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a b s t r a c t

The distribution δ(k)(r − a) concentrated on the sphere Oa with r − a = 0 is defined as

(δ(k)(r − a), φ) =
(−1)k

an−1

∫
Oa

∂k

∂rk
(φrn−1)dσ .

Taking the Fourier transform of the distribution and the integral representation of the
Bessel function, we obtain asymptotic expansions of δ(k)(r −a) for k = 0, 1, 2, . . . in terms
of △

j δ(x1, . . . , xn), in order to show the well-known Pizetti formula by a new method.
Furthermore, we derive an asymptotic product of φ(x1, . . . , xn) δ(k)(r − a), where φ is an
infinitely differentiable function, based on the formula of △m(φψ), and hence we are able
to characterize the distributions focused on spheres, which can be written as the sums of
multiplet layers in the Gel’fand sense.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The sequential method [1] and the complex analysis approach [2], including non-standard analysis [3], have been the
main tools used for dealing with products, powers and convolutions of distributions, such as δ2, which is needed when
calculating the transition rates of certain particle interactions in physics [4]. Fisher (see [5–10], for example) has actively
used the Jones δ-sequence δn(x) = nρ(nx) for n = 1, 2, . . . , where ρ(x) is a fixed infinitely differentiable function on R
with the following properties:
(i) ρ(x) ≥ 0,
(ii) ρ(x) = 0 for |x| ≥ 1,
(iii) ρ(x) = ρ(−x),
(iv)

 1
−1 ρ(x)dx = 1,

and the concept of the neutrix limit of van der Corput [11] to deduce numerous products, powers, convolutions, and
compositions of distributions on R since 1969. The technique of neglecting appropriately defined infinite quantities and
the resulting finite value extracted from the divergent integral is usually referred to as the Hadamard finite part. In fact,
Fisher’s method of computation can be regarded as a particular application of the neutrix calculus. This is a general principle
for the discarding of unwanted infinite quantities from asymptotic expansions and has been exploited in the context of
distributions by Fisher in connection with the problem of distributional multiplication, convolution and composition. To
extend such an approach from the one-dimensional case to the n-dimensional case, Li et al. [12–15] constructed several
workable δ-sequences on Rn for non-commutative neutrix products such as r−k

· ∇δ as well as r−k
· △

l δ, where △ denotes
the Laplacian. Aguirre [16] used the Laurent series expansion of rλ and derived a more general product r−k

· ∇(△l δ) by
calculating the residue of rλ. His approach represents another interesting example of using complex analysis to obtain
products of distributions on Rn.
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The problem of defining products of distributions on a manifold (the unit sphere is a particular example) has been a
serious challenge since Gel’fand [17] introduced generalized functions of special types, such as Pλ

+
and δ(k)(P), where

(δ(k)(P), φ) = (−1)k
∫
P=0

ωk(φ).

Li [18] studied the products f (P)δ(k)(P) and f (P,Q )δ(PQ ) on regularmanifolds along the differential form line. Furthermore,
he used the delta sequence and the convolution given for P = 0 to derive an invariant theorem, that powerfully converts
the products of distributions on manifolds into well defined products of a single variable. Several examples, including the
products of P r

+
(x) and δ(k)(P(x)), are presented using the invariant theorem. Aguirre [19] employed the Taylor expansion of

the distribution δ(k−1)(m2
+P) and gave ameaning to the product δ(k−1)(m2

+P)·δ(l−1)(m2
+P). In [20], Li obtained a regular

product f (r) · δ(k)(r − 1) onΩ (=O1), as well as computing several new products related to δ(x) on even-dimension spaces
by a complex analysis method. Recently, Li [21] applied Pizetti’s formula and a recursive structure of△j(X lφ(x)) to compute
the product X lδ(r − 1). As outlined in the abstract, the goal of this work is to attempt to obtain a generalized product of
φ(x1, . . . , xn)δ(k)(r − a), where φ is an infinitely differentiable function, based on the following formula:

△
k(φψ) =

−
m+i+l=k

2i

m + l
m


k

m + l


∇

i
△

m φ∇
i
△

l ψ.

