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SEVERAL PRODUCTS OF DISTRIBUTIONS ON
MANIFOLDS

C. K. Li1

Abstract. The problem of defining products of distributions on man-
ifolds, particularly un the ones of lower dimension, has been a serious
challenge since Gel’fand introduced special types of generalized functions,
which are needed in quantum field. In this paper, we start with Pizetti’s
formula and an introduction on differential forms and distributions defined
on manifolds, and then apply Pizetti’s formula and a recursive structure of
4j(Xlφ(x)) to compute the asymptotic product Xlδ(r−1). Furthermore,
we study the product

f(P1, · · · , Pk)
∂|α|δ(P1, · · · , Pk)

∂P α1
1 · · · ∂P

αk
k

on smooth manifolds of lower dimension, which extends a few results ob-
tained earlier. Several generalized functions, such as δ(QP1, · · · , QPk)
and δ(Q1P1, · · · , QkPk), are derived based on the transformation of dif-
ferential form ω.
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1. Pizetti’s formula and differential forms

The simplest example of a generalized function concentrated on a manifold
of dimension less than n is one defined by

(f, φ) =
∫

S

f(x)φ(x)dσ,

where S is the given manifold, dσ is the induced measure on S, f(x) is a fixed
function, and φ ∈ D(Rn).

As an example, let us consider the distribution δ(r−a), where r2 =
∑n

i=1 x2
i

and a > 0. The equation r − a = 0 defines the sphere Oa of radius a. We have

(δ(r − a), φ) =
∫

Oa

φdOa.

where dOa is the Euclidean element on the sphere r − a = 0.
1Department of Mathematics and Computer Science, Brandon University, Brandon, Man-

itoba, Canada R7A 6A9, e-mail: lic@brandonu.ca



32 C. K. Li

To make this paper as self-contained as possible, we begin to state Pizetti’s
formula and briefly introduce differential forms in the following, which are ex-
tremely helpful in defining distributions on manifolds in an invariant way. Please
refer to reference [1] for detail.

Assume dσ is the Euclidean area on the unit sphere Ω (= O1)in Rn, and
Sφ(r) is the mean value of φ(x) ∈ D(Rn) on the sphere of radius r, defined by

Sφ(r) =
1

Ωn

∫

Ω

φ(rσ)dσ

where Ωn = 2π
n
2 /Γ(n

2 ) is the hypersurface area of Ω. We can write out an
asymptotic expression for Sφ(r)(see [11] ), namely

Sφ(r) ∼ φ(0) +
1
2!

S′′φ(0)r2 + · · ·+ 1
(2k)!

S
(2k)
φ (0)r2k + · · ·

=
∞∑

k=0

4kφ(0)r2k

2k k!n(n + 2) · · · (n + 2k − 2)
(4 is the Laplacian)

which is the well-known Pizetti’s formula and it plays an important role in the
work of Li, Aguirre and Fisher [2-10].

Remark: Pizetti’s formula is not a convergent series for φ ∈ D(Rn) from the
counterexample below.

φ(x) =
{

exp{− 1
r2(1−r2)} if 0 < r < 1,

0 otherwise.

Clearly, φ(x) ∈ D(Rn) and Sφ(r) 6= 0 for 0 < r < 1, but the series in the
formula is identically equal to zero. Obviously, Sφ(r) → 0 as r → 0. However,
it converges in spaces of analytic functions from the reference [1].

A differential form of kth degree on an n-dimensional manifold with coordi-
nates x1, x2, · · · , xn is an expression of the form

∑
ai1i2···ik

(x)dxi1dxi2 · · · dxik
,

where the sum is taken over all possible combinations of k indices. The coef-
ficients ai1i2···ik

(x) are assumed to be infinitely differentiable functions of the
coordinates. Two forms of degree k are considered equal if they are transformed
into each other when products of differentials are transposed according to the
anti-commutation rule

dxidxj = −dxjdxi

and all similar terms are collected.

