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The Distributional Products by
the Laurent Series
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Abstract : Applying the following formulas

(x− i0)−k = x−k + iπ
(−1)k−1

(k − 1)!
δ(k−1)(x)

and

lim
λ→−s

xλ
−

Γ(λ + 1)
= (−1)s−1δ(s−1)(x)

due to Gel’fand, we evaluate the distributional product H(x) · δ(k)(x) for k =
0, 1, 2, . . . and hence we are able to derive δ(m)(x) · δ(l)(x) by induction.

Furthermore, using the Laurent series of xλ
+ and rλ, we directly compute the

products x−k
+ · δ(p)(x) of one variable and r−n−2m · δ(2s)(r) of n variables. Finally,

we imply x−m
+ · x−l

+ = x−m−l
+ by Fisher’s result, where

x−m
+ = lim

λ→−m

∂

∂λ
[(λ + m)xλ

+],

the regular part of the Laurent expansion of xλ
+ about λ = −m.
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1 Introduction

One of the well-known problems in the theory of generalized functions is
the lack of definitions for products and convolutions of distributions in general,
although they are in great demand for quantum field theory. In elementary particle
physics, one finds the need to evaluate δ2 when calculating the transition rates of
certain particle interactions [1]. The sequential method (Antosik, Mikusiński, and
Sikorski 1972 [2]) and complex analysis approach (Bremermann 1965 [3]), including
non-standard analysis, have been the main tools in dealing with products, powers
and convolutions of distributions. Fisher, with his collaborators [4-8], has actively
used Jone’s δ-sequence δn(x) = nρ(nx) for n = 1, 2, . . ., where ρ(x) is a fixed
infinitely differentiable function on R with four properties :
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(i) ρ(x) ≥ 0,

(ii) ρ(x) = 0 for |x| ≥ 1,

(iii) ρ(x) = ρ(−x),

(iv)
∫ 1

−1

ρ(x)dx = 1,

and Van der Corput’s neutrix limit (in order to abandon unwanted infinite quanti-
ties from asymptotic expansions) to deduce numerous products, powers, convolu-
tions and compositions of distributions on R since 1969. One of Fisher’s definitions
for multiplication is given as follows [5] :

Definition 1.1 Let f and g be distributions in D′ and let gn = g ∗ δn. We say
that the neutrix product f ◦ g of f and g exists and is equal to h if

N − lim
n→∞

(fgn, φ) = (h, φ)

for all functions φ in D, where N is the neutrix (see [9]) having domain N ′ =
{1, 2, · · · } and range the real numbers, with negligible functions that are finite
linear sums of the functions

nλ lnr−1 n, lnr n (λ > 0, r = 1, 2, · · · )
and all functions of n that converge to zero in the normal sense as n tends to
infinity.

The following theorem due to Fisher [5] is easily proved from the above definition.

Theorem 1.1 Let f and g be distributions in D′ and suppose that the non-
commutative neutrix products f ◦ g and f ◦ g′ (or f ′ ◦ g) exist. Then the product
f ′ ◦ g (or f ◦ g′) exists and

(f ◦ g)′ = f ′ ◦ g + f ◦ g′.

It is obvious to see that the product of definition 1 is not symmetric and hence
f ◦ g 6= g ◦ f in general. Furthermore, such products are dependent on the choice
of function ρ(x), which, unfortunately, does not seem a property of distributional
products [8].

To extend multiplications from one-dimensional to m-dimensional, Li [10-11] con-
structed several workable δ-sequences on Rm for non-commutative neutrix prod-
ucts such as r−k ◦∇δ as well as r−k ◦4lδ, where 4 denotes the Laplacian. Aguirre
[12] used the Laurent series expansion of rλ and derived a more general (natural)
product r−k ·∇(4lδ) by calculating the residue of rλ. His approach is an interest-
ing example of using complex analysis to obtain products of distribution on Rm

[13-16].
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The objective of this paper is to obtain natural products of distributions with the
help of Laurent series and some of Gel’fand’s identities [17]. In particular, we will
employ the following two expansions.

xλ
+ =

(−1)k−1

(k − 1)!(λ + k)
δ(k−1)(x) + x−k

+ + (λ + k)x−k
+ ln x+ + · · ·

and
rλ =

a−1

λ + n + 2m
+ a0 + a1(λ + n + 2m) + · · · .