This enables us to expand every functional f of the form

(f , φ) =

∫
r=a

−
j

aj(x)Djφ(x)dσ

as an infinite expansion in the distributional sense.

2. Pizetti’s formula

We let D(Rn) be the Schwartz space of the testing functions with bounded support in Rn and let r2 =
∑n

i=1 x
2
i . The

distribution δ(r − a) concentrated on the sphere Oa with r − a = 0 is defined as

(δ(r − a), φ) =

∫
Oa

φdσ

where dσ is the Euclidean element on the sphere r − a = 0.
We define Sφ(r) as the mean value of φ(x) ∈ D(Rn) on the sphere of radius r by

Sφ(r) =
1
Ωn

∫
Ω

φ(rσ)dσ

whereΩn = 2π
n
2 /Γ ( n2 ) is the area of the unit sphereΩ (=O1).We canwrite out an asymptotic expression for Sφ(r), namely

Sφ(r) ∼ φ(0)+
1
2!

S ′′

φ(0)r
2
+ · · · +

1
(2k)!

S(2k)φ (0)r2k + · · ·

=

∞−
k=0

△
k φ(0)r2k

2kk!n(n + 2) · · · (n + 2k − 2)
(△ is the Laplacian)

which is the well-known Pizetti formula and it plays an important role in the work of Li et al. [12,22–24]. Recently, it served
as a foundation for building the gravity formula for the algebra (see [25]).

To the authors’ knowledge, Pizetti’s formula has not been proved as a convergent series for φ ∈ D(Rn) since it appeared
in [26]. Now we are going to show that it does converge by using the Fourier transform and the following formula which
can be found in [27]:

Jν(x) =
1

2ν
√
πΓ


ν +

1
2

 ∫ π

0
eix cos θxν sin2ν θdθ. (1)

The Fourier transform of δ(r − a) is defined as

F(δ(r − a)) = (δ(r − a), ei(x,σ )) =

∫
Oa

ei(x,σ )dx.

In spherical coordinates (r = |x| = a, ρ = |σ | and θ is the angle between the x and σ vectors) this becomes

F(δ(r − a)) =

∫
eiaρ cos θan−1 sinn−2 θdθdω

= an−1Ωn−1

∫ π

0
eiaρ cos θ sinn−2 θdθ,

where dω is the element of area on the unit sphere in the (n − 1)-dimensional subspace orthogonal to ρ.
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It is known that the integral on the right-hand side can be expressed in terms of Bessel function by Eq. (1), so we
obtain

NnF(δ(r − a)) = an−1Ωn−1(aρ)1−
1
2 nJ 1

2 (n−2)(aρ)

= Ωn−1a
1
2 nρ1− 1

2 nJ 1
2 (n−2)(aρ)

where

Nn =
21− 1

2 n

Γ
 n−1

2


Γ
 1
2

 and

Jµ(z) =

∞−
k=0

(−1)k(z/2)µ+2k

k!Γ (µ+ k + 1)
.

Therefore,

F(δ(r − a)) = 2π
n
2 an−1

∞−
k=0

(−1)k
 aρ

2

2k
k!Γ

 n
2 + k


in Z′(Rn) = F(D ′(Rn)).

Using the identity in [17]

F(△k δ(x1, . . . , xn)) = (−1)kρ2k

we arrive at

δ(r − a) = 2π
n
2 an−1

∞−
k=0

a2k

22kk!Γ
 n
2 + k

 △
k δ(x1, . . . , xn). (2)

Remark 1. The above formula (2) was first obtained by Aguirre andMarinelli in [24] under the condition of Pizetti’s formula
being a convergent series in the Schwartz space.

