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Abstract: For any Schwartz testing function φ, the distribution δ(k)(r2 − t2)
focused on the sphere Ot of r = t in Rn is defined by

(δ(k)(r2 − t2), φ) =
(−1)k

2tn−1

∫

Ot

(

∂

2r∂r

)k

(φrn−2)dOt,

which is the solution of the wave equation with the initial conditions described
below in a space of odd dimension:

(△−
∂2

∂t2
)u = 0

u(x, 0) = 0,
∂u(x, 0)

∂t
= (−1)k2πk+1δ(x).

We apply the well-known Pizzetti’s formula

Sφ(r) ∼ φ(0) +
1

2!
S′′

φ(0)r2 + · · · +
1

(2k)!
S

(2k)
φ (0)r2k + · · ·

=

∞
∑

k=0

△kφ(0)r2k

2k k!n(n+ 2) · · · (n+ 2k − 2)

to derive an asymptotic expansion for the distribution δ(k)(r2 − t2) and obtain
an asymptotic product for Xs δ(k)(r2 − t2) based on the formula

△k(φψ) =
∑

m+i+l=k

2i

(

m+ l

m

)(

k

m+ l

)

∇i△mφ · ∇i△lψ.

This product should have potential applications in seeking certain solutions for
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the differential equations involving the gradient operator ∇ in distributional
sense.

AMS Subject Classification: 46F10
Key Words: distribution, product, asymptotic expansion, asymptotic prod-
uct, wave equation and Pizzetti’s formula

1. Introduction

The singular function δ(x), which is widely used in physics and mathematics,
was introduced by Dirac in 1920 as follows:

(i) δ(x) = 0 for x 6= 0,

(ii) δ(x) = ∞ for x = 0, and

(iii)

∫ ∞

−∞
δ(x)f(x)dx = f(0).

It is clear to see that the above definition of δ(x) contradicts with the in-
tegral theory in terms of Lebesgue sense, and hence it can not be properly
defined within the framework of classical function theory. In elementary par-
ticle physics, one finds the need to evaluate δ2 when calculating the transition
rates of certain particle interactions [1]. Schwartz [2] established the theory of
distributions by treating singular functions as linearly continuous functionals
on the testing function space whose elements have compact support. Although
they are of great importance to quantum field theory as well as differential
equations, it is difficult to define products, convolutions, and compositions of
distributions in general. The sequential method ([3], [4], [5], [6], [7], [8], [9]
and [10]) and complex analysis approach ([11], [12] and [13]), including non-
standard analysis [14], have been the main tools in dealing with those non-linear
operations of distributions in the space D′(Rn) with many results. However,
little progress has been made towards obtaining asymptotic products for com-
plex distributional multiplications that cannot be carried out by any existing
methods. As outlined in the abstract, we will develop an asymptotic expansion
of the distribution δ(k)(r2 − t2) by Pizzetti’s formula and initiate a move to
obtaining an asymptotic product for Xs δ(k)(r2− t2) that failed to be computed
by other techniques.

To make this paper as self-contained as possible, we start with the concept
of the gradient inner product of two functions and several theorems given in
[15].
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Let φ(x) and ψ(x) be infinitely differentiable functions of n variables. The
gradient inner product φ ·ψ is the operation satisfying the following properties:

(i) ∇jφ · ψ = (∇jφ)ψ;

(ii) φ · ∇jψ = φ(∇jψ);

(iii) ∇jφ · ∇jψ =

n
∑

i=1

∂j

∂xj
i

φ
∂j

∂xj
i

ψ;

where ∇ = ∂/∂x1 + · · · + ∂/∂xn is the gradient operator and j = 0, 1, 2, · · ·
Let X =

∑n
i=1 xi and △ = ∂2/∂x2

1 + · · · + ∂2/∂x2
n . Then it follows from a

simple calculation that

φ · ψ = φψ;

∇X · φ = nφ;

∇X · ∇φ = ∇φ;

∇2X2 · ∇2φ = 2∇2φ;

∇sXs · ∇sφ = s!∇sφ;

△(φ · ψ) = △(φψ) = △φ · ψ + φ · △ψ + 2∇φ · ∇ψ;

△(∇φ · ∇ψ) = ∇△φ · ∇ψ + ∇φ · ∇△ψ + 2∇2φ · ∇2ψ.

for s = 0, 1, · · · .

