A COMMUTATIVE NEUTRIX CONVOLUTION PRODUCT OF DISTRIBUTIONS

Brian Fisher
Department of Mathematics, The University, Leicester, LE1 7RH, England

Li Chen Kuan
Department of Basic Course, Jiangsu Agricultural College, Yangzhou, Jiangsu Province, People's Republic of China

Abstract

Let f and g be distributions in \mathcal{D}' and let

$$f_n(x) = f(x) * \eta_n(x), \quad g_n(x) = g(x) * \eta_n(x)$$

where $\eta_n(x)$ is a certain function which converges to the identity func as n tends to infinity. Then the neutrix convolution product $f \ast g$ is defined as the neutrix limit of the sequence $\{f_n * g_n\}$, provided the limit λ exists in the sense that

$$N = \lim_{n \to \infty} (f_n * g_n, \phi) = (\lambda, \phi)$$

for all $\phi \in \mathcal{D}$. The neutrix convolution products $x^\lambda \ast x^\mu$, for $\lambda, \mu \geq 0$, $\mu \neq 0$, $\pm 1, \pm 2, \ldots$ and $x^\mu \ast x^\mu$, for $\lambda \neq 0$, $\pm 1, \pm 2, \ldots$ and $s = 0, 1, 2, \ldots$ are evaluated, from which other neutrix convolution products are deduced.

AMS Mathematics Subject Classifications (1991): 46F10

Key words and phrases: neutrix convolution, distribution

The classical definition for the convolution product of two functions f and g is as follows:
Definition 1. Let \(f \) and \(g \) be functions. Then the convolution product \(f \ast g \) is defined by

\[
(f \ast g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt
\]

for all points \(x \) for which the integral exists.

It follows easily from the definition that if \(f \ast g \) exists then \(g \ast f \) exists and

\[
(f \ast g)(x) = g \ast f
\]

and if \((f \ast g)' \) and \(f \ast g' \) (or \(f' \ast g \)) exist, then

\[
(f \ast g)' = f \ast g' \quad \text{(or} \quad f' \ast g)
\]

The following theorem also holds and it is an immediate consequence of Hölder's inequality for integrals.

Theorem 1. Let \(f \) and \(g \) be functions in \(L^p(-\infty, \infty) \) and \(L^q(-\infty, \infty) \) respectively, where \(1/p + 1/q = 1 \). Then the convolution product \((f \ast g)(x) \) exists for all \(x \).

Now, suppose that the convolution product \((f \ast g)(x) \) exists for all \(x \) and let \(\phi \) be an arbitrary test function in the space \(\mathcal{D} \) of infinitely differentiable functions with compact support. Then

\[
\langle (f \ast g)(x), \phi(x) \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)g(x-t)\phi(x-y)dtdy
\]

and for convenience we will write this as

\[
\langle (f \ast g)(x), \phi(x) \rangle = \langle f(y), (g(x), \phi(x+y)) \rangle
\]

even though the infinitely differentiable function \((g(x), \phi(x+y)) \) does not necessarily have compact support. This equation does however suggest the following definition for the convolution product of certain distributions \(f \) and \(g \) in \(\mathcal{D}' \), see for example Gel'fand and Shilov [4].

Definition 2. Let \(f \) and \(g \) be distributions in \(\mathcal{D}' \) satisfying either of the following conditions:
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

Then the convolution product $f * g$ is defined by

$$(f * g)(x), \phi = \langle f(y), (g(x), \phi(x + y)) \rangle$$

for arbitrary ϕ in D.

Note that with this definition, if g has bounded support, then $(g(x), \phi(x + y))$ is in D and so $(f(y), (g(x), \phi(x + y)))$ is meaningful. If on the other hand either f has bounded support or the supports of f and g are bounded on the same side, then the intersection of the supports of f and $(g(x), \phi(x + y))$ is bounded and so $(f(y), (g(x), \phi(x + y)))$ is again meaningful.

It follows that if the convolution product $f * g$ exists by Definition 2, then equations (1) and (2) always hold.

