Each

informed vertex randomly informs one of n − r uninformed vertices at time k + 1 with

probability 1
n−r

; hence, each arrangement occurs with probability 1
(n−r)r . We seek the

probability Pm(r, n− r) of finding exactly m vertices uninformed at time k + 1.

Let Ai be the event that vertex vi is uninformed, for i = 1, 2, . . . , n − r. In this event,

the r informed vertices could inform all the remaining n− r − 1 vertices, and this could be

done in (n− r − 1)r different ways. Similarly, there are (n− r − 2)r arrangements, leaving

two preassigned vertices uninformed, etc. Accordingly,

Pi = Pr{Ai} =
(n− r − 1)r

(n− r)r
= (1−

1

n− r
)r, where 1 ≤ i ≤ n− r,

Pij = Pr{AiAj} = (1−
2

n− r
)r, where 1 ≤ i < j ≤ n− r,

Pijk = Pr{AiAjAk} = (1−
3

n− r
)r, where 1 ≤ i < j < k ≤ n− r, etc.

502 C. Li et al.

Let S1 =
∑

Pi, S2 =
∑

Pij , S3 =
∑

Pijk , etc. Note that in these sums each combination

appears once and only once. Hence, for every ν ≤ n− r,

Sν =

(

n− r

ν

)

(1−
ν

n− r
)r .

The probability that at least one vertex is uninformed is given by

P = S1 − S2 + S3 − S4 + . . .± Sn−r,

(see [5]) and hence, we find that the probability that all vertices are informed is

P0(r, n− r) = 1− P
= 1− (S1 − S2 + S3 − S4 + . . .± Sn−r)

=
∑n−r

ν=0(−1)ν
(

n−r
ν

)

(1− ν
n−r

)r.

Consider now a distribution in which exactly m vertices are uninformed. These m vertices

can be chosen in
(

n−r
m

)

ways. The r informed vertices broadcast to the remaining n− r−m

vertices so that each of these vertices is informed. The number of such distributions is

(n− r −m)rP0(r, n− r −m).

Dividing by (n− r)r , we find that the probability that exactly m vertices remain unin-

formed is
Pm(r, n− r) =

(

n−r

m

)

(1− m
n−r

)rP0(r, n− r −m)

=
(

n−r
m

)
∑n−r−m

ν=0 (−1)ν
(

n−r−m
ν

)

(1− m+ν
n−r

)r

by using

(1−
m

n− r
)r(1−

ν

n− r −m
)r = (1−

m + ν

n− r
)r.

Finally, we are ready to prove the following:

Theorem 5.1. Let Vk be the number of vertices informed by time k. Then,

E[T1, Kn
] = min {k | dE[Vk]e = n}

where

E[Vk] = n−

n−dE[Vk−1]e
∑

m=1

mPm(dE[Vk−1]e, n− dE[Vk−1]e)

for k > 1, with initial condition E[V1] = 2.

Proof. Clearly, we have

E[Vk] = E[Vk−1] + average number of new vertices informed at time k

= E[Vk−1] + (n−E[Vk−1])− average vertices uninformed at time k

= n−

n−dE[Vk−1]e
∑

m=1

mPm(dE[Vk−1]e, n− dE[Vk−1]e).

Average-Case Messy Broadcasting 503

This completes the proof of theorem.

We have encountered difficulties while solving the above recurrence mathematically.

However, we both stimulated model M1 directly using the following algorithm for n up

to 229 with 1000 trials, and computed the recursion in Theorem 5.1 using Maple 8. The

two results coincide and are very approximately equal to dlog ne + 2 for n ≥ 210, and are

between dlog ne and dlog ne+ 2 for n < 210, which indicates that the performance of M1 on

complete graphs is close to that of classical broadcasting.

Algorithm M1Simulation(n)
k ← 0 // time units
i ← 1 // informed nodes
u ← n− 1 // uninformed nodes

START:
j ← 0 // newly informed nodes at time k
k ← k + 1
for x ← 1 to i do

z ← random(u) // z gets a random number in [1, u]
if z > j then // if no collision

j ← j + 1 // inform a new node
if j = u then // if all informed this cycle

goto end
i ← i + j // increase informed nodes
u ← u− j // decrease uninformed nodes
goto start

END:
print k + “ time units required”

Table 1 summarizes the results of this algorithm averaged over 1000 trials, which matches

with data computed directly from the recurrence in Theorem 5.1 and clearly shows that the

average-case time of dlog ne + 2 is much faster than the worst-case time of n − 1. The

column Time represents the number of time units needed to complete broadcasting while

the column Time(log(n) + k) shows the time needed to finish broadcasting split into two

terms, the first being log(n) and the second being the additional time needed beyond the

log(n) time units.

We know from [9] that ti(Kn) = n − 1 for all i. Here, we have another opportunity to

show that worst-case messy broadcast times are often highly improbable.

Corollary 5.1. Pr{T1,v0,Kn
= n− 1} = Πn−1

i=2
1

(n−i)i−1 .

Proof. Assume, without loss of generality, that vertex v0 broadcasts to vi at time i for all

i until broadcasting is complete.