Lemma 1.1. Let φ(x) and ψ(x) be infinitely differentiable functions. Then

for k = 0, 1, 2, · · ·

△k(φψ) =
∑

m+i+l=k

2i

(

m+ l

m

)(

k

m+ l

)

∇i△mφ · ∇i△lψ (1)

Theorem 1.2. Let φ(x) ∈ C∞(Rn). Then the distributional product φ(x)
and △kδ(x) exists and

φ(x)△kδ(x) =
∑

m+i+l=k

2i(−1)i
(

m+ l

m

)(

k

m+ l

)

∇i△mφ(0) · ∇i△lδ(x). (2)

for k = 0, 1, 2, · · · .

It follows from Theorem 1.2 that

Xδ(x) = 0,
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X△δ(x) = −2∇δ(x),

X△2δ(x) = −4∇△δ(x),

X△kδ(x) = −2k∇△k−1δ(x),

X2△δ(x) = 2nδ(x),

X2△kδ(x) = 2nk△k−1δ(x) + 22k(k − 1)∇2△k−2δ(x),

X3△δ(x) = 0,

X3△kδ(x) = −12nk(k − 1)∇△k−2δ(x) − 23k(k − 1)(k − 2)∇3△k−3δ(x),

for k = 0, 1, 2, · · · .

On the other hand, we can directly use an induction to show that

△k(Xφ) = 2k∇△k−1φ+X△kφ

which also claims that X△kδ(x) = −2k∇△k−1δ(x) in the above. It is obviously
true for k = 0. Assume it holds for the case of k > 0, that is

△k(Xφ) = 2k∇△k−1φ+X△kφ.

Therefor,

△k+1(Xφ) = △△k(Xφ) = △(2k∇△k−1φ+X△kφ)

= 2k∇△kφ+ △(X△kφ)

= 2(k + 1)∇△kφ+X△k+1φ.

Similarly, we can get

△k(X2φ(x))
∣

∣

∣

x=0
= 2nk△k−1φ(0) + 22k(k − 1)∇2△k−2φ(0),

which claims

X2△kδ(x) = 2nk△k−1δ(x) + 22k(k − 1)∇2△k−2δ(x).

However, it seems very difficult or impossible to write out an explicit formula
of the general product Xs△kδ(x), for any positive integer s, by a direct compu-
tation [16]. We shall employ Theorem 1.2 to give a complete proof of Theorem
1.3 to show readers a way of computing the gradient inner products, although
it can be found in [15]. This product plays an important role in obtaining an
asymptotic product for Xs δ(k)(r2 − t2) in the next section.



An asymptotic product for Xsδ(k)(r2 − t2) 69

Theorem 1.3. The distributional product Xs△kδ(x) exists and

Xs△kδ(x) =



























2sk!s!

s/2
∑

j=0

nj∇s−2j△k−s+jδ(x)

22jj!(k − s+ j)!(s − 2j)!
if s is even,

−2sk!s!

⌊s/2⌋
∑

j=0

nj∇s−2j△k−s+jδ(x)

22jj!(k − s+ j)!(s − 2j)!
if s is odd.

where △−p = 0 for any positive integer p and k, s = 0, 1, 2, · · · .

Proof. Assume φ(x) = Xs and s is even. By Theorem 1.2,

φ(x)△kδ(x) =
∑

m+i+l=k

2i(−1)i
(

m+ l

m

)(

k

m+ l

)

∇i△mφ(0) · ∇i△lδ(x).