This approach is not only simpler than the sequential method but also without
recourse to Van der Corput’s neutrix limit nor to a delta sequence (an idea that
requires a bit more machinery).

2 The Product δ(m)(x) · δ(l)(x)

In the following, let D be the space of infinitely differentiable functions with com-
pact support and let D′ be the space of distributions defined on D. We define the
locally summable functions xλ

+ and xλ
− for λ > −1 by

xλ
+ =

{
xλ if x > 0
0 if x < 0 and xλ

− =
{
|x|λ if x < 0
0 if x > 0.

The distributions xλ
+ and xλ

− are then defined inductively for λ < −1 and λ 6=
−2,−3, . . . by

(xλ
+)′ = λxλ−1

+ and (xλ
−)′ = −λxλ−1

− .

It follows that if r is a positive integer and −r − 1 < λ < −r, then

(xλ
+, φ(x)) =

∫ ∞

0

xλ

[
φ(x)−

r−1∑

i=0

φ(i)(0)
i!

xi

]
dx and

(xλ
−, φ(x)) =

∫ 0

−∞
|x|λ

[
φ(x)−

r−1∑

i=0

φ(i)(0)
i!

xi

]
dx.

Lemma 2.1 The products xλ
+ · x−k−λ

− and xλ
− · x−k−λ

+ exist and

xλ
+ · x−k−λ

− = −π cosecλπ

2(k − 1)!
δ(k−1)(x), (2.1)

xλ
− · x−k−λ

+ =
(−1)k π cosecλπ

2(k − 1)!
δ(k−1)(x) (2.2)

where λ 6= 0,±1,±2, . . . and k = 1, 2, . . ..
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Proof. The following two formulas can be found in [17]

(x− i0)−k = x−k + iπ
(−1)k−1

(k − 1)!
δ(k−1)(x)

and
(x− i0)λ = xλ

+ + e−λπixλ
−.

Furthermore, (x− i0)λ is an entire function of λ.

Using the following Gel’fand’s identities [17]

xλ
+ =

(−1)n−1

(n− 1)!(λ + n)
δ(n−1)(x) + F−n(x+, λ),

xλ
− =

1
(n− 1)!(λ + n)

δ(n−1)(x) + F−n(x−, λ),

e±iλπ = (−1)n[1± (λ + n)π + · · · ]
where F−n(x+, λ) and F−n(x−, λ) are the regular parts of the Laurent expansions
of xλ

+ and xλ
− respectively, we arrive at

lim
λ→−k

(x− i0)λ = lim
λ→−k

(xλ
+ + e−λπixλ

−)

= x−k + iπ
(−1)k−1

(k − 1)!
δ(k−1)(x)

= (x− i0)−k.

It follows that
(x− i0)λ · (x− i0)µ = (x− i0)λ+µ.

In particular, we have

(x− i0)λ · (x− i0)−λ−k = (x− i0)−k

by letting µ → −λ− k.

Hence, we come to

x−k + iπ
(−1)k−1

(k − 1)!
δ(k−1)(x) = (x− i0)−k

= (x− i0)λ(x− i0)−λ−k

= (xλ
+ + e−λπixλ

−)(x−λ−k
+ + e(λ+k)πix−λ−k

− )

= [x−k
+ + (−1)kx−k

− ] + [(−1)kxλ
+ · x−λ−k

− + xλ
− · x−λ−k

+ ] cos λπ

+ i[(−1)kxλ
+ · x−λ−k

− − xλ
− · x−λ−k

+ ] sin λπ

which clearly implies
x−k = x−k

+ + (−1)kx−k
− ,
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(−1)kxλ
+ · x−λ−k

− + xλ
− · x−λ−k

+ = 0,

and

[(−1)kxλ
+ · x−λ−k

− − xλ
− · x−λ−k

+ ] sin λπ = π
(−1)k−1

(k − 1)!
δ(k−1)(x).

Therefore, we obtain

2(−1)kxλ
+ · x−λ−k

− sin λπ = π
(−1)k−1

(k − 1)!
δ(k−1)(x).

This completes the proof of equation (2.1), and equation (2.2) follows from

xλ
− · x−λ−k

+ = (−1)k+1xλ
+ · x−λ−k

− =
(−1)k π cosecλπ

2(k − 1)!
δ(k−1)(x).

¤

Remark : Equation (1) was first obtained by Fisher in [5] with a much longer
and more complex proof by Definition 1.1. His work was based on the δ-sequence
and the neutrix limit.

