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Abstract: Let µ > −1/2. The classical Hankel transform is defined by

(hµφ)(t) =

∫ ∞

0
xJµ(xt)φ(x)dx t ∈ (0,∞), (1)

where Jµ(x) denotes the Bessel function of the first kind and order µ. The goal
of this paper is to construct the Hankel transform of arbitrary order hµ,k based
on the two differential operators and show that hµ,k = h−1

µ,k on Hµ− 1

2

for µ ∈ R.

Furthermore, the Hankel convolution of arbitrary order is introduced with the
following identity

(hµ,kh)(t) = t−µ(hµ,kφ)(t)(hµ,kψ)(t)

on the spaces (Hµ− 1

2

, Hµ− 1

2

) and (Sµ, Hµ− 1

2

) respectively.
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1. Introduction

Let R+ = (0,∞) and a weight function ν(x) > 0 in R+. We define a set of
functions L(R+, ν(x)) as

L(R+, ν(x)) = {f(x) |
∫ ∞

0
|f(x)|ν(x)dx <∞}.

Different types of the Hankel transforms as well as their convolutions, including
modified ones, have been investigated over the decades (for example, see [7]-
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[5] and [1]) both in the classical sense and in spaces of generalized functions.
These transforms are applied to solve problems of mathematical physics and
differential equations with variable coefficients. In 1995, Tuan and Saigo [12]
used the following commutative Hankel convolution h(x) of a function f(x)
with a function g(x) (due to Zhitomirskii, see [14]),

h(x) =
21−3µx−µ

√
πΓ(µ+ 1/2)

∫ ∫

u+v>x, |u−v|<x
[x2 − (u− v)2]µ−1/2 ·

[(u+ v)2 − x2]µ−1/2(uv)1−µf(u)g(v)dudv x ∈ (0,∞), (2)

and proved Theorem 1.1 using the Hankel transform in (1).

Theorem 1.1. Let Reµ > 1/2 and f(x), g(x) ∈ L(R+,
√
x). Then the

function h(x) of (2) exists and the convolutional identity

(hµh)(t) = t−µ(hµf)(t)(hµg)(t)

holds.

Recently, Britvina studied some polyconvolutions of the Hankel transform
in [2], where she defined the following functions h1(t) and h2(t), and obtained
Theorem 1.2 and Theorem 1.3,

h1(t) = tµ−1

∫ ∞

0
dv

∫ t+v

|t−v|
u−µ+1f(u)g(v)P1(t;u, v)du

−tµ−1

∫ ∞

0
dv

∫ ∞

t+v
u−µ+1f(u)g(v)Q1(t;u, v)du,

h2(t) = t−µ

∫ ∫

|t−v|<t<u+v
uµf(u)g(v)P2(t;u, v)dudv

−t−µ

∫ ∞

0
du

∫ t−u

0
uµf(u)g(v)Q2(t;u, v)dv,

where

Pj(t;u, v) =
1√
2π
vµP

1/2−µ
ν−1/2 (cos sj) sinµ−1/2 sj,

Qj(t;u, v) =

√
2

π3/2
sin[(ν − µ)π] exp

{

(2µ− 1)π

2j

}

vµQ
1/2−µ
ν−1/2(chrj)sh

µ−1/2rj ,

j = 1, 2, and Pµ
ν , Q

µ
ν are the associated Legendre functions of the first and the

second kind, respectively, and

2tv cos s1 = t2 + v2 − u2, 2tvchr1 = u2 − t2 − v2,

2uv cos s2 = u2 + v2 − t2, 2uvchr2 = t2 − u2 − v2.

Theorem 1.2. Suppose that f(t), g(t) ∈ L(R+,
√
t) and Reµ > 1/2,
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Re ν > Reµ− 1. Then the function h1(t) exists and the relation

(hνh1)(x) = x−ν(hµf)(x)(hνg)(x)

holds.

Theorem 1.3. Assume that f(t), g(t) ∈ L(R+,
√
t) and Reµ > 1/2,

Re ν > (2Re µ − 3)/4. Then the function h2(t) exists and the following re-
lation

(hµh2)(x) = x−µ(hνf)(x)(hνg)(x)

is satisfied.

Inspired by the studies of González and Negrin ([3] and [4]) on the convolu-
tion and Fourier transform, Betancor and González [1] investigated the Hankel
convolution satisfying the formula

H′
µ(f♯g) = x−µ−1/2H′

µ(f)H′
µ(g)

on new spaces of generalized function, which are subspaces of H ′
µ (see [1]).

