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Abstract

We let p(r) be a fixed infinitely differentiable function of r = (22 +
...+ 22 )1/? gatisfying the properties (i) p > 0, (ii) p(r) =0, r > 1,
(iii) fgm p(r)dx = 1. The function 8,(x), with x in R™, is then
defined by 8,(x) = n™p(nr) for n = 1,2,... . The product fog of
two distributions f and g is then defined to be the neutrix limit of the:
sequence {fgn}, where gn = g » §,. Some results are given.
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1. Introduction

The product g¢ of an infinitely differentiable function ¢ and a test function
¢ in the space D of infinitely differentiable functions with compact support
is itself in D. This leads to the following definition fg = gf of a distribution
f in D’ and an infinitely differentiable function g.
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136 _B. Fisher, L. C. Kuan
Definition 1. Let f be a distribution in D’ and let g be an infinitely differ-
entiable function. The product fg = gf is defined by

(fga¢) = (gfa¢) = (fvg¢)
for all ¢ in D.

It follows easily by induction that we then have

£ (il

=0

s s!
(z’) T -

This suggests the following definition for the product of two distributions,
see [2].

fors =1,2,..., where

Definition 2. Let f and g be distributions in D’ for which on the interval
(a,bd) f is the s-th derivative of a locally summable function F in LP(a,bd)
and ¢'*) is a locally summable function in L(a,b) with 1/p+1/q=1. Then
the product fg = gf is defined by

fo=gf = 2()( 1) [Fg®]“7.

Now let p be a fixed infinitely differentiable function with the properties:
(a) p(z) =0, |2| 2 1,
(b) p(z) 2 0,
(c) p(z) = p(-2),
(@) / p(z)dz = 1.
The functlon 6., is defined by 6,.(z) = np(nz) for n =1,2,.... It is obvious

that {4} is a sequence of infinitely differentiable functlons converging to
the Dirac delta-function 6.

For an arbitrary distribution ¢ in D’ the function gn is defined by

9n(z) = (g % 8,)(2) = (g(z — 1), 6a(2)).
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It follows that {g,} is a sequence of infinitely differentiable functions con-
verging to g.

The next definition for the neutrix product fog of two dlstnbutions f
and g in D’ generalizes Definition 2 and was given in [4].

Definition 3. Let f and g be distributions in D’ and let g, = g+ 6,. We
say that the neutriz product f o g of f and g erists and is equal to h on the
interval (a,b) if

for all test functions ¢ in D with support conteined in the interval (a,b),
where N is the neutriz, see van der Corput [1], Aaving domain N' = {1,2,.

...} and range N"” the real m;mbers with negligible functions finite lmear

sums of the functions
a‘ln™ln, In"m

for A > 0 and r = 1,2,... and all functions which converge to zero in the
normal sense as n tends to infinity.

Note that if
nl_i_r’%o(fgn» ¢) = (h’ ¢)
for all ¢ in D, we simply say that the product f o g exists and equals h, see
(3)-
The following two theorems hold, see [3] and [4].

Theorem 1. Let f and g be distributions in D', If the product fg ezists on
the interval (a,b) then the products (and so the neutriz products) f o g and
go [ exist and

fog=gof=fg

on this interval.

Theorem 2. Let f and g be distributions in D' and suppose that the neutriz

products fog and fog' (or f'og) exist on the interval (a,b). Then the
neutriz product f' o g (or f o g') ezists and

(fog) =fog+ foyg

on this interval.
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In the following, we now give a definition for the neutrix product fog
of two distributions f and g in D), the space of distributions defined on
the space D,, of infinitely differentiable functions of x = (z1,...,2,,) with
compact support.

2. The function 6,(x) in Dy,

We first of all generalize the infinitely differentiable function p defined above.
From now on we let p(r), where

r=(z3+...+22)?

be a fixed function which is infinitely differentiable with respect to r and
with respect to z,,...,z, having the properties:

(i) p(r) 20,
(i) p(ry =0, r > 1,
iii dx.
Gid) [ p(r)ex
Property (iii) is represented in spherical polar coordinates by
1
(iv) Qm/ p(r)yr™ldr =1,
where Q,, is the surface area of the unit sphere in R™.

The function

| keMC*-D ) p

where

k1l = / el/(rz—l) dx
is an example of a function satisfying the above conditions.
We now define the function §,(x), with x in R™, by
bn(x) = n™p(nr)

for n = 1,2,... . It is obvious that {4, } is a sequence of infinitely differen-
tiable functions converging to é in the sense that

Jim (6a(x), $(x)) = {6x), 8(x)) = (0)



k

A non-comutative neutrix product of distributions on R™ 139

for all functions ¢ in D,,.