Note that all non-zero terms in the above sum require 2m+ i = s. So,

φ(x)△kδ(x)

= 2s(−1)s
(

k − s

0

)(

k

k − s

)

∇sφ(0) · ∇s△k−sδ(x) +

2s−2(−1)s−2

(

k − s+ 2

1

)(

k

k − s+ 2

)

∇s−2△φ(0) · ∇s−2△k−s+1δ(x) +

2s−4(−1)s−4

(

k − s+ 4

2

)(

k

k − s+ 4

)

∇s−4△2φ(0) · ∇s−4△k−s+2δ(x) +

· · · +

20(−1)0
(

k − 1

s/2

)(

k

k − 1

)

∇0△s/2φ(0) · ∇0△k−s/2δ(x).

Clearly we have by the gradient inner product

∇sφ(0) · ∇s△k−sδ(x) = s!∇s△k−sδ(x),

∇s−2△φ(0) · ∇s−2△k−s+1δ(x) = ns!∇s−2△k−s+1δ(x),

· · ·

∇0△s/2φ(0) · ∇0△k−s/2δ(x) = ns/2s!∇0△k−s/2δ(x).

Therefore,

φ(x)△kδ(x)
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= 2s k!s!

0!(k − s)!s!
∇s△k−sδ(x) +

2s−2 nk!s!

1!(k − s+ 1)!(s − 2)!
∇s−2△k−s+1δ(x) +

2s−4 n2k!s!

2!(k − s+ 2)!(s − 4)!
∇s−4△k−s+2δ(x) +

· · · +

20 ns/2k!s!

(s/2)!(k − s/2)!0!
∇0△k−s/2δ(x)

= 2sk!s!

s/2
∑

j=0

nj∇s−2j△k−s+jδ(x)

22jj!(k − s+ j)!(s − 2j)!
.

The case that s is odd follows similarly. This completes the proof of the theorem.

Theorem 1.4. Let f(x) ∈ C∞(R). Then the distributional product

f(X)△kδ(x) exists and

f(X)△kδ(x) =
∑

m+i+l=k

2i(−1)i
(

m+ l

m

)(

k

m+ l

)

nmf (2m+i)(0)∇i△lδ(x).

for k = 0, 1, 2, · · · .

Proof. It easily follows from Theorem 1.2.
We define Sφ(r) as the mean value of φ(x) ∈ D(Rn) on the sphere of radius

r by

Sφ(r) =
1

Ωn

∫

Ω
φ(x)dΩ

where Ωn = 2π
n

2 /Γ(n
2 ) is the surface area of unit sphere r = 1 and dΩ is the

hypersurface element on it. We can write out an asymptotic expression for
Sφ(r) (see [17]), namely

Sφ(r) ∼ φ(0) +
1

2!
S′′

φ(0)r2 + · · · +
1

(2k)!
S

(2k)
φ (0)r2k + · · ·

=

∞
∑

k=0

△kφ(0)r2k

2k k!n(n + 2) · · · (n+ 2k − 2)

which is the well-known Pizzetti’s formula and it plays an important role in the
work of Li, Aguirre and Fisher ([8], [9] [10], [18], [19], [20] and [16]). Recently,
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it served as a foundation of building the gravity formula on the algebra (see
[21]).

Remark 1. Pizzetti’s formula is not a convergent series for φ ∈ D(Rn)
from the counterexample below.

φ(x) =

{

exp{− 1
r2(1−r2)

} if 0 < r < 1,

0 otherwise.

Clearly, φ(x) ∈ D(Rn) and Sφ(r) 6= 0 for 0 < r < 1, but the series in the
formula is identically equal to zero. Obviously, Sφ(r) → 0 as r → 0. However,
it converges in the space of analytic functions from reference [22].

Using a slightly different approach from one presented in [22], we will show
that the distribution u = δ(k)(r2 − t2) is the solution of the wave equation with
the initial conditions, given below, in a space of odd dimension for some value k.
Following our method, we will derive an asymptotic expansion for δ(k)(r2 − t2)
in terms of △jδ(x) to obtain an asymptotic product for Xsδ(k)(r2 − t2) .

(△−
∂2

∂t2
)u = 0

u(x, 0) = 0,
∂u(x, 0)

∂t
= (−1)k2πk+1δ(x).