Their modified Hankel transform is given by

(Hµφ)(t) =

∫ ∞

0

√
xtJµ(xt)φ(x)dx, t ∈ (0,∞). (3)

As outlined in the abstract, the current work is to provide a means of defining
the Hankel transform hµ,k for any real value of the order µ in such a way that an
inverse Hankel transform h−1

µ,k also exists and is equal to the Hankel transform
itself, although Zemanian claimed that it is not true for µ < −1/2 in [13]. It is
the property of the inverse transform that makes this extension of the Hankel
transform significant, since it serves well in constructing the Hankel convolution
of arbitrary order, which has never be studied in the past as far as we know.

2. The Hankel Transform of Arbitrary Order

In order to extend the Hankel transform in (3) to generalized functions, Zema-
nian [13] defined the following testing space Hµ.

Definition 2.1. For any real number µ, a function φ(x) is in Hµ if and
only if it is complex-valued and smooth on R+, and for each pair of nonnegative
integers m and k,

γµ
m,k(φ) = sup

x∈R+

xm
∣

∣

∣
(x−1D)kx−µ−1/2φ(x)

∣

∣

∣
<∞.

Obviously, Hµ is a linear space. Also, each γµ
m,k is a seminorm on Hµ, and

the collection {γµ
m,k}∞m,k=0 is a multinorm because the γµ

m,0 are norms. The
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topology of Hµ is that generated by {γµ
m,k}∞m,k=0.

Clearly, the mapping φ(x) → x1/2φ(x) is an isomorphism from Hµ− 1

2

into

Hµ. It follows from equations (1) and (3) that

(hµφ)(t) = t−1/2Hµ(x1/2φ)(t). (4)

Using the fact that Hµ is an automorphism on Hµ for µ ≥ −1/2 (see [13]), we
obtain

Theorem 2.1. For µ > −1/2, the Hankel transform hµ is an automorphism
on Hµ− 1

2

.

We now define two modified differential operators Nµ and Mµ, and a linear
integral operator N−1

µ by

Nµφ(x) = (D − µx−1)φ(x) = xµDx−µφ(x),

Mµφ(x) = (D + µx−1 + x−1)φ(x) = x−µ−1Dxµ+1φ(x),

N−1
µ φ(x) = xµ

∫ x

∞
t−µφ(t)dt,

which will be used to prove the inverse property hµ,k = h−1
µ,k for µ ∈ R.

Applying identity (4) and the Zemanian’s results for Hµ in [13], we can
easily list the following.

Lemma 2.1. Nµ is a continuous linear mapping from Hµ− 1

2

into Hµ+ 1

2

while N−1
µ is a continuous linear mapping of Hµ+ 1

2

into Hµ− 1

2

.

Lemma 2.2. The mapping φ→Mµφ is linear and continuous from Hµ+ 1

2

into Hµ− 1

2

. Furthermore, for any integer n and for any µ, the mapping φ(x) →
xnφ(x) is an isomorphism from Hµ− 1

2

into Hµ− 1

2
+n.

Lemma 2.3. Let µ > −1/2. If φ ∈ Hµ− 1

2

, then

hµ+1(−tφ) = Nµhµφ, (5)

hµ+1(Nµφ) = −xhµφ, (6)

hµ(−t2φ) = MµNµhµφ, (7)

hµ(MµNµφ) = −x2hµφ, (8)

hµ(tφ) = Mµhµ+1φ, if φ ∈ Hµ+ 1

2

, (9)

hµ(Mµφ) = xhµ+1φ, if φ ∈ Hµ+ 1

2

. (10)

Let µ ∈ R and a positive integer k such that µ + k > −1
2 . Assume that
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φ ∈ Hµ− 1

2

. Define the Hankel transform of arbitrary order hµ,k on Hµ− 1

2

by

Φ(x) = hµ,k(φ(y)) = (−1)kx−khµ+kNµ+k−1 · · ·Nµ+1Nµφ(y),

and let Φ(x) ∈ Hµ− 1

2

and define an inverse transform h−1
µ,k on Hµ− 1

2

by

φ(y) = h−1
µ,k(Φ(x)) = (−1)kN−1

µ N−1
µ+1 · · ·N−1

µ+k−1hµ+kx
kΦ(x).

From identity (4) and the Zemanian’s Lemma (on p. 164 of [13]), we have the
following theorem.

Theorem 2.2. hµ, k is an automorphism on Hµ− 1

2

for µ ∈ R. Its inverse is

h−1
µ, k, and hµ, k = hµ if µ > −1

2 .