Definition 1 and 2 are very restrictive and can only be used for a small class of distributions. In order to extend the convolution product to a larger class of distributions, Jones [5] gave the following definition.

Definition 3. Let f and g be distributions and let τ be an infinitely differentiable function satisfying the following conditions:

(i) $\tau(x) = \tau(-x)$,
(ii) $0 \leq \tau(x) \leq 1$,
(iii) $\tau(x) = 1$ for $|x| \leq 1/2$,
(iv) $\tau(x) = 0$ for $|x| \geq 1$.

Let

$$f_n(x) = f(x)\tau(x/n), \quad g_n(x) = g(x)\tau(x/n)$$

for $n = 1, 2, \ldots$. Then the convolution product $f * g$ is defined as the limit of the sequence $(f_n * g_n)$, provided the limit h exists in the sense that

$$\lim_{n \to \infty} (f_n * g_n, \phi) = \langle h, \phi \rangle$$

for all test functions ϕ in D.

In this definition the convolution product $f_n * g_n$ exists by Definition 2 since f_n and g_n have bounded supports. It follows that if the limit of the
sequence \(\{f_n \ast g_n\} \) exists, so that the convolution product \(f \ast g \) exists, then \(g \ast f \) also exists and equation (1) holds. However equation (2) need not necessarily hold since \(\text{sign} \) proved that

\[
1 \ast \text{sign} = \text{sign} \ast 1 = x,
\]

\[
(1 \ast \text{sign})' = 1, \quad 1' \ast \text{sign} = 0, \quad 1 \ast (\text{sign})' = 2.
\]

It can be proved that if a convolution product exists by Definitions 1 and 2 then it exists by Definition 3 and defines the same distribution.

However, there were still many convolution products which did not exist by Definition 3 and in order to try and remedy this the next definition was introduced in [2].

Definition 4. Let \(f \) and \(g \) be distributions and let

\[
\tau_{\alpha}(x) = \begin{cases}
1, & |x| \leq n, \\
\tau(n^n x - n^{n+1}), & z > n, \\
\tau(n^n x + n^{n+1}), & x < -n,
\end{cases}
\]

for \(n = 1, 2, \ldots \), where \(\tau \) is defined as in Definition 3. Let \(f_n(x) = f(x)\tau_{\alpha}(x) \) for \(n = 1, 2, \ldots \). Then the neutrix convolution product \(f \ast g \) is defined as the neutrix limit of the sequence \(\{f_n \ast g\} \), provided the limit \(h \) exists in the sense that

\[
N - \lim_{\alpha \to 0} (f_n \ast g, \phi) = (h, \phi)
\]

for all \(\phi \) in \(D \), where \(N \) is the neutrix, see van der Corput [1]; having domain \(N' = \{1, 2, \ldots, n, \ldots\} \) and range the real numbers with negligible functions finite linear sums of the functions

\[
n^k \ln^{k-1} n, \quad n^k, \quad (\lambda)0, \quad (\lambda)1, \quad (\lambda)2, \ldots
\]

and all functions \(\epsilon(n) \) for which \(\lim_{n \to \infty} \epsilon(n) = 0 \).

The convolution product \(f \ast g \) in this definition is again in the sense of Definition 2, the support of \(f_n \) being contained in the interval \([-n - n', n + n']\). It can be proved that if a convolution product exists by Definitions 1 or 2 then the neutrix convolution product exists and defines the same distribution.
However, the neutrix convolution product as defined in Definition 4 is in general non-commutative. For example, it was proved in [2] that

$$x_+ \circ x_- = \frac{1}{6} x^2_+ \quad \text{and} \quad x_- \circ x_+ = \frac{1}{6} x^2_-,$$

so that

$$x_+ \circ x_- \neq x_- \circ x_+.$$

In the following, we now consider a commutative neutrix convolution product. We will denote the commutative neutrix convolution product of the distributions f and g by $f \boxplus g$ to distinguish it from the non-commutative neutrix convolution product.