Note that we can not only consider §,(x) as an infinitely differentiable
function of the variables z,,...,2, but also as an infinitely differentiable
function of the variable r, which is very useful in calculating the product of
distributions in D.,.

For an arbitrary distribution g in D/, the function g, is defined by

9a(X) = (g + 8,)(x) = (g(x — t), 6a(t))-
It again follows that {g,} is a sequence of infinitely differentiable functions

converging to g.

3. The definition of the product in D],

The following definition was introduced by Gel’fand and Shilov in [5] as a
natural extension of Definition 1.

Definition 4. Let f be a distribution in D}, and let g be an infinitely dif-
ferentiable function of x. The product fg = gf is defined by

(f9,9) = (gf,0) = (f,99)
for all ¢ in Dy, .

We denote the partial derivative with respect to the vanable z; by D;.
D; is defined in the obvious way on D/, by

(Dif,8) = —={f, Di¢)

for all ¢ in Dy,. It then follows by induction that if
8= (S15-+-98m)y, 1= (81,--4,%m),

(-1} = (~1)at-+im DE = Dy ... Dl

0)=6)-() 5-5-L
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we have .
s\. ‘o i :
(Dsf)g = Z (i) (—1)1D8 l(fDlg)
i=0
for any differentiable function g and s;,...,8, =0,1,2,....

This suggests the following generalization of Definition 2.,

Definition 5. Let f and g be distributions in D), for which on the interval
(a,b), where a = (@1,...,ay) and b = (b1,...,b,), f = D®F where F
is a locally summable function in LP(a,b) and D®¢g is a locally summable
function in L9(a,b) with 1/p+1/q = 1. Then the product fg = gf is defined
by

fo=9f=3 (1) (=1)'D*(F(D'g).
i=0

The next definition is a generalization of Definition 3.

Definition 6. Let f and g be distributions in D), and let g, = g * 6,. We
say that the neutriz product f o g of f and g ezists and is equal to h on the
interval (a,b) if

N—lim (/gn,6) = (h,9)

for all ¢ in D,, with support contained in the interval (a,b).

Note that if
nlﬂgo(fgna¢) = (h’ ¢)
for all ¢, we again simply say that the product f o g exists and equals h.

The proofs of Theorems 1 and 2 can be modified to give the following
two theorems.

Theorem 3. Let f and g be distributions in D],. If the product fg ezists
on the interval (a,b) then the products (and so the neutriz products) fog
and g o [ exist and

fog=gof=fg

on this interval.
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Theorem 4. Let f and g be distributions in D., and suppose that the neu-
triz products fog and fo Dig (or D;fog) ezist on the interval (a,b). Then
the neutriz product D;f o g (or f o D;g) exists and

Di(fog)=D;fog+ foD;g

on this interval.

4. Some results

Theorem 5. The neutriz products §(x) o r=% and r=* 0 §(x) ezist for k =
1,2,...,m—1 and

(1) 6(x)orF =0,
fork=12,.... m—1, -
(2) =% 0 §(x) = 0,

fork=1,2,...,[3m] and

Ak§(x)
2%km(m +2)...(m+2k-2)

(3) r %0 6(x) =
fork=1,2,... ,[%m — 1), where A denotes the Laplace operator.

Proof. We note that r—* is a locally summable function on R™ for
k=1,2,...,m—1 and so on putting

(r'k)n =r*46,

we have

(B, 6()) = 9(0) [ r*en(x) dx
, R™
= n"™¢0) /Rm r~*p(nr) dx
1/n
= n"‘quS(O)'[) rmk=1p(nr)dr

= n*Q,.4(0) / Lgmek-ly) gy
4}
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on changing to spherical polar coordinates, see GelI'fand and Shilov (5], and
then putting nr = t. It follows that

N—1lim (§(x)(r~*)n, $(x)) = 0 = (0, $(x))

for arbitrary ¢ in D,, and equation (1) follows.

Next we have

(r~Fbn(x), #(x))

n™ ./R"' r~Ep(nr)e(x) dx

1/n
= "0, / ™= =1 p(nr)Sg(r) dr
0

on changing to spherical polar coordinates, where S4(r) is the mean value
of ¢ on the sphere 22 + ... + 22, = r2, see [5).

By Taylor’s theorem we have

= IS“’(O) 580y sEEr) L.,

*) Se(r) = L~ St
where 0 < £ < 1. Hence
-1 ¢()
( k&,,(x) ¢(x)) =n™Q,, Z S¢ (0) A m+i-k-1p(nr) dr+
i=0

A" 53(0) (1/n mQ_ i
+.._—_(2/ rm=1p(nr)dr + — (k+ 1)'/ "m/’(m‘)sgk“)(&) dr

=1 +1;+ Is.