Note that the definition of hµ,k is independent of the choice of k so long as
k+ µ > −1

2 . Indeed if k > p > −µ− 1
2 , then hµ+p,k−p = hµ+p by Theorem 2.2,

hence

hµ, kφ = (−1)kx−khµ+kNµ+k−1 . . . Nµφ

= (−1)px−p(−1)k−px−(k−p)hµ+p+k−pNµ+p+k−p−1 . . . Nµ+pNµ+p−1 . . . Nµφ

= (−1)px−phµ+p,k−pNµ+p−1 . . . Nµφ = (−1)px−phµ+pNµ+p−1 . . . Nµφ = hµ,pφ.

Zemanian claimed in [13] (on p. 165) that Hu, k 6= H−1
u, k (which implies

hu, k 6= h−1
u, k, since (hµ,kφ)(t) = t−1/2Hµ,k(x

1/2φ)(t)) when µ < −1/2. However,
he did not give any counterexample. F.H. Kerr [6] introduced complex fractional
powers of Hankel transforms Hα

µ onHµ to show that Hµ,k = H−1
µ,k. In the present

work, we are able to give a direct and simple proof that hu, k = h−1
u, k for µ ∈ R

with the help of the following identity in [13]

Dxx
−µJµ(xy) = −yx−µJµ+1(xy). (11)

This inverse property will play an important role in defining the Hankel convo-
lutions in Section 3.

Lemma 2.4. Nµhµ, k(φ) = hµ+1, k(−yφ) for φ ∈ Hµ− 1

2

.

Proof. By definition

hu, kφ = (−1)kx−khµ+kNµ+k−1 · · ·Nµ+1Nµφ(y)

= (−1)kx−khµ+ky
µ+k(y−1D)ky−µφ(y)

= (−1)kx−k

∫ ∞

0
yJµ+k(xy)y

µ+k(y−1D)ky−µφ(y)dy.

It follows that

Nµhu, k(φ) = (−1)k
∫ ∞

0
Nµx

−kyJµ+k(xy)yµ+k(y−1D)ky−µφ(y)dy.
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By equation (11), we have

Nµx
−kJµ+k(xy) = xµDx−µ−kJµ+k(xy)

= −yx−kJµ+1+k(xy).

Hence,

Nµhu, k(φ) = (−1)kx−k

∫ ∞

0
yJµ+1+k(xy)yµ+1+k(y−1D)ky−µ−1(−yφ(y))dy

= hµ+1, k(−yφ). �

Theorem 2.3. Let µ be any fixed real number and let k be any positive
integer such that µ+ k > −1/2. Then hµ, k = h−1

µ, k on Hµ− 1

2

.

Proof. By Lemma 2.4 we have

Nµhµ, k(φ) = hµ+1, k(−yφ).

Applying Nµ+1 to both sides, we obtain

Nµ+1Nµhµ, k(φ) = Nµ+1hµ+1, k(−yφ) = hµ+2, k{(−1)2y2φ}.
Repeating this process, we get

Nµ+k−1 · · ·Nµ+1Nµhµ, k(φ) = hµ+k, k{(−1)kykφ}.
Therefore,

Nµ+k−1 · · ·Nµ+1Nµhµ, k(φ) = (−1)khµ+k(ykφ)

and we finally come to

hµ, k(φ) = (−1)kN−1
µ N−1

µ+1 · · ·N−1
µ+k−1hµ+ky

kφ(y) = h−1
µ, k(φ).

This completes the proof of Theorem 2.3.

3. The Hankel Convolution of Arbitrary Order

According to the author’s knowledge, the Hankel convolution of arbitrary order
(in particular, µ ≤ −1/2) has not been investigated so far on any spaces of
interest. In this section, we use the inverse property to construct the Hankel
convolution of arbitrary order on the spaces (Hµ− 1

2

, Hµ− 1

2

) and (Sµ, Hµ− 1

2

)

respectively.

Let µ ∈ R and any positive integer k such that µ+ k > −1
2 . Assume that

φ and ψ are in Hµ− 1

2

. Define the Hankel convolution of arbitrary order h(x) of

φ and ψ by

h(x) = (−1)kx−k

∫ ∞

0

∫ ∞

0

∫ ∞

0
yµ+k+1(y−1Dy)

ky−µφ(y)uµ+k+1(u−1Du)ku−µ
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ψ(u)tµ+k+1(t−1Dt)
k{t−2µ−2kJµ+k(yt)Jµ+k(ut)}Jµ+k(xt)dudydt. (12)

It is obvious to see that this convolution is commutative and we are going to
prove the following theorem.