Definition 5. Let f and g be distributions and let τ_n be defined as in Definition 4. Let $f_n(x) = f(x)\tau_n(x)$ and $g_n(x)\tau_n(x)$ for $n = 1, 2, \ldots$. Then the commutative neutrix convolution product $f \boxplus g$ is defined as the neutrix limit of the sequence $\{f_n \ast g_n\}$, provided the limit h exists in the sense that

$$N - \lim_{n \to \infty} (f_n \ast g_n, \phi) = (h, \phi)$$

for all ϕ in D, where N is the neutrix defined above.

The convolution product $f_n \ast g_n$ in this definition is again in the sense of Definition 2 and since $f_n \ast g_n = g_n \ast f_n$, the neutrix convolution product $f \boxplus g$ is clearly commutative.

The next theorem shows that this definition generalizes Definition 1.

Theorem 2. Let f and g be functions in $L^p(-\infty, \infty)$ and $L^q(-\infty, \infty)$ respectively, where $1/p + 1/q = 1$, so that the convolution product $f \ast g$ exists by Definition 1. Then the neutrix convolution product $f \boxplus g$ exists and

$$f \boxplus g = f \ast g.$$

Proof. For arbitrary $\epsilon > 0$ we have

$$|f \ast g - f_n \ast g_n| = \left| \int_{-\infty}^{\infty} f(t)g(x-t)\tau(t)\tau_n(x-t)dt \right|$$

$$\leq \int_{-\infty}^{\infty} |f(t)||g(x-t)|\tau(t)\tau_n(x-t)dt$$

$$+ \int_{-\infty}^{\infty} |f_n(t)||g(x-t)|\tau(t)\tau_n(x-t)dt$$

$$\leq \int_{|t| < \epsilon} |f(t)||g(x-t)|dt + \int_{|t| \geq \epsilon} |f_n(t)||g(x-t)|dt$$

$$= \int_{|t| < \epsilon} |f(t)||g(x-t)|dt + \int_{|t| \geq \epsilon} |f_n(t)||g(t)||\tau_n(x-t)dt.$$
for all n greater than some n_0. Thus if ϕ is an arbitrary function in D then

$$|\langle f \ast g, \phi \rangle - \langle f_n \ast g_n, \phi \rangle| \leq \sup \{|\phi(x)|\}.$$

for $n > n_0$ and it follows that

$$\lim_{n \to \infty} \langle f_n \ast g_n, \phi \rangle = \langle f \ast g, \phi \rangle = N - \lim_{n \to \infty} \langle f_n \ast g_n, \phi \rangle.$$

The result of the theorem follows.

The next theorem shows that Definition 5 also generalizes Definition 2.

Theorem 2. Let f and g be distributions satisfying either condition (a) or condition (b) of Definition 2 so that the convolution product $f \ast g$ exists by Definition 2. Then the neutra convolution product $f \circ g$ exists and $f \circ g = f \ast g$.

Proof. Suppose first of all that the support of g is bounded so that $g = g_n$ for some n greater than some n_0. Then with $n > n_0$ and arbitrary ϕ in D

$$\langle f_n \ast g_n, \phi \rangle = \langle f_n, (y), (g(x), \phi(x + y)) \rangle$$

$$= \langle f_n, (y), (g(x), \phi(x + y)) \rangle$$

for large enough n, since the support of $(g(x), \phi(x + y))$ is bounded. It follows that

$$\lim_{n \to \infty} \langle f_n \ast g_n, \phi \rangle = \langle f(y), (g(x), \phi(x + y)) \rangle$$

$$= N - \lim_{n \to \infty} \langle f_n \ast g_n, \phi \rangle$$

and the result of the theorem follows when the support of g is bounded. Now suppose that the support of f is bounded. Then the result of the theorem follows as above on noting that $f_n \ast g_n = g_n \ast f_n$.