It follows from Gel’fand [22] that

∂

∂xj
δ(k)(P ) =

∂P

∂xj
δ(k+1)(P ),

P δ(P ) = 0,

P δ′(P ) + P δ(P ) = 0,

P δ′′(P ) + 2δ′(P ) = 0,

· · · · · ·

P δ(k)(P ) + k δ(k−1)(P ) = 0,

· · · · · ·

where P is a regular manifold. Therefore,

(r2 − t2) δ(k+2)(r2 − t2) = −(k + 2)δ(k+1)(r2 − t2). (3)

Clearly,

∂

∂xj
δ(k)(r2 − t2) = 2xjδ

(k+1)(r2 − t2),
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∂2

∂x2
j

δ(k)(r2 − t2) = 2δ(k+1)(r2 − t2) + 4x2
jδ

(k+2)(r2 − t2).

So that

n
∑

j=1

∂2

∂x2
j

= 2nδ(k+1)(r2 − t2) + 4(r2 − t2)δ(k+2)(r2 − t2) + 4t2δ(k+2)(r2 − t2)

= (2n − 4(k + 2))δ(k+1)(r2 − t2) + 4t2δ(k+2)(r2 − t2).

using equation (3).
Similarly,

∂2

∂t2j
δ(k)(r2 − t2) = −2δ(k+1)(r2 − t2) + 4t2δ(k+2)(r2 − t2),

which implies

△δ(k)(r2 − t2) −
∂2

∂t2j
δ(k)(r2 − t2) = (2n − 4k − 6)δ(k+1)(r2 − t2).

This disappears when k = (n− 3)/2, so that if n is odd and k = (n− 3)/2, the
distribution δ(k)(r2 − t2) is a solution of the wave equation

(△−
∂2

∂t2
)u = 0.

In particular, δ(r2−t2) is a solution of the above equation if n = 3. Furthermore,
we note that

(δ(k)(r2 − t2), φ) =
(−1)k

2

∫

Ω

[

(

∂

2r∂r

)k

(φrn−2)

]

r=t

dΩ,

which implies that the integrand for n = 2k + 3 becomes

(

∂

2r∂r

)k

(φr2k+1).

Each application of the operator r−1∂/∂r reduces the power of r by two. After
k such operations on φr2k+1, we obtain a sum each of which contains r at least.
We now set r = t and allow t to approach zero, getting

lim
t→0

δ(k)(r2 − t2) = 0.



An asymptotic product for Xsδ(k)(r2 − t2) 73

To show that it satisfies the second initial condition we have

∂δ(k)(r2 − t2)

∂t
= −2tδ(k+1)(r2 − t2),

which yields when applied to φ

2t
(−1)k

2

∫

Ω

[

(

∂

2r∂r

)k+1

(φr2k+1)

]

r=t

dΩ. (4)

On the other hand,
(

∂

2r∂r

)k+1

(Sφ(r)r2k+1) =
1

Ωn

∫

Ω

(

∂

2r∂r

)k+1

(φr2k+1)dΩ.

Obviously,

(

∂

2r∂r

)k+1

(Sφ(r)r2k+1) =

k+1
∑

j=0

(

k + 1

j

)(

∂

2r∂r

)j

Sφ(r)

(

∂

2r∂r

)k+1−j

r2k+1.

Hence equation (4) becomes

t(−1)kΩn

k+1
∑

j=0

(

k + 1

j

)(

∂

2r∂r

)j

Sφ(r)

(

∂

2r∂r

)k+1−j

r2k+1

∣

∣

∣

∣

∣

∣

r=t

and let t approach zero, we get

(−1)k
(2k + 1)!!

2k+1
ΩnSφ(0) = (−1)k

(2k + 1)!!

2k+1
Ωnφ(0)

since only the first term in the sum with j = 0 survives. Clearly,

Ωn =
2π

n

2

Γ(n
2 )

=
2π

2k+3

2

Γ(2k+3
2 )

=
2k+2

(2k + 1)!!
πk+1,

so that we finally come to

∂δ(k)(r2 − t2)

∂t

∣

∣

∣

∣

∣

t=0

= (−1)k2πk+1δ(x),

which completes our proof.
Remark 2. It is clear to see that the distributional product

(r2 − t2) δ(k+2)(r2 − t2) = −(k + 2)δ(k+1)(r2 − t2)

plays a key role in obtaining the solution of the wave equation with the initial
conditions.
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2. An Asymptotic Product

For a testing function φ ∈ D(Rn), the distribution δ(r − t) is defined by

(δ(r − t), φ) =
1

tn−1

∫

Ot

φrn−1dOt.