Theorem 3.1. Let µ ∈ R and any positive integer k such that µ+k > −1
2 .

Then the function h(x) in (12) exists and the exchange formula

(hµ,kh)(t) = t−µ(hµ,kφ)(t)(hµ,kψ)(t)

holds on (Hµ− 1

2

, Hµ− 1

2

).

Proof. Clearly,

h(x) = (−1)kx−khµ+k

∫ ∞

0

∫ ∞

0
yµ+k+1(y−1Dy)

ky−µφ(y)uµ+k+1

(u−1Du)ku−µψ(u)tµ+k(t−1Dt)
k{t−2µ−2kJµ+k(yt)Jµ+k(ut)}dudy.

The following integral, for every k
∫ ∞

0

∫ ∞

0
yµ+k+1(y−1Dy)

ky−µφ(y)uµ+k+1(u−1Du)ku−µψ(u)

(t−1Dt)
k{t−2µ−2kJµ+k(yt)Jµ+k(ut)}dudy

is uniformly convergent on every compact subset of R+ with respect to t since
φ and ψ are in Hµ− 1

2

. Therefore,

h(x) = (−1)kx−khµ+kNµ+k−1 · · ·Nµ(t−µ−2khµ+k(y
µ+k(y−1Dy)

ky−µφ(y))

hµ+k(uµ+k(u−1Du)ku−µψ(y))) = hµ,k(t
−µhµ,kφhµ,kψ).

The result follows immediately by hµ,k = h−1
µ,k due to Theorem 2.3. This com-

pletes the proof of Theorem 3.1.

In particular, we get for µ > −1/2

h(x) = hµ(t−µhµφhµψ) =

∫ ∞

0
tJµ(xt)t−µhµφhµψdt

=

∫ ∞

0
t1−µJµ(xt)

∫ ∞

0

∫ ∞

0
uvJµ(ut)Jµ(vt)φ(u)ψ(v)dudvdt

=

∫ ∞

0

∫ ∞

0
uvφ(u)ψ(v)dudv

∫ ∞

0
t1−µJµ(xt)Jµ(ut)Jµ(vt)dt.

This procedure is permissible due to the Fubini Theorem. Furthermore, it is
well known (see [10]) that

∫ ∞

0
t1−µJµ(xt)Jµ(ut)Jµ(vt)dt
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=
21−3µ

√
πΓ(µ+ 1/2)

(xuv)−µ[x2 − (u− v)2]
µ−1/2
+ [(u+ v)2 − x2]

µ−1/2
+

where

s+(x) =

{

s(x) if s(x) ≥ 0,
0 if s(x) < 0.

Therefore,

h(x) =
21−3µx−µ

√
πΓ(µ+ 1/2)

∫ ∫

u+v>x, |u−v|<x
[x2 − (u− v)2]µ−1/2

× [(u+ v)2 − x2]µ−1/2(uv)1−µφ(u)ψ(v)dudv

which coincides with equation (2) in the introduction.

In order to extend the Hankel convolution to a larger function space, we
define the space Sµ for µ > −1/2 with the normal addition and scalar multi-
plication as

Sµ =

{

φ ∈ C(R+) |
∫ ∞

0
yµ+2k+1|φ(y)|dy <∞ and k = 0, 1, · · ·

}

.

Clearly Hµ− 1

2

is a proper subset of Sµ according to Lemma 5.2.1 in [13] and we

have the following theorem.

Theorem 3.2. The function t−µ(hµφ)(t) is a multiplier of Hµ− 1

2

for any

φ ∈ Sµ.

Proof. Obviously,

t−µ(hµφ)(t) =

∫ ∞

0
yt−µJµ(yt)φ(y)dy

and

(t−1D)kt−µJµ(yt) = (−y)kt−µ−kJµ+k(yt).

The integral
∫ ∞

0
y(t−1D)kt−µJµ(yt)φ(y)dy =

∫ ∞

0
yµ+k+1(−y)k Jµ+k(yt)

(yt)µ+k
φ(y)dy

is uniformly convergent with respect to t since the term Jµ+k(yt)/(yt)
µ+k is

bounded on 0 < yt < ∞ and φ ∈ Sµ. This implies that (t−1D)kt−µ(hµφ)(t) is
bounded and thus a multiplier of Hµ− 1

2

.

Theorems 3.2 and 2.1 allow us directly define the Hankel convolution h(x)
in Hµ− 1

2

as

h(x) = hµ(t−µhµφhµψ)

where (φ, ψ) ∈ (Sµ, Hµ− 1

2

).
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