Finally, suppose that the supports of f and g are bounded on the same side, say on the left, so that the supports of f and g are contained in some half-bounded intervals $[a, \infty)$ and $[b, \infty)$ respectively. Now let ϕ be an arbitrary function in D with its support contained in the bounded interval $[c, d]$. Then since $g(x) = 0$ if $x < b$,

$$\psi(y) = \langle g_n(x), \phi(x + y) \rangle = \langle g(x), \phi(x + y) \rangle = 0$$
if $y > d - b$. Further, since $f(y) = 0$ if $y < a$, it follows that the intersection of the supports of ϕ and f are contained in the interval $[a, d - b]$ if $d - b > a$ and is the empty set otherwise. Thus

$$\langle f \ast g, \phi \rangle = \langle f \ast g, \phi \rangle$$

for $n > \max\{|a|, |d - b|\}$ and the result of the theorem follows as above for this third case.

Theorem 4. The neutrix convolution product $x_\ast \omega \ast x_\ast \omega$ exists and

$$\begin{align*}
\omega &\ast x_\ast \omega = B(-\lambda - \mu - 1, \mu + 1) x_{\lambda + \mu + 1} \\
&= B(-\lambda - \mu - 1, \lambda + 1) x_{\lambda + \mu + 1}
\end{align*}$$

for $\lambda, \mu, \lambda + \mu \neq 0$, $\pm 1, \pm 2, \ldots$, where B denotes the Beta function.

Proof. We will first of all suppose that $\lambda, \mu > 1$, so that x_{λ} and x_{μ} are locally summable functions. Put

$$(x_{\lambda})_n = x_{\lambda} \tau_n(x), \quad (x_{\mu})_n = x_{\mu} \tau_n(x).$$

Then the convolution product $(x_{\lambda})_n \ast (x_{\mu})_n$ exists by Definition 2 and

$$\begin{align*}
(x_{\lambda})_n \ast (x_{\mu})_n &= \left((x_{\lambda})_n \ast (x_{\mu})_n, \phi(x + y)\right) \\
&= \int_0^{+\infty} (-y)^\lambda \rho_n(y) \int_0^{+\infty} (x - y)^\mu \rho_n(x - y) dy dx + \\
&+ \int_0^{+\infty} \rho_n(x) \int_0^{+\infty} (-y)^\lambda \rho_n(y) (x - y)^\mu \rho_n(x - y) dy dx + \\
&\quad + \int_0^{+\infty} \rho_n(x) \int_0^{+\infty} (-y)^\lambda \rho_n(y) (x - y)^\mu \rho_n(x - y) dy dx
\end{align*}$$

for $n > -a$ and arbitrary ϕ in D with support of ϕ contained in the interval $[a, b]$.

When $x < 0$ and $-n \leq y \leq 0$, $\tau_n(x - y) = 1$ on the support of ϕ. Thus

$$\begin{align*}
\int_0^{+\infty} (-y)^\lambda (x - y)^\mu \rho_n(x - y) dy &= \int_0^{+\infty} (-y)^\lambda (x - y)^\mu \rho_n(x - y) dy \\
&= (-x)^{\lambda + \mu + 1} \int_0^{+\infty} u^{\lambda + \mu + 1} (1 - u)^n du \\
&= (-x)^{\lambda + \mu + 1} \int_0^{+\infty} u^{\lambda + \mu + 2} (1 - u) du - \frac{1}{n!} \int_0^{+\infty} \frac{1}{u} \int_0^{+\infty} (-y)^\lambda (x - y)^\mu \rho_n(x - y) dy du.
\end{align*}$$
\[+z(-x)^{s+\mu+1} \sum_{r=0}^{s} \binom{s}{r} \frac{(-1)^r (\mu)_r}{r!} (-x/n)^{\lambda+r-1}, \]

for some integer \(r > \lambda + \mu + 1 \), where

\[\lambda_s = \begin{cases} 1, & s = 0, \\ \frac{1}{x^n} \prod_{i=0}^{s-1} (\lambda - i), & s \geq 1. \end{cases} \]

It follows that

\[N = \lim_{n \to \infty} \int_{-x}^{0} (-y)^{\lambda} (x-y)^n \tau_n(x-y) dy = \]

\[= B(-\lambda - \mu - 1, x + 1)(-x)^{\lambda+\mu+1}, \]

see [3] or Gel'fand and Shilov [4].