It follows from reference [15] that

δ(r − t) ∼ 2π
n

2 tn−1
∞
∑

k=0

t2k△kδ(x)

22k k! Γ(n
2 + k)

, (5)

which is equivalent to the well-known Pizzetti’s formula. In particular, we
obtain an asymptotic expression

δ(r − 1) ∼ 2π
n

2

∞
∑

k=0

△kδ(x)

22k k! Γ(n
2 + k)

. (6)

From equation (5), we can write out

δ(r − t) ∼ Ωnt
n−1δ(x) +

Ωn t
n+1

2n
△δ(x) +

Ωnt
n+3

4n(2n+ 4)
△2δ(x) + · · ·

+
2π

n

2 tn−1+2k

22k k! Γ(n
2 + k)

△kδ(x) + · · · .

It follows from reference [12] that

Ωn δ
(2k)(r)

(2k)!
= resλ=−n−2k r

λ =
Ωn △

kδ(x) Γ(n
2 )

2k k! 2k Γ(n
2 + k)

,

which implies

△kδ(x) =
22k k! Γ(n

2 + k)

(2k)! Γ(n
2 )

δ(2k)(r). (7)

So that

δ(r − t) ∼ Ωnt
n−1

∞
∑

k=0

t2k

(2k)!
δ(2k)(r)

= Ωnt
n−1δ(r) +

Ωnt
n+1

2!
δ(2)(r) +

Ωnt
n+3

4!
δ(4)(r) + · · · .
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Note that δ(r) = δ(x), since

(δ(r), φ(x)) = Sφ(0) = φ(0) = (δ(x), φ(x)).

It follows from Theorem 1.2 and equation (7) that

φ(x) δ(2k)(r)

=
(2k)! Γ(n

2 )

22k k! Γ(n
2 + k)

∑

m+i+l=k

2i(−1)i
(

m+ l

m

)(

k

m+ l

)

∇i△mφ(0) · ∇i△lδ(x).

for any φ(x) ∈ C∞(Rn) and k = 0, 1, 2, · · · .
In particular, we have for k = 0 that

φ(x) δ(r) = φ(0)δ(x).

Assume that n is even and k ≤ (n− 2)/2. Then

(

∂

2r∂r

)k

rn−2+2j

=
1

2k
(n− 2 + 2j)(n − 2 + 2j − 2) · · · (n− 2 + 2j − 2k + 2)rn−2+2j−2k

for any nonnegative integer k. If k = 0, we define

(n− 2 + 2j)(n − 2 + 2j − 2) · · · (n+ 2j − 2k) = 1.

Clearly,

(δ(k)(r2 − t2), φ) =
(−1)k

2

∫

Ω

[

(

∂

2r∂r

)k

(φrn−2)

]

r=t

dΩ

=
(−1)kΩn

2

(

∂

2r∂r

)k

(Sφ(r)rn−2)

∣

∣

∣

∣

∣

r=t

.

From

Sφ(r) ∼ φ(0) +
1

2!
S′′

φ(0)r2 + · · · +
1

(2j)!
S

(2j)
φ (0)r2j + · · ·

=

∞
∑

j=0

△jφ(0)r2j

2j j!n(n + 2) · · · (n+ 2j − 2)
,

we get

(δ(k)(r2 − t2), φ)
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∼
(−1)kΩnt

n−2−2k

2k+1

∞
∑

j=0

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j j!n(n + 2) · · · (n+ 2j − 2)
(△jδ(x), φ),

which implies

δ(k)(r2 − t2) ∼
(−1)kΩnt

n−2−2k

2k+1

∞
∑

j=0

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j j!n(n + 2) · · · (n+ 2j − 2)
△jδ(x).