It follows from Ref. [16] that

Ωnδ
(2k)(r)
(2k)!

= resλ=−n−2krλ =
Ωn △

k δ(x1, . . . , xn)Γ
 n
2


2kk!2kΓ

 n
2 + k

 ,

which implies

△
k δ(x1, . . . , xn) =

22kk!Γ
 n
2 + k


(2k)!Γ

 n
2

 δ(2k)(r). (3)

Hence

δ(r − a) =
2π

n
2 an−1

Γ
 n
2

 ∞−
k=0

δ(2k)(r)
(2k)!

a2k.

Since

(δ(r − a), φ) =

∫
Oa

φdσ = an−1
∫
Ω

φ(rσ)dσ ,

we come to

Sφ(r) =
1

an−1Ωn
(δ(r − a), φ)

=
1

an−1Ωn


2π

n
2 an−1

Γ
 n
2

 ∞−
k=0

δ(2k)(r)
(2k)!

r2k, φ



=

∞−
k=0

(δ(2k)(r), φ)
(2k)!

r2k =

∞−
k=0

S(2k)φ (0)

(2k)!
r2k

where

S(2k)φ (0) = (δ(2k)(r), φ) =
(2k)!Γ

 n
2


22kk!Γ

 n
2 + k

 △
k φ(0)

from Eq. (3). This completes the proof of Pizetti’s formula as a convergent series in the Schwartz space.
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3. The generalized products on spheres

Following the Aguirre approach, we apply the Fourier transform and the following formula:∫
Oa

δ(k)(r − a)φdx =
(−1)k

an−1

∫
Oa

∂k

∂rk
(φrn−1)dσ

to derive an expansion of δ(k)(r − a), which will be used to study the generalized product of φ(x) and δ(k)(r − a) on spheres
in Rn later on.

The Fourier transform of δ(k)(r − a) is defined as

F(δ(k)(r − a)) = (δ(k)(r − a), ei(x,σ )) =

∫
Oa

δ(k)(r − a)ei(x,σ )dx.

Employing the spherical coordinates of the previous section, we come to

F(δ(k)(r − a)) = (−1)kΩn−1

∫ π

0

∂k

∂rk
(eirρ cos θ rn−1)


r=a

sinn−2 θdθ.

It follows from Eq. (1) that

2
n−2
2

√
πΓ


n − 1
2


ρ1− n

2
∂k

∂rk
(r

n
2 J n−2

2
(rρ))


r=a

=

∫ π

0

∂k

∂rk
(eirρ cos θ rn−1)


r=a

sinn−2 θdθ.

Therefore,

F(δ(k)(r − a)) = (−1)k2
n
2π

n
2 ρ1− n

2
∂k

∂rk
(r

n
2 J n−2

2
(rρ))


r=a
.

Since

z(z − 1) · · · (z − k + 1) =
Γ (z + 1)

Γ (z − k + 1)
,

we can directly compute the factor ∂k

∂rk
(r

n
2 J n−2

2
(rρ))|r=a to obtain

∂k

∂rk
(r

n
2 J n−2

2
(rρ))


r=a

=


2an−1−kρ

n
2 −1

2
n
2

∞−
j=0

(−1)jρ2jΓ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

if k ≤ n − 1,

2an−1−kρ
n
2 −1

2
n
2

∞−
j=⌈

k−n+1
2 ⌉

(−1)jρ2jΓ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

if k > n − 1,

where ⌈x⌉ represents the ceiling number of x; for example ⌈3.5⌉ = 4. This implies

F(δ(k)(r − a)) =


(−1)k2π

n
2 an−1−k

∞−
j=0

(−1)jρ2jΓ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

if k ≤ n − 1,

(−1)k2π
n
2 an−1−k

∞−
j=⌈

k−n+1
2 ⌉

(−1)jρ2jΓ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

if k > n − 1.