When \(x > 0 \) and \(-n \leq y \leq 0\), we have

\[\int_{-n}^{0} (-y)^{\lambda} (x-y)^n \tau_n(x-y) dy = \int_{-n}^{0} (-y)^{\lambda} (x-y)^n dy + \int_{-n}^{0} (-y)^{\lambda} (x-y)^n \tau_n(x-y) dy \]

\[\text{(6)} \]

\[= \int_{-n}^{0} (-y)^{\lambda} (x-y)^n \tau_n(x-y) dy \]

On making the substitution \(y = x(1 - u^{-1}) \), we have

\[\int_{-n}^{0} (-y)^{\lambda} (x-y)^n dy = x^{\lambda+n+1} \int_{1/n}^{1} u^{-\lambda-\mu-2} (1 - u)^{\lambda+1} du \]

and it follows as above that

\[N = \lim_{n \to \infty} \int_{-n}^{0} (-y)^{\lambda} (x-y)^n dy = B(-\lambda - \mu - 1, \lambda + 1)x^{\lambda+\mu+1}. \]

Further, with \(n \geq 2x \)

\[\left| \int_{-n}^{0} (-y)^{\lambda} (x-y)^n \tau_n(x-y) dy \right| \leq \int_{-n}^{0} (y-x)^{\lambda} y^n dy \]

\[= \int_{n}^{\infty} y^{\lambda+n+1} (1-x/y)^n dy \]
\[
\begin{align*}
\lambda &> 0, \\
-1(\lambda < 0),
\end{align*}
\]
and so
\[
(\text{6}) \quad \lim_{n \to \infty} \int_{x=-a}^{x=-b} (-y)^{\lambda} \tau_n(x-y) dy = 0.
\]

It now follows from equations (6), (7) and (8) that
\[
(\text{9}) \quad N - \lim_{n \to \infty} \int_{x=-a}^{x=-b} (-y)^{\lambda} \tau_n(x-y) dy = B(-\lambda - \mu - 1, \lambda + 1) x^{\lambda+\mu+1}.
\]

Next, with \(\frac{1}{2} n < a \leq x \leq b < \frac{1}{2} n \), we have
\[
\int_{x=-a}^{x=-b} (-y)^{\lambda} \tau_n(y)(x-y) dy \leq \int_{x=-a}^{x=-b} (-y)^{\lambda+n}(1-x/y)^{\mu} dy
\]
\[
\leq \begin{cases}
2^{\mu}(n + n^{-n})^{\lambda+n+1} & \mu > 0, \\
2^{-\mu}(n + n^{-n})^{\lambda+n+1} & -1 < \mu < 0
\end{cases}
\]
and so
\[
\lim_{n \to \infty} \int_{x=-a}^{x=-b} (-y)^{\lambda} \tau_n(y)(x-y)^{\mu} dy = 0.
\]

It now follows from equations (4), (5), (9), and (10) that
\[
N - \lim_{n \to \infty} \langle (x^+)_n \ast (x^+_\phi)_n \rangle = \langle B(-\lambda - \mu - 1, \mu + 1) x^{\lambda+\mu+1} + B(-\lambda - \mu - 1, \mu + 1) x^{\lambda+\mu+1}, \phi(x) \rangle
\]
and equation (3) follows for \(\lambda, \mu, \lambda + \mu + 1 \neq 0, 1, 2, \ldots \).

Now assume that equation (3) holds for \(\mu > -1, -k < \lambda < -k + 1 \) and \(\mu, \lambda + \mu + k \neq 0, 1, 2, \ldots \) where \(k \) is some positive integer. This is certainly true when \(k = 1 \). The convolution product \((x^+_\phi)_n \ast (x^+_\phi)_n\) exists by Definition 2 and so equations (2) hold. Thus if \(\phi \) is an arbitrary function in \(D \) with support contained in the interval \([a, b]\), where we may suppose that
\[
(a < 0 < b),
\]
\[
\langle (x^+)_n \ast (x^+_\phi)_n \rangle = -\langle (x^+)_n \ast (x^+_\phi)_n \rangle.
\]
\[= -\lambda((x_n^{-1})_n \ast (x_n^+)_n, \phi(x)) + (x_n^{-1} - x_n^+)_n, \phi(x) \]

and so

\[-\lambda((x_n^{-1})_n \ast (x_n^+)_n, \phi(x)) = (x_n^{-1})_n \ast (x_n^+)_n, \phi(x) + (x_n^{-1} - x_n^+)_n, \phi(x). \]