In particular, we have for n ≥ 2

δ(r2 − t2) ∼
Ωnt

n−1

2t

∞
∑

j=0

t2j △jδ(x)

2j j!n(n + 2) · · · (n+ 2j − 2)

=
Ωnt

n−1

2t
δ(x) +

Ωnt
n+1

4nt
△δ(x) +

Ωnt
n+3

8n(2n + 4)t
△2δ(x) + · · ·

∼
1

2t
δ(r − t)

by the previous calculation. Similarly,

δ′(r2 − t2) ∼ −
Ωnt

n−4

4

∞
∑

j=0

(n− 2 + 2j) t2j △jδ(x)

2j j!n(n + 2) · · · (n+ 2j − 2)

= −
Ωn(n − 2)tn−4

4
δ(x) −

Ωnt
n−2

8
△δ(x) −

Ωnt
n

32n
△2δ(x) + · · · ,

for even n ≥ 4, and

δ′′(r2 − t2) ∼
Ωnt

n−6

8

∞
∑

j=0

(n − 2 + 2j)(n + 2j − 4) t2j △jδ(x)

2j j!n(n + 2) · · · (n+ 2j − 2)

=
Ωn(n− 2)(n − 4)tn−6

8
δ(x) +

Ωn(n− 2)tn−4

16
△δ(x) + · · · ,

for even n ≥ 6.

Next, we assume that k > (n− 2)/2 and n is still even. Then

δ(k)(r2−t2) ∼
(−1)kΩnt

n−2−2k

2k+1

∞
∑

j= 2k−n+2

2

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j j!n(n + 2) · · · (n+ 2j − 2)
△jδ(x)

by following the above calculation.
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In particular for k = 1 and n = 2, we have

δ′(r2 − t2) ∼ −
Ω2t

−2

4

∞
∑

j=1

2j t2j△jδ(x)

2j j!2 · 4 · · · · 2j

= −
Ω2

8
△δ(x) −

Ω2t
2

64
△2δ(x) − · · · ,

and for k = 2 and n = 2, we get

δ′′(r2 − t2) ∼
Ω2t

−4

8

∞
∑

j=2

2j(2j − 2) t2j△jδ(x)

2j j!2 · 4 · · · · 2j

=
Ω2

64
△2δ(x) +

Ω2t
2

768
△3δ(x) + · · · .

In summary, we come to

Theorem 2.1. The following asymptotic expansions hold in a space of

even dimension and for k ≤ (n− 2)/2,

δ(k)(r2 − t2)

∼
(−1)kΩnt

n−2−2k

2k+1

∞
∑

j=0

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j j!n(n + 2) · · · (n+ 2j − 2)
△jδ(x),

and for k > (n− 2)/2

δ(k)(r2 − t2)

∼
(−1)kΩnt

n−2−2k

2k+1

∞
∑

j= 2k−n+2

2

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j j!n(n + 2) · · · (n+ 2j − 2)
△jδ(x).

Note that the case that n is odd can follow similarly and we leave it to
interested readers.

Remark 3. Aguirre and Marinelli [23] investigated the series expansion of
δ(k)(r2 − t2) using Pizzetti’s formula and the Gamma functions. However, their
expansion may involve Γ(x) for x < 0 if k is large, which is undefined in the
normal sense.

Theorem 2.2. The asymptotic products Xsδ(k)(r2 − t2) exists in a space

of even dimension n and for k ≤ (n− 2)/2 and s is even,

Xsδ(k)(r2 − t2)
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∼
(−1)kΩnt

n−2−2k

2k+1

∞
∑

j=0

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j j!n(n + 2) · · · (n+ 2j − 2)
Xs△jδ(x)

=
(−1)kΩns!t

n−2−2k

2k−s+1

∞
∑

j=0

s/2
∑

i=0

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j n(n+ 2) · · · (n + 2j − 2)

·
ni∇s−2i△j−s+iδ(x)

22ii!(j − s+ i)!(s − 2i)!
,

and for k > (n− 2)/2 and s is odd,

Xsδ(k)(r2 − t2)

∼
(−1)kΩnt

n−2−2k

2k+1

∞
∑

j= 2k−n+2

2

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j j!n(n + 2) · · · (n+ 2j − 2)
Xs△jδ(x)

=
(−1)k+1Ωns!t

n−2−2k

2k−s+1

∞
∑

j= 2k−n+2

2

⌊s/2⌋
∑

i=0

(n− 2 + 2j) · · · (n+ 2j − 2k) t2j

2j n(n+ 2) · · · (n+ 2j − 2)

·
ni∇s−2i△j−s+iδ(x)

22ii!(j − s+ i)!(s − 2i)!
.