Again using the identity in [17]

F(△j δ(x1, . . . , xn)) = (−1)jρ2j

we come to

δ(k)(r − a) =


(−1)k2π

n
2 an−1−k

∞−
j=0

△
j δ(x1, . . . , xn)Γ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

if k ≤ n − 1,

(−1)k2π
n
2 an−1−k

∞−
j=⌈

k−n+1
2 ⌉

△
j δ(x1, . . . , xn)Γ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

if k > n − 1.

In particular, we have for k = 0

δ(r − a) = 2π
n
2 an−1

∞−
j=0

a2j

22jj!Γ
 n
2 + j

 △
j δ(x1, . . . , xn)

which coincides with Eq. (2) in Section 2.
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It follows from Eq. (3) that

δ(k)(r − a) =


(−1)k2π

n
2 an−1−k

Γ
 n
2

 ∞−
j=0

δ(2j)(r)Γ (n + 2j)a2j

(2j)!Γ (n + 2j − k)
if k ≤ n − 1,

(−1)k2π
n
2 an−1−k

Γ
 n
2

 ∞−
j=⌈

k−n+1
2 ⌉

δ(2j)(r)Γ (n + 2j)a2j

(2j)!Γ (n + 2j − k)
if k > n − 1.

Remark 2. The above expansions of δ(k)(r − a) were initially investigated by Aguirre in [28], where he derived several
implicit expressions without the cases k ≤ n − 1 and k > n − 1, but with certain additional conditions on the Gamma
function, such as Γ (n) = ∞ if n ≤ 0.

Clearly, we get from k = 0

δ(r − a) =
2π

n
2 an−1

Γ
 n
2

 ∞−
j=0

δ(2j)(r)
(2j)!

a2j

which is the same result as was obtained in Section 2.
In order to study the generalized product of an infinitely differentiable functionφ(x) and δ(k)(r−a), we need the following

important lemma.

Lemma 3.1. Let φ(x) and ψ(x) be infinitely differentiable functions. Then for k = 0, 1, 2, . . .,

△
k(φψ) =

−
m+i+l=k

2i

m + l
m


k

m + l


∇

i
△

m φ∇
i
△

l ψ (4)

where ∇ = ∂/∂x1 + · · · + ∂/∂xn is the gradient operator.

Proof. Weuse induction to prove the formula. Assume that k = 0; it is clearly true since both sides are equal toφψ . Suppose
it holds for some integer k > 0 and we need to consider the k + 1 case. Obviously,

△
k+1(φψ) =

−
m+i+l=k

2i

m + l
m


k

m + l


△(∇ i

△
m φ∇

i
△

l ψ)

and

△(∇ i
△

m φ∇
i
△

l ψ) = ∇
i
△

m+1 φ∇
i
△

l ψ + ∇
i
△

m φ∇
i
△

l+1 ψ + 2∇ i+1
△

m φ∇
i+1

△
l ψ

△
= I1 + I2 + I3

by simple calculation.
Replacingm + 1 bym, we calculate−

m+i+l=k

2i

m + l
m


k

m + l


I1 =

−
m+i+l=k

2i

m + l
m


k

m + l


∇

i
△

m+1 φ∇
i
△

l ψ

=

−
m+i+l=k+1

2i

m − 1 + l
m − 1


k

m − 1 + l


∇

i
△

m φ∇
i
△

l ψ.

Similarly,−
m+i+l=k

2i

m + l
m


k

m + l


I2 =

−
m+i+l=k

2i

m + l
m


k

m + l


∇

i
△

m φ∇
i
△

l+1 ψ

=

−
m+i+l=k+1

2i

m + l − 1

m


k

m + l − 1


∇

i
△

m φ∇
i
△

l ψ.