Lemma 2.2 The products xr
+ · δ(r+k−1)(x) and δ(r+k−1)(x) · xr

+ exist and

xr
+ · δ(r+k−1)(x) = δ(r+k−1)(x) · xr

+ =
(−1)r(r + k − 1)!

2(k − 1)!
δ(k−1)(x)

for r = 0, 1, 2, . . . and k = 1, 2, . . .. In particular, we have

H(x) · δ(k−1)(x) =
δ(k−1)(x)

2
.

Proof. Let s be a positive integer. By the following two identities

π

sin λπ
=

Γ(1− λ) Γ(1 + λ)
λ

if λ is near −s and λ 6= −s,

lim
λ→−s

xλ
−

Γ(λ + 1)
= (−1)s−1δ(s−1)(x)

as well as equation (2), we have

(−1)s−1δ(s−1)(x) · xs−k
+ =

(−1)k+1 (s− 1)!
2(k − 1)!

δ(k−1)(x)

It follows from setting r = s− k that

δ(r+k−1)(x) · xr
+ =

(−1)r(r + k − 1)!
2(k − 1)!

δ(k−1)(x).



310 Thai J. Math. 4(2006)/ C. K. Li and M. A. Aguirre

With a very similar argument, we can show that

xr
+ · δ(r+k−1)(x) =

(−1)r(r + k − 1)!
2(k − 1)!

δ(k−1)(x).

This completes the proof of Lemma 2.2. ¤

Theorem 2.1 The product δ(m)(x) · δ(l)(x) exists and

δ(m)(x) · δ(l)(x) = 0

for m, l = 0, 1, 2, . . ..

Proof. From Lemma 2.2, we have H(x) · δ(x) = δ(x)/2 and differentiate both
sides to get

δ(x) · δ(x) + H(x) · δ′(x) =
1
2
δ′(x)

which shows that δ2(x) = 0. Similarly we can derive δ(x) · δ′(x) = δ′(x) · δ(x) = 0
by noting that

δ′(x) · δ(x) + δ(x) · δ′(x) = 0,

H(x) · δ′(x) =
1
2
δ′(x),

δ(x) · δ′(x) + H(x) · δ′′(x) =
1
2
δ′′(x).

The theorem obviously follows by induction. ¤

Remark 1 : Li used a different approach [18] to show that δ2(x) = 0 for x ∈ R
by applying the Hilbert transform

φ(z) =
1
πi

∫ +∞

−∞

φ(t)
t− z

dt,

where φ ∈ D(R) and Im z > 0.

From Cauchy’s representation of distribution, we have

(δ2(x), φ(x)) = lim
ε→0+

Re(δ2(z − iε), φ(z))

4
= lim

ε→0+
Re

1
(2πi)2

∮

|z−iε|= ε
2

φ(z)
(z − iε)2

dz.

By Cauchy’s integral formula, we come to

(δ2(x), φ(x)) = lim
ε→0+

Re
1

2πi

φ′(iε)
(2− 1)!

= Re
1

2πi
φ′(0) = 0.

Therefore δ2(x) = 0.
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Remark 2 : Using the normalization, Güttinger [20] obtained the product of
improper operators

δ(r) ·H(x) =
r∑

i=0

biδ
(r−i)(x),

where b0, b1, . . . , br are arbitrary constants. Furthermore, he derived a similar type
of product of δ(m)(x) · δ(l)(x) under certain conditions.

3 The Product x−k
+ · δ(p)(x)

Theorem 3.1 The product x−k
+ · δ(p)(x) exists and

x−k
+ · δ(p)(x) =

(−1)kp!
2(p + k)!

δ(k+p)(x)

for p = 0, 1, 2, . . . and k = 1, 2, . . .. In particular, we have H(x)·δ(p)(x) = δ(p)(x)/2
again by letting k → 0.

Proof. From the Laurent series of xλ
+

xλ
+ =

(−1)k−1

(k − 1)!(λ + k)
δ(k−1)(x) + x−k

+ + (λ + k)x−k
+ ln x+ + · · · ,

we have
δ(p−1)(x) = (−1)p−1(p− 1)! lim

µ→−p
(µ + p) xµ

+.

We define distribution x−k
+ as the regular part of the Laurent expansion of xλ

+

about λ = −k by

x−k
+ = lim

λ→−k

∂

∂λ
[(λ + k)xλ

+].