This rule implies that if a term in a differential form has two differentials
with the same index, it must be zero. It can be used to write any differential
form into canonical form, in which the indices in each term appear in increasing
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order. Clearly, the anti-commutation rule holds for any differential forms of first
degree. Indeed, let α =

∑
aj(x)dxj and β =

∑
bk(x)dxk; then

αβ =
∑

j,k

aj(x)bk(x)dxjdxk = −
∑

j,k

aj(x)bk(x)dxkdxj = −βα.

Let us find how differential forms transform under an infinitely differentiable
change of coordinates given by xi = xi(x′1, x

′
2, · · · , x′n). We have

dxi =
n∑

j=1

∂xi

∂x′j
dx′j

and
∑

i1<···<ik

ai1···ik
dxi1 · · · dxik

=
∑

i1<···<ik

∑

j

ai1···ik

∂xi1

∂x′j1
· · · ∂xik

∂x′jk

dx′j1 · · · dx′jk
.

In the sum we have obtained, the terms in which the same differential occurs
twice will vanish. Different terms containing the same combination of differen-
tials can be combined using the anti-commutation rule, which holds also for the
dx′j . Then it follows that for j1 < j2 < · · · < jk, the coefficient of dx′j1 · · · dx′jk

is multiplied by the Jacobian

D

(
xi1 xi2 · · · xik

x′j1 x′j2 · · · x′jk

)
.

We thus arrive at
∑

i1<···<ik

ai1···ik
dxi1 · · · dxik

=
∑

j1<···<jk

a′j1···jk
dx′j1 · · · dx′jk

,

where

a′j1···jk
=

∑

i1<···<ik

D

(
xi1 xi2 · · · xik

x′j1 x′j2 · · · x′jk

)
ai1···ik

.

The exterior derivative of a differential form

α =
∑

ai1···ik
dxi1 · · · dxik

is defined as the (k + 1)st degree differential form

dα =
∑

i1···ik

(∑

i

∂ai1···ik

∂xi
dxi

)
dxi1 · · · dxik

,

which, of course, can be simplified by using the anti-commutation rule. Let a(x)
be a scalar function. Then

da(x) =
n∑

i=1

∂a(x)
∂xi

dxi.
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It is easily shown that according to the anti-commutation rule, any differential
form α satisfies the equation

ddα = 0.

Let us assume that
α =

∑
ai1···ik

dxi1 · · · dxik

and the claim holds since

∂2ai1···ik
(x)

∂xi∂xj
=

∂2ai1···ik
(x)

∂xj∂xi

and the anti-commutation rule

dxidxj = −dxjdxi.

Let α be a differential form of degree n − 1 defined on some bounded n-
dimensional region G with a piecewise smooth boundary Γ. We assume an
orientation of G corresponding to the positive direction of the normal to Γ.
Then ∫

G

dα =
∫

Γ

α

which is called the Gauss-Ostrogradskii formula.

As an example, consider a second degree form α given below in three dimen-
sions

α = a1dx2dx3 + a2dx3dx1 + a3dx1dx2

and its exterior derivative is

dα = (
∂a1

∂x1
+

∂a2

∂x2
+

∂a3

∂x3
)dx1dx2dx3,

so that the Gauss-Ostrogradskii formula turns to be
∫

Γ

a1dx2dx3 + a2dx3dx1 + a3dx1dx2 =
∫

G

(
∂a1

∂x1
+

∂a2

∂x2
+

∂a3

∂x3
)dx1dx2dx3

which is seen in calculus.

We consider a manifold S given by P (x1, x2, · · · , xn) = 0, where P is an
infinitely differentiable function such that

gradP =
{

∂P

∂x1
,

∂P

∂x2
, · · · ,

∂P

∂xn

}
6= 0

on S, which therefore has no singular points.

The differential form ω is defined by

dP · ω = dv
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where dv = dx1 · · · dxn, and dP is the differential form of P . Note that if P (x)
is the Euclidean distance of x from the P = 0 surface, the differential form ω
on S coincides with the Euclidean element of area dσ on S.

Since gradP 6= 0 on S, there exists j (1 ≤ j ≤ n) such that ∂P/∂xj 6= 0. We
may introduce a local coordinate system u1, u2, · · · , un to be

(1) u1 = x1, · · · , uj = P (x), · · · , un = xn.