There is a 1
n−2 chance that v0 and v1 both broadcast to v2 at time 2. Given that this

occurs, there is a 1
(n−3)2 chance that vertices v0, v1, and v2 all broadcast to v3 at time 3. In

general, there is a 1
(n−i)i−1 chance that vertices v0 through vi−1 broadcast to vi at time i,

504 C. Li et al.

Table 1. Simulation Results for Model M1.

of Nodes (n) log(n) Time Time (log(n) + k)

21 1 1.000 1 + 0.000
22 2 2.499 2 + 0.499
23 3 3.990 3 + 0.990
24 4 5.149 4 + 1.149

.
28 8 9.941 8 + 1.941
29 9 10.998 9 + 1.998
210 10 12 10 + 2.000
211 11 13 11 + 2.000
212 12 14 12 + 2.000
213 13 15 13 + 2.000

.
226 26 28 26 + 2.000
227 27 29 27 + 2.000
228 28 30 28 + 2.000
229 29 31 29 + 2.000

given that for all k < i, all informed vertices broadcasted to vk at time k. The result follows

from the product of these conditional probabilities.

For large n, the probability shown in Corollary 5.1 is effectively zero.

Finally, we would like to mention that the following variant of broadcasting has been

given by Frieze and Grimmett [7]. A complete graph contains n vertices with one originator.

At each time unit, each informed vertex informs another vertex randomly chosen from the

graph independently of other choices (hence repetition is possible during broadcasting, which

is different from M1). Let Sn be the number of time units required for broadcasting to

complete. Then

Sn

log n
→ 1 + loge 2

in probability as n→∞. Furthermore, Pittel [12] improved this result, showing that

Sn = log n + loge n + o(1).

Given that this model of “messy” broadcasting makes less assumptions about the in-

formed status of neighbours than models M1, M2, and M3, it is reasonable to expect that

models M1, M2, and M3 perform more efficiently than the model considered in [7].

Acknowledgments

We would like to thank Dr. Michael J. Wichura of the University of Chicago for his prompt

advice concerning the occupancy problem which helped us in the analysis of complete graphs

Average-Case Messy Broadcasting 505

under model M1, and also Marc Berndl, University of Toronto, for his help in refining

Theorem 3.1.

The Natural Sciences and Research Council of Canada (NSERC) provided three of the

authors with research grants. Chenkuan Li was supported by an NSERC Research Grant,

and Tom Hart and Kevin Henry were supported by NSERC Undergraduate Student Re-

search Awards.

References

1. R. Ahlswede, H. S. Haroutunian, and L. H. Khachatrian, “Messy Broadcasting in Networks,”

Communications and Cryptography, eds. R. E. Blahut, D. J. Costello, Jr., U. Mauter, and T.

Mittelholzer (Kluwer, Boston/Dordrecht/London, 1994) 13-24.

2. F. Comellas, H. Harutyunyan, and A. Liestman, “Messy Broadcasting in Multi-dimensional

directed tori,” Journal Interconnection Networks, 4, 2003, pp. 37-51.

3. A. Farley, S. Hedetniemi, S. Mitchell and A. Proskurowski, “Minimum Broadcast Graphs,”

Discrete Mathematics 25, 1979, pp. 189-193.

4. U. Feige, D. Peleg, P. Raghavan and E. Upfal, “Randomized Broadcast in Networks,” Random

Structures and Algorithms, Vol. 1, No. 4, 1990, pp. 447-460.

5. W. Feller. An Introduction to Probability Theory and its Applications, Vol. I. New York: John

Wiley and Sons, 1950.

6. P. Fraigniaud and E. Lazard, “Methods and problems of communication in usual networks,”

Discrete Applied Mathematics, Vol. 53, No. 1-3, 1994, pp. 79-133.

7. A. Frieze and G. Grimmett, “The shortest-path problem for graphs with random arc-lengths,”

Discrete Applied Mathematics 10, 1985, pp. 57-77.

8. T. E. Hart and H. A. Harutyunyan, “Improved Messy Broadcasting in Hypercubes and Simple

Graphs,” Congressus Numerantium, Vol. 156, 2002, pp. 181-195.

9. H. A. Harutyunyan and A. L. Liestman, “Messy Broadcasting,” Parallel Processing Letters Vol.

8 No. 2, 1998, pp. 149-159.

10. S. T. Hedetniemi, S. M. Hedetniemi, and A. L. Liestman, “A survey of Broadcasting and Gos-

siping in Communication Networks,” Networks 18, 1988, pp. 319-349.

11. J. Hromkovic, R.Klasing, B. Monien, and R. Peine, “Dissemination of information in intercon-

nection networks (broadcasting and gossiping),” Combinatorial Network Theory (F. Hsu and

D.Z. Du, Eds.), Kulwer Academic, Dordrecht/Norwell, Ma, 1996, pp. 125-212.

12. B. Pittel, “On spreading a rumor,” SIAM Journal On Applied Mathematics Vol. 47, No. 1, 1987,

pp. 213-223.