Hence, we get

x−k
+ · δ(p−1)(x) = (−1)p−1(p− 1)! lim

λ→−k
lim

µ→−p

∂

∂λ

[
(λ + k) (µ + p)xλ+µ

+

]
,

due to the facts xλ
+, xµ

+ and xλ+µ
+ are analytic for λ, µ, λ + µ 6= −1,−2, . . . and

xλ+µ
+ = xλ

+ · xµ
+.

Obviously,

(λ + k) (µ + p) =
1
2
[(λ + k + µ + p)2 − (λ + k)2 − (µ + p)2].
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It follows that

x−k
+ · δ(p−1)(x) =

(−1)p−1(p− 1)!
2

lim
λ→−k

lim
µ→−p

∂

∂λ

[
(λ + k + µ + p)2xλ+µ

+

]

− (−1)p−1(p− 1)!
2

lim
λ→−k

lim
µ→−p

∂

∂λ

[
(λ + k)2xλ+µ

+

]

− (−1)p−1(p− 1)!
2

lim
λ→−k

lim
µ→−p

∂

∂λ

[
(µ + p)2xλ+µ

+

]

= I1 + I2 + I3.

Since

xλ+µ
+ =

(−1)k+p−1

(k + p− 1)! (λ + µ + k + p)
δ(k+p−1)(x) + x−k−p

+ + · · · ,

we have

I1 =
(−1)p−1(p− 1)!

2
lim

λ→−k
lim

µ→−p

∂

∂λ

[
(λ + k + µ + p)2

· (−1)k+p−1

(k + p− 1)! (λ + µ + k + p)
δ(k+p−1)(x) + · · ·

]

=
(−1)k(p− 1)!
2(p + k − 1)!

δ(k+p−1)(x).

As for I2, we arrive at

I2 = − (−1)p−1(p− 1)!
2

lim
λ→−k

lim
µ→−p

∂

∂λ

[
(λ + k)2

· (−1)k+p−1

(k + p− 1)! (λ + µ + k + p)
δ(k+p−1)(x) + · · ·

]

= − (−1)k(p− 1)!
2(p + k − 1)!

δ(k+p−1)(x).

due to the following fact

lim
λ→−k

lim
µ→−p

∂

∂λ

{
(λ + k)2

λ + µ + k + p

}
= 1.

With a very similar argument, we can show that

I3 =
(−1)k(p− 1)!
2(p + k − 1)!

δ(k+p−1)(x).

Replacing p− 1 by p, we complete the proof of Theorem 3.1. ¤

Remark 1 : It is easy to derive the products x−k
− · δ(p)(x) and x−k · δ(p)(x) from

our result, where x−k = x−k
+ + (−1)kx−k

− . We leave them for interested readers.



The Distributional Products by the Laurent Series 313

Remark 2 : One may attempt to construct the following entire function

f(xλ
+) =

{
xλ
+

Γ(λ+1) , λ 6= −1,−2, . . . ,

δ(−λ−1), λ = −1,−2, . . . .

Then

f(xλ
+)f(xµ

+) =
Γ(λ + µ + 1)f(xλ+µ

+ )
Γ(λ + 1)Γ(µ + 1)

,

which can be used to show Theorem 2.1. Indeed, we have

δ(m)(x) · δ(l)(x) = lim
λ→−m−1

xλ
+

Γ(λ + 1)
· lim

µ→−l−1

xµ
+

Γ(µ + 1)

= lim
λ→−m−1

lim
µ→−l−1

xλ
+

Γ(λ + 1)
· xµ

+

Γ(µ + 1)

= lim
λ→−m−1

lim
µ→−l−1

Γ(λ + µ + 1)xλ+µ
+

Γ(µ + 1)Γ(λ + 1)Γ(λ + µ + 1)
= 0,

since

lim
µ→−l−1

1
Γ(µ + 1)

= 0

and the limit of other terms exists by using the formula

Γ(z)
Γ(z − n)

=
(−1)nΓ(−z + n + 1)

Γ(1− z)
.

However, it is impossible to obtain Lemma 2.2 and Theorem 3.1 along the same
line because it does not produce a term xr

+ or x−k
+ at all.