As for I3,−
m+i+l=k

2i

m + l
m


k

m + l


I3 =

−
m+i+l=k

2i+1

m + l
m


k

m + l


∇

i+1
△

m φ∇
i+1

△
l ψ

=

−
m+i+l=k+1

2i

m + l
m


k

m + l


∇

i
△

m φ∇
i
△

l ψ.
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By direct calculation,
m − 1 + l
m − 1


k

m − 1 + l


+


m + l − 1

m


k

m + l − 1


+


m + l
m


k

m + l


=


m + l
m


k + 1
m + l


.

This completes the proof of the lemma. �

Theorem 3.1. Let φ(x1, . . . , xn) ∈ C∞(Rn). Then the generalized product φ(x1, . . . , xn) and △
k δ(x1, . . . , xn) exists and

φ(x1, . . . , xn)△k δ(x1, . . . , xn) =

−
m+i+l=k

2i(−1)i

m + l
m


k

m + l


∇

i
△

m φ(0)∇ i
△

l δ(x1, . . . , xn).

Proof. Clearly, φ(x)ψ(x) ∈ D(Rn) if ψ(x) ∈ D(Rn) and φ(x) ∈ C∞(Rn). Hence

(φ(x1, . . . , xn)△k δ(x1, . . . , xn), ψ(x1, . . . , xn)) = (△k δ(x1, . . . , xn), φ(x1, . . . , xn)ψ(x1, . . . , xn))

=

−
m+i+l=k

2i

m + l
m


k

m + l


∇

i
△

m φ(0, . . . , 0)∇ i
△

l ψ(0, . . . , 0).

The result follows from

∇
i
△

l ψ(0, . . . , 0) = (−1)i(∇ i
△

l δ(x1, . . . , xn), ψ(x1, . . . , xn)).

By Eq. (3), we come to

φ(x1, . . . , xn)δ(2k)(r) =
(2k)!Γ

 n
2


22kk!Γ

 n
2 + k

 −
m+i+l=k

2i(−1)i

m + l
m


k

m + l


∇

i
△

m φ(0)∇ i
△

l δ(x1, . . . , xn).

In particular, we have the following products by Theorem 3.1:

Xδ(x1, . . . , xn) = 0,
X△δ(x1, . . . , xn) = −2n∇δ(x1, . . . , xn),
X △

2 δ(x1, . . . , xn) = −4n∇△δ(x1, . . . , xn),
X2

△δ(x1, . . . , xn) = 2nδ(x1, . . . , xn)

where X =
∑n

1 xi = x1 + x2 + · · · + xn.
Furthermore, we have the following generalized products from Theorem 3.1:

φ(x1, . . . , xn)δ(k)(r − a) =



(−1)k2π
n
2 an−1−k

∞−
j=0

φ(x1, . . . , xn)△j δ(x1, . . . , xn)Γ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

= (−1)k2π
n
2 an−1−k

∞−
j=0

Γ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

×

−
m+i+l=j

2i(−1)i

m + l
m


j

m + l


∇

i
△

m φ(0)∇ i
△

l δ(x1, . . . , xn)

if k ≤ n − 1,

(−1)k2π
n
2 an−1−k

∞−
j=⌈

k−n+1
2 ⌉

φ(x1, . . . , xn)△j δ(x1, . . . , xn)Γ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

= (−1)k2π
n
2 an−1−k

∞−
j=⌈

k−n+1
2 ⌉

Γ (n + 2j)a2j

22jj!Γ
 n
2 + j


Γ (n + 2j − k)

×

−
m+i+l=j

2i(−1)i

m + l
m


j

m + l


∇

i
△

m φ(0)∇ i
△

l δ(x1, . . . , xn)

if k > n − 1. �

4. The characterization of multiplet layers

We consider a manifold S given by P(x1, x2, . . . , xn) = 0, where P is an infinitely differentiable function such that

gradP =


∂P
∂x1

,
∂P
∂x2

, . . . ,
∂P
∂xn


≠ 0

on S, which therefore has no singular points.
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Take two functions P(x) and Q (x) such that the P = 0 and Q = 0 hypersurfaces have no singular points. We now assume
that these surfaces fail to intersect and that the PQ = 0 surface also has no singular points. We have the following theorem
from [18].