The support of \(x_n^{-1}r_n(x) \) is contained in the interval \([-n - n^{-a}, n]\) and so with \(n > -a > n^{-a} \), it follows as above that

\[
(x_n^{-1}r_n(x) \ast (x_n^+)_n, \phi(x)) = \int_{-n}^{n} \phi(x) \int_{-n-n^{-a}}^{-n} (-y)^\alpha r_n(x-y)^\alpha r_n(x-y)dydx
\]

\[= \int_{-n}^{-n^{-a}} \phi(x) \int_{-n-n^{-a}}^{-n} (-y)^\alpha r_n(y)(x-y)^\alpha r_n(x-y)dydx + \int_{-n^{-a}}^{n} \phi(x) \int_{-n-n^{-a}}^{-n} (-y)^\alpha r_n(y)(x-y)^\alpha r_n(x-y)dydx, \]

where on the domain of integration \((-y)^\alpha\) and \((x-y)^\alpha\) are locally summable functions.

Putting \(M = \sup(\{|r_n(x)|\phi(x)|\}) \), we have

\[
| \int_{-n}^{-n^{-a}} \phi(x) \int_{-n-n^{-a}}^{-n} (-y)^\alpha r_n(y)(x-y)^\alpha r_n(x-y)dydx |
\]

\[\leq Mn^{-a} \int_{-n-n^{-a}}^{-n} (-y)^\alpha r_n(y)(1 - y/x)^\alpha r_n(x-y)dydx \]

\[\leq \begin{cases} 2^{1-\alpha}M(n + n^{-a})^{\alpha + n^{-a}} & \text{if } \alpha > 0, \\ 2^{1-\alpha}M(n + n^{-a})^{\alpha + n^{-a}} & \text{if } \alpha < 0. \end{cases} \]

and it follows that

\[
\lim_{n \to \infty} \int_{-n}^{-n^{-a}} \phi(x) \int_{-n-n^{-a}}^{-n} (-y)^\alpha r_n(y)(x-y)^\alpha r_n(x-y)dydx = 0.
\]

Integrating by parts, we have

\[
\int_{-n}^{-n^{-a}} (-y)^\alpha r_n(y)(x-y)^\alpha dy = n^\alpha(x + n)^\alpha
\]
Choosing a positive integer \(r \) greater than \(\lambda + \mu \), we see that

\[
n^\lambda (x + n)^\mu = n^{\lambda + \mu} \sum_{i=0}^{r} \left(\frac{\mu}{i!n^i} \right) x^i + o(1/n)
\]

and so

\[
\int_{a}^{\infty} n^\lambda (x + n)^\mu \phi(x)dx = n^{\lambda + \mu} \sum_{i=0}^{r} \left(\frac{\mu}{i!n^i} \right) \int_{a}^{\infty} x^i \phi(x)dx + o(1/n)
\]

where

\[
\lim_{n \to \infty} o(1/n) \int_{a}^{\infty} \phi(x)dx = 0.
\]

Putting

\[
\int x^i \phi(x)dx = \chi_i(x),
\]

for \(i = 0, 1, 2, \ldots, r \), we have

\[
\chi_i(x) = \chi_i(0) + x \chi_i'(\xi_i x),
\]

where \(0 \leq \xi_i \leq 1 \) and so

\[
\int_{a}^{\infty} x^i \phi(x)dx = \chi_i(0) - n^{-\mu} \chi_i'(\xi_i n^{-\mu}) - \chi_i(0)
\]

for \(i = 0, 1, 2, \ldots, r \).