4 The Products r−2m−n · δ(2s)(r) and r−2m · δ(2s)(r)

Theorem 4.1 The product r−2m−n · δ(2s)(r) exists and

r−2m−n · δ(2s)(r) = 0

for s, m = 0, 1, 2, . . . and n = 1, 2, . . ..

Proof. From the Laurent series of rλ

rλ =
a−1

λ + n + 2m
+ a0 + a1(λ + n + 2m) + · · ·

where a−1 =
Ωnδ(2m)(r)

(2m)!
, a0 = Ωnr−2m−n and a1 = Ωnr−2m−n ln r (Ωn is the

hypersurface area of the unit sphere).
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The distribution r−2m−n as the regular part of the Laurent expansion of rλ about
λ = −n− 2m is defined by

r−2m−n =
1

Ωn
lim

λ→−n−2m

∂

∂λ

[
(λ + n + 2m) rλ

]
. (4.1)

Clearly, for s = 0, 1, . . ., we have

δ(2s)(r) =
(2m)!
Ωn

lim
µ→−n−2s

[
(µ + n + 2s) rµ

]
(4.2)

from the the Laurent series of rµ.
It follows that

r−2m−n · δ(2s)(r)

=
(2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

[
(λ + n + 2m) rλ · (µ + n + 2s) rµ

]

=
(2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

[
(λ + n + 2m)(µ + n + 2s) rλ+µ

]
.

Applying the following two identities

(λ + n + 2m)(µ + n + 2s)

=
1
2

{
(λ + µ + n + 2m + n + 2s)2 − (λ + n + 2m)2 − (µ + n + 2s)2

}
,

rλ+µ =
b−1

λ + µ + n + 2m + 2s
+ b0 + b1(λ + µ + n + 2m + 2s) + · · · ,

we come to

r−2m−n · δ(2s)(r)

=
(2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(λ + µ + n + 2m + n + 2s)2

2(λ + µ + n + 2m + 2s)
b−1 + · · ·

}

− (2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(λ + n + 2m)2

2(λ + µ + n + 2m + 2s)
b−1 + · · ·

}

− (2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(µ + n + 2s)2

2(λ + µ + n + 2m + 2s)
b−1 + · · ·

}

= I1 + I2 + I3.

By direct computation, we obtain

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(λ + µ + n + 2m + n + 2s)2

2(λ + µ + n + 2m + 2s)
b−1

}
= 0 (4.3)

and the rest in I1 is zero since there is only one n in the denominators after
taking the partial derivative, which will never vanish after the two limits, while all
numerators disappear.



The Distributional Products by the Laurent Series 315

Similarly, we get I2 = I3 = 0. This completes the proof of theorem 4.1. ¤

Theorem 4.2 The product r−2m · δ(2s)(r) exists and

r−2m · δ(2s)(r) =
(2m)!

2Ωn(2m + 2s)!
δ(2m+2s)(r)

for m, s = 0, 1, 2, . . . and n = 1, 2, . . ..

Proof. By equations (4.1) and (4.2), we have

r−2m · δ(2s)(r) = rnr−2m−n · δ(2s)(r)

=
(2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

rn ∂

∂λ

[
(λ + n + 2m) rλ · (µ + n + 2s) rµ

]

=
(2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

[
(λ + n + 2m)(µ + n + 2s) rλ+µ+n

]
.

Using the following two identities

(λ + n + 2m)(µ + n + 2s)

=
1
2

{
(λ + µ + n + 2m + n + 2s)2 − (λ + n + 2m)2 − (µ + n + 2s)2

}
,

rλ+µ+n =
c−1

λ + µ + n + n + 2m + 2s
+ c0 + c1(λ + µ + n + n + 2m + 2s) + · · · ,

where

c−1 =
Ωnδ(2m+2s)(r)

(2m + 2s)!
and c0 = Ωnr−n−2m−2s.

We infer

r−2m · δ(2s)(r)

=
(2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(λ + µ + n + 2m + n + 2s)2

2(λ + µ + n + n + 2m + 2s)
c−1 + · · ·

}

− (2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(λ + n + 2m)2

2(λ + µ + n + n + 2m + 2s)
c−1 + · · ·

}

− (2m)!
Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(µ + n + 2s)2

2(λ + µ + n + n + 2m + 2s)
c−1 + · · ·

}

= I1 + I2 + I3.