Theorem 4.1. Let f be an infinitely differentiable function of two variables. Then the product f (P,Q )δ(PQ ) exists and

f (P,Q )δ(PQ ) =
f (0,Q )

Q
δ(P)+

f (P, 0)
P

δ(Q ).

In particular, we get

Pδ(PQ ) = δ(Q ) and Q δ(PQ ) = δ(P),
δ(PQ ) = Q−1δ(P)+ P−1δ(Q ).

If Q is non-vanishing function, we obtain δ(PQ ) = Q−1δ(P) from Q δ(PQ ) = δ(P). Then taking the derivative with respect to P
gives

Q δ′(PQ ) = Q−1δ′(P) implying δ′(PQ ) = Q−2δ′(P).

In a similar way, we have for any k ≥ 0 and Q ≠ 0 that

δ(k)(PQ ) = Q−(k+1)δ(k)(P),

which appeared in [18].
We can easily obtain an infinite expansion for δ(k)((r − a)Q ) since Q−(k+1) is an infinitely differentiable function from the

previous result.
According to Gel’fand, a functional of the form µ(x)δ(k−1)(P), or∫

µ(x)δ(k−1)(P) =

∫
P=0

ωk−1(µφ),

is called a k-fold layer or distribution on the P = 0 hypersurface, where

ωk(φ) =
∂k

∂Pk


φ

∂P/∂xj


dx1 · · · dxj−1dxj+1 · · · dxn.

In particular, a singlet or simple layer (k = 1) is given by

(µ(x)δ(P), φ) =

∫
P=0

µφω =

∫
P=0

ω0(µφ)

while a doublet or double layer (k = 2) is given by

(µδ′(P), φ) =

∫
P=0

ω1(µφ).

The function µ(x) in these expressions is called the density of the corresponding layer.
The definition that we have given would not be consistent if it were to depend on the form in which the P = 0 equation is

written. It is found, however, that the statement that some functional f is a k-fold layer is independent of the form of this equation,
and that if it is transformed from P = 0 to a(x)P = 0, where a(x) is some non-vanishing function, only the expression for µ(x)
will change. This can be seen from the following:

µ(x)δ(k−1)(aP) = µ(x)a(x)δ(k−1)(P) = µ1(x)δ(k−1)(P).

It is well-known that in one dimension every functional concentrated on a point is a linear combination of the delta function and
its derivatives. For n > 1, we have a similar role played by generalized functions, δ(P), δ′(P), . . . , δ(k)(P) (the derivatives of δ(P)
with respect to the argument P). We wish to show that every functional f of the form

(f , φ) =

∫
P=0

−
j

aj(x)Djφ(x)dσ

can be written as the sum of multiplet layers. From the above, we may use any convenient form to specify the P = 0 surface. Let
us assume that we have written it in a way that P(x) is the distance from x to the surface, so that the associated differential form
coincides with the Euclidean element of area of dσ . Then

(f , φ) =

∫
P=0

−
j

aj(x)Djφ(x)ω =

∫
P=0

ω0

−
j

aj(x)Djφ(x)
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=


δ(P),

−
aj(x)Djφ(x)


=

−
j

(−1)j(Djaj(x)δ(P), φ(x))

=

−
j

(−1)j
−

k

ajk(x)δ(k)(P), φ


=

−
k

bk(x)δ(k)(P)φ


,

where

bk(x) =

−
j

(−1)jajk(x).

Hence

f =

−
k

bk(x)δ(k)(P).

In particular, if P = r − a we can obtain the product of bk(x)δ(k)(r − a) since bk(x) ∈ C∞(Rn) from the previous section.
Therefore, we could write out an infinite series for such an f in the distributional sense. �
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