Thus

\[
N - \lim_{n \to \infty} n^{\lambda + \mu} \sum_{i=0}^{r} \left(\frac{\mu}{i!n^i} \right) \int_{a}^{\infty} x^i \phi(x)dx = N - \lim_{n \to \infty} n^{\lambda + \mu} \sum_{i=0}^{r} \left(\frac{\mu}{i!n^i} \right) [\chi_i(0) - \chi_i(0)]
\]
\[
\lim_{n \to \infty} n^{4+\mu-\eta} \sum_{i=0}^{\infty} \chi_i (-\xi n^{-\eta}) = 0,
\]

since \(\lambda + \mu\) is not an integer and so from equations (14) and (15) we have

\[
N - \lim_{n \to \infty} \int_0^{N^n} n^\Delta (x + n)^\Delta \phi(x) dx = 0.
\]

It now follows from equations (11), (12), (13) and (16) that

\[
N - \lim_{n \to \infty} \gamma \left((x_j^k, x_k^j) \right) = N - \lim_{n \to \infty} \left((x_j^k, x_k^j) \right) = (x_j^k, x_k^j),
\]

by our assumption. This proves that the neutrix product \(x_j^k \star \text{Ber}_o^2\) exists and

\[
x_j^k \star \text{Ber}_o^2 = \frac{(x_j^k)^{2 \tau}}{\lambda} = B(-\lambda - \mu, \mu + 1) x_j^k + B(-\lambda - \mu, \lambda) x_j^k.
\]

Equation (3) now follows by induction for \(\mu \geq 0, 1, 2, \ldots\) and \(\lambda, \lambda + \mu \neq 0, \pm 1, \pm 2, \ldots\)

Finally assume that equation (3) holds for \(-k(\mu - k + 1) + \lambda, \lambda + \mu \neq 0, \pm 1, \pm 2, \ldots\). This is certainly true when \(k = 1\). Then since

\[
(x_j^k, x_k^j) = (x_j^k, x_j^k),
\]

an argument similar to that given above shows us that equation (3) follows by induction for \(\lambda, \mu, \lambda + \mu + 1 \neq 0, \pm 1, \pm 2, \ldots\). This completes the proof of the theorem.

\[\square\]

Theorem 5. The neutrix convolution product \(x_j^k \star \text{Ber}_o^2\) exists and

\[
x_j^k \star \text{Ber}_o^2 = \frac{(-1)^{\eta} B(\lambda + 1, s + 1) x_j^k}{\lambda + \mu + 1}.
\]

for \(\lambda \neq 0, \pm 1, \pm 2, \ldots\) and \(s = 0, 1, 2, \ldots\)

Proof. The proof of equation (17) is exactly the same as the proof of equation (3), restricting \(\mu\) to the values \(\mu = s = 0, 1, 2, \ldots\) and noting that

\[
B(-\lambda - s - 1, s + 1) = (-1)^{s+1} B(\lambda + 1, s + 1)
\]

and

\[
B(-\lambda - s - 1, \lambda + 1) = 0.
\]
Corollary 1. The neutrix convolution product \(x_+^s \mathcal{N}x_+^t \) exists and

\[
x_+^s \mathcal{N}x_+^t = (-1)^{s+1} B(\lambda + 1, s + 1) x_+^{\lambda + s + 1}
\]

for \(\lambda \neq 0, \pm 1, \pm 2, \ldots \) and \(s = 0, 1, 2, \ldots \).

Proof. The corollary follows immediately on replacing \(x \) by \(-x\) in equation (17).

Corollary 2. The neutrix convolution product \(x_+^s \mathcal{N}x_+^t \) exists and

\[
x_+^s \mathcal{N}x_+^t = 0
\]

for \(\lambda \neq 0, \pm 1, \pm 2, \ldots \) and \(s = 0, 1, 2, \ldots \).

Proof. The convolution product \(x_+^s \ast x_+^t \) exists by Definition 2 and

\[
x_+^s \ast x_+^t = B(\lambda + 1, s + 1) x_+^{\lambda + s + 1},
\]

see [2]. Equation (19) now follows immediately from equation (17) on noting that \(x^t = x_+^t + (-1)^t x_-^t \) and that the neutrix convolution product is clearly distributive with respect to addition.