By direct computation, we obtain

(2m)!
2Ω2

n

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(λ + µ + n + 2m + n + 2s)2

(λ + µ + n + 2m + n + 2s)
c−1

}
(4.4)

=
(2m)!
2Ω2

n

c−1
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and the rest in I1 is zero. Notice that there is a 2n term in the denominator of
equation (6), while there is only one n in the denominator of equation (5).

As for I2, we can see that

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(λ + n + 2m)2

λ + µ + n + 2m + n + 2s

}
= 1

which clearly allows us to deduce

I2 = − (2m)!
2Ω2

n

c−1

as the other terms in I2 are zero after the partial derivative and the two limits.

Similarly, we have

lim
λ→−n−2m

lim
µ→−n−2s

∂

∂λ

{
(µ + n + 2s)2

λ + µ + n + 2m + n + 2s

}
= −1

which claims

I3 = − (2m)!
2Ω2

n

(−c−1) =
(2m)!
2Ω2

n

c−1.

This completes the proof of theorem 4.2. ¤

5 The Product x−m
+ · x−l

+

In 2004, Fisher and Taş [19] proved the following theorem by definition 1.1 and
theorem 1.1.

Theorem 5.1 The non-commutative neutrix products of xλ
+ lnp x+ and xµ

+ lnq x+

and of xλ
− lnp x− and xµ

− lnq x− exist and

xλ
+ lnp x+ ◦ xµ

+ lnq x+ = xλ+µ
+ lnp+q x+

xλ
− lnp x− ◦ xµ

− lnq x− = xλ+µ
− lnp+q x−

for λ + µ < −1 and λ, µ, λ + µ 6= −1,−2,−3, · · · .
The key step to show the theorem in their work is to derive

xλ
+ ◦ xµ

+ = xλ+µ
+ (5.1)

for λ + µ < −1 and λ, µ, λ + µ 6= −1,−2,−3, · · · , based on the δ-sequence and
the neutrix limit. However, it seems infeasible to compute the product x−m

+ and
x−l

+ along the same line because of the singularity of x−m
+ and x−l

+ . In this section,
we make use of the Laurent series of xλ+µ

+ to show the following theorem.

Theorem 5.2 The product x−m
+ · x−l

+ exists and x−m
+ · x−l

+ = x−m−l
+ for m, l =

1, 2, . . ..
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Proof. From the definition, we have

x−m
+ = lim

λ→−m

∂

∂λ

[
(λ + m)xλ

+

]
, x−l

+ = lim
µ→−l

∂

∂µ

[
(µ + l)xµ

+

]
.

By equation (7)

x−m
+ · x−l

+ = lim
λ→−m

lim
µ→−l

∂

∂λ

[
∂

∂µ
(λ + m)(µ + l)xλ+µ

+

]
.

Using the Laurent series

xλ+µ
+ =

(−1)m+l−1

(m + l − 1)! (λ + µ + m + l)
δ(m+l−1)(x) + x−m−l

+ + · · · ,

= A−1 + A0 + · · · ,

and the identity

(λ + m) (µ + l) =
1
2
[(λ + m + µ + l)2 − (λ + m)2 − (µ + l)2],

we come to

x−m
+ · x−l

+ = lim
λ→−m

lim
µ→−l

∂

∂λ

[
∂

∂µ
(λ + m)(µ + l)xλ+µ

+

]

=
1
2

lim
λ→−m

lim
µ→−l

∂2

∂λ∂µ

[
(λ + m + µ + l)2(A−1 + A0 + · · · )

]

−1
2

lim
λ→−m

lim
µ→−l

∂2

∂λ∂µ

[
(λ + m)2(A−1 + A0 + · · · )

]

−1
2

lim
λ→−m

lim
µ→−l

∂2

∂λ∂µ

[
(µ + l)2(A−1 + A0 + · · · )

]

= I1 + I2 + I3.

Obviously,

lim
λ→−m

lim
µ→−l

∂2

∂λ∂µ

[
(λ + m + µ + l)2

(−1)m+l−1

(m + l − 1)! (λ + µ + m + l)

]
= 0,

and
1
2

lim
λ→−m

lim
µ→−l

∂2

∂λ∂µ
(λ + m + µ + l)2 = 1.

We can show that
I1 = x−m−l

+ .

With a very similar technique as above, we can reach that

I2 = I3 = 0.
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This completes the proof of theorem 5.2. ¤

To end this paper, we would like to mention that one can derive more natural
products of distribution of one or n variables by following our approach, which is
simpler than the sequential method.
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