On making the substitution nr =t we have

k-1 k—;S(') 0
=0,y e © / gmH=k=1 500y 4t
1=0
and so
N-limI; = 0.
Similarly

(k) g0k
I = __S_ﬂ/ t™1p(t)dt = ¢k!(0)
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on using (iv) and so

s%o
N—limlgt ] ( )

n—o0 k!
Finally, on putting
My = max{'SiHl)(r)l tr2> 0}

we have on again putting nr =¢

My, [
< — m
and so
N-lim I3 =0.
n—oo

It follows that
5$9(0)
k!

N —lim(r~%6,(x), $(x)) =
n—o00
for arbitrary ¢ in Dy,.
On using the following equations given in [5]
@h-1)0) o s@g) = . (CRNA*H(x), 4(x))
S (0)=0, $7(0) = 2%klm(m + 2)...(m + 2k — 2)

for k = 1,2,..., equations (2) and (3) follow. This completes the proof of
the theorem. O

Theorem 8. The neutriz product r—* o §(x) erists and

Ss®
(r* 0 6(x), $(x)) = ¢k!(0)

fork=m,m+1,... and ardbitrary ¢ in D,,.

Proof. Since r~* is not locally summable on R™ for k = m,m +1,...,

it was normalized by Gel’fand and Shilov [5] using the following equation

(rF,¢(x)) = Qm./o pm—k-1 [5¢(r)— Z ——S¢i'(0)r'
. =0 )
580

-—(m')TH(l - T)Tk—m dr,
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where H denotes Heaviside’s function. Using Definition 4 we therefore have
(r=*6a(x), #(x) = (r™*, 62 (x)$(x)) =

. k—-m-1 S(') S(k‘"‘)
= Qm./(; pm—k-1 [S¢n(1') Z "( ) (k"— nf;)!)H(l—

1=0
k—m Un ke S (t)(o)
—r) r-m] dr = 9,,./0 r Sy (r) - ; 2 2r| dr
k=-m-1 Lo S(')(O) 1 S(k‘"‘)(o)
_ ¥n m4i—k=1 g ¥n -1 g4y —
Qn g /1/n—i! r dr Qm[/n_(k_m)!r dr
=14 —1Is ~ Ig,
where .
‘ 1pﬂ(x) = 6n(x)¢(x) = n"‘p(nr)q&(x)
and so
Sya(r) = n™ p(n7)S4(r),
(5) S0 =y ( )nﬂpmw)s"‘”(m
=0
fori=0,1,2....

Using equation (4) again we have

1/n k-1 S(i) 0) . S(") 0
1'4 = Qm/ T'm—k—l {nmp(nr) [z ¢.( )Tg + ( ) k+
0

= k!
S(k+1) k-m S(')
(k+1)! = T
1/n k-1 S(')(O) k-m S(')( 0)
_ Yo\ m+t—k 1 _ m+t-—k—
_Qm/(; [n p(nr Z% '20 A dr+
+I+ I3 =

=0

1| ’()
=0, A t)z ¢ - (t/ )m+t—-k 1
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k—m (')( )

-3 w..

1=0

o ~(t/n )"‘*"" Ndt+ L+ 1=

=h+5L+13
on making the substitution nr = ¢. On using equation (5) it follows that

N-liml7 =0
n=—>00
and as above
. 54)(0) .
N-lim Iz = 3 N-~lim I3 =0.
n—rod k! =00
Thus
5°(0)
Nﬂ:lgom 14 = ] .

Next we have

k-m-1 S(‘)(o)
-0, ¥n o ¥n  kem—i
Z‘; Am+i-k)

and on using equation (5) it follows that

N-lim[; = 0.
N~—=00
Finally we have
Ig = —————(k - Inn
and again on using equation (5) it follows that
N-limZg = 0.

n—00
We have therefore proved that

S4(0)

N —lim(r=*8,(x), $(x)) =

and the result of the theorem follows.
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REZIME

O NEKOMUTATIVNOM NEUTRIKS PROIZVODU
DISTRIBUCIJA NA R™

U radu se definiSe nekomutativni proizvod distribucija u R™ pomoéu fiksir-
ane beskonaéno diferencijabilne radijalne funkcije p: R™ — R, p = p(r) =
p((22 + 2 + ... + 22,)%) i pojma neutriksa iz (1]. Pored osnovnih osobina,
eksplicitno se izraéunava proizvod r~* o é(z).
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