Corollary 3. The neutrix convolution product \(x_+^s \mathcal{N}x_-^t \) exists and

\[
x_+^s \mathcal{N}x_-^t = 0,
\]

for \(\lambda \neq 0, \pm 1, \pm 2, \ldots \) and \(s = 0, 1, 2, \ldots \).

Proof. The result follows immediately on replacing \(x \) by \(-x\) in equation (19).

Theorem 6. The neutrix convolution product \(x_-^r \mathcal{N}x_+^s \) exists and

\[
x_-^r \mathcal{N}x_+^s = -B(r + 1, s + 1) [-1]^s x_+^{r+s+1} + (-1)^s x_-^{r+s+1}
\]

for \(r, s = 0, 1, 2, \ldots \).
Proof. Equations (4), (5), (8) and (10) still hold with \(\lambda = r \) and \(\mu = s \) but
\(B(\lambda, \mu) \) with \(\lambda \) a negative integer is defined as in [3], where it was proved that:

\[
B(-n, m) = (-1)^m B(m, n - m + 1)
\]

for \(m = 1, 2, \ldots, n \) and \(n = 1, 2, \ldots \). Thus equation (5) becomes

\[
N - \lim_{n \to \infty} \int_{-n}^{0} (-y)^r (x-y) y \tau_n(x-y) dy = (-1)^{r+1} B(r+1, s+1)(-x)^{r+s+1}
\]

and equation (8) becomes

\[
N - \lim_{n \to \infty} \int_{-n}^{0} (-y)^r (x-y) \tau_n(x-y) dy = (-1)^{r+1} B(r+1, s+1)(-z)^{r+s+1}.
\]

Equation (21) now follows as above.

Corollary 4. The neutrion convolution product \(z^n \otimes x^r \) exists and

\[
x^r \otimes z^n = (-1)^{r+1} B(r+1, s+1) x^{n+s+1}
\]

for \(r, s = 0, 1, 2, \ldots \).

Proof. Equation (20) holds with \(\lambda = r \) and equation (22) then follows from equations (20) and (21).

Corollary 5. The neutrion convolution product \(x^r \otimes z^n \) exists and

\[
x^r \otimes z^n = (-1)^{r+1} B(r+1, s+1) z^{n+s+1}
\]

for \(r, s = 0, 1, 2, \ldots \).

Proof. Equation (23) follows immediately on replacing \(x \) by \(-x \) in equation (22).

Corollary 6. The neutrion convolution product \(x^r \otimes z^n \) exists and

\[
x^r \otimes z^n = - B(r+1, s+1) [x^{n+s+1} + (-1)^{r+s} z^{n+s+1}]
\]

for \(r, s = 0, 1, 2, \ldots \).
Proof. Equation (24) follows immediately from equations (22) and (23).

The distributions $|x|^{\lambda}$ and $\text{sgn} x \cdot |x|^{\lambda}$ are defined by

$$|x|^{\lambda} = x_+^{\lambda} + x_-^{\lambda}, \quad \text{sgn} x \cdot |x|^{\lambda} = x_+^{\lambda} - x_-^{\lambda}.$$

It follows that further neutrix convolution products such as

$$x_+^{\lambda} \mu(x)^{\mu}, \quad x_-^{\lambda} \mu(x)^{\mu}(\text{sgn} x \cdot |x|^{\mu}),$$

$$(\text{sgn} x \cdot |x|^{\lambda}) \mu(x)^{\mu}, \quad |x| \mu(x)^{\mu}, \quad |x|^{\lambda} \mu(x)^{\mu}$$

exist for $\lambda, \mu, \lambda + \mu \neq -1, -2, \ldots$.

References

REZIME

KOMUTATIVNA NEUTRIKS KONVOLUCIJA DISTRIBUCIJA

U ovom radu je uvedena komutativna konvolucija koja je jednaka jedinici na intervalu $[-\frac{1}{2}, \frac{1}{2}]$. Pokušano je da je dobijena konvolucija stvarno uopštena uobičajene konvolucije u (L^1, L^1) kao i konvolucije distribucija u smislu Gel'fand-a Silova.