Proof. It easily follows from Theorems 2.1 and 1.3.
In particular, we have

Xδ(r2 − t2) ∼ −
Ωnt

n

2n
∇δ(x) −

Ωnt
n+2

2n(2n + 4)
∇△δ(x) − · · · , for even n ≥ 2,

Xδ′(r2 − t2) ∼
Ωnt

n−2

4
∇δ(x) +

Ωnt
n

8n
∇△δ(x) + · · · , for even n ≥ 4.

To end this paper, we must add that the asymptotic product Xsδ(k)(r2 − t2)
should have potential applications in seeking certain solutions for the differen-
tial equations involving the gradient operator ∇ in distributional sense. For
example, we know that

∂

∂xj
δ(r2 − t2) = 2xjδ

′(r2 − t2),

which implies ∇δ(r2−t2) = 2Xδ′(r2−t2). This product, of course, can be solved
approximately using Theorem 2.2. Generally speaking, the factor ∇sδ(r2 − t2)
will produce many terms containing the productsXiδ(j)(r2−t2) for some values
of i and j, which may appear in certain types of differential equations.
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[7] B. Fisher, K. Taş, The convolution of functions and distributions, J. Math.

Anal. Appl., 306 (2005), 364-374.

[8] C.K. Li, B. Fisher, Examples of the neutrix product of distributions on
Rm, Rad. Mat., 6 (1990), 129-137.

[9] C.K. Li, The product of r−k and ∇δ, Internat. J. Math. Math. Sci., 24
(2000), 361-369.

[10] C.K. Li, A review on the products of distributions, In: Mathematical Meth-

ods in Engineering, Springer (2007), 71-96.

[11] J.H. Bremermann, Distributions, Complex Variables, and Fourier Trans-

forms, Addison-Wesley, Reading, Massachusetts (1965).

[12] M.A. Aguirre, A convolution product of (2j)-th derivative of Diracs delta
in r and multiplicative distributional product between r−k and ∇(△jδ),
Internat. J. Math. Math. Sci., 13 (2003), 789-799.

[13] C.K. Li, The products on the unit sphere and even-dimension spaces, J.

Math. Anal. Appl., 305 (2005), 97-106.

[14] B.H. Li, Non-standard analysis and multiplication of distributions, Sci.

Sinica, 21 (1978), 561-585.



80 C.K. Li

[15] C.K. Li, Several asymptotic products of distributions on unit spheres, Sub-

mitted.

[16] C.K. Li, Several products of distributions on manifolds, Novi Sad J. Math.,
39 (2009), 31-46.

[17] R. Courant, D. Hilbert, Methods of Mathematical Physics, Volume II, In-
terscience New York (1962).

[18] L.Z. Cheng, C.K. Li, A commutative neutrix product of distributions on
Rm, Math. Nachr., 151 (1991), 345-356.

[19] C.K. Li, An approach for distributional products on Rm, Integral Trans-

forms Spec. Funct., 16 (2005), 139-151.

[20] C.K. Li, M.A. Aguirre, The distributional products on spheres and
Pizzetti’s formula, J. Comput. Appl. Math., 235 (2011), 1482-1489.

[21] A.H. Cook, The external gravity field of a rotating spheroid to the order
of e3, Geophysical Journal International, 2 (2007), 199-214.

[22] I.M. Gel’fand, G.E. Shilov, Generalized Functions, Volume I, Academic
Press (1964).

[23] M.A. Aguirre T., C. Marinelli, The series expansion of δ(k)(r − c), Math.

Notae, 35 (1991), 53-61.