Then

D

(
x

u

)
=

[
D

(
u

x

)]−1

=
1

∂P/∂xj
,

and thus we may set

ω = (−1)j−1 dx1 · · · dxj−1dxj+1 · · · dxn

∂P/∂xj
.

We naturally define the characteristic function θ(P ) for the region P ≥ 0 as

(θ(P ), φ(x)) =
∫

P≥0

φ(x)dx

where φ ∈ D(Rn), and the generalized function δ(P ) by

(δ(P ), φ(x)) =
∫

P=0

φ(x)ω.

Kanwal [12] studied certain distributions defined on the surface Σ(t) and their
extensions to the whole space. The basic distribution concentrated on Σ(t) is
the Dirac delta function, whose action on a test function φ(x, t) is given by

δ(Σ), φ) =
∫ +∞

−∞

∫

Σ(t)

φ(x, t)dS(x)dt,

where dS(x) is the surface element. Observe the special treatment of time in
the above integral. The integration with respect to the space variables is surface
integration while that with respect to time is ordinary integration.

According to Kanwal, the relation between δ(P ) and δ(Σ) is given as

(δ(P ), φ(x)) =
∫

Σ

φ(y)dS(y)
1

|gradP | ,

which implies

δ(P ) =
δ(Σ)
|gradP | .

Another way of introducing the distribution δ(P ) is used by DeJager [13];

(δ(P ), φ(x)) = lim
c→0

1
c

∫

0≤P≤c

φ(x)dx.
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Similarly, its higher derivatives can be defined as

δ(k)(P ) = lim
c→0

1
c
[δ(k−1)(P + c)− δ(k−1)(P )], k = 1, 2, · · · .

It follows from DeJager [13] that

(δ(P ), φ(x)) = lim
c→0

1
c

∫

0≤P≤c

φ(x)γdS(x)

= lim
c→0

1
c

∫

P=0

φ(x) · c dS(x)
|gradP |

=
∫

P=0

φ(x)
dS(x)
|gradP |

which coincides with the Kanwal’s result.

It was proven in [1] that

∂θ(P )
∂xj

=
∂P

∂xj
δ(P ).

We shall first add the following identity, which has never appeared so far, ac-
cording to the author’s knowledge

∂θ(P )
∂P

= δ(P ).

Indeed,

(
∂θ(P )
∂P

, φ(x)) = −(θ(P ),
∂

∂P
φ(x)).

Since φ = φ(x1, x2, · · · , xj(P ), · · · , xn) by the substitution of (1), we come to

−(θ(P ),
∂

∂P
φ(x)) = −(θ(P ),

∂φ(x)
∂xj

1
∂P
∂xj

) = −
∫

P≥0

∂φ(x)
∂xj

1
∂P
∂xj

dx.

On the other hand,

(δ(P ), φ(x)) =
∫

P=0

φ(x)ω.

Let us assume that P ≥ 0 defines a bounded region. Then we may apply the
Gauss-Ostrogradskii formula to the above integral over this region and to the
differential form of degree n − 1 in the integrand. We also use the fact that P
increases into the interior of the region to derive

∫

P=0

φ(x)ω = −
∫

P≥0

d(φ(x)ω)

and

d(φ(x)ω) =
∂φ(x)
∂xj

1
∂P
∂xj

dx + φ
∂

∂xj
(
∂xj

∂P
)dx =

∂φ(x)
∂xj

1
∂P
∂xj

dx,
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which implies ∫

P=0

φ(x)ω = −
∫

P≥0

∂φ(x)
∂xj

1
∂P
∂xj

dx.

Hence the identity holds on any bounded region.

If P ≥ 0 does not define a bounded region, we replace it by its intersection
GR with a sufficiently large ball |x| ≤ R outside of which φ(x) is known to
vanish. Let ΓR be the boundary of GR, we have

∫

ΓR

φ(x)ω = −
∫

GR

∂φ(x)
∂xj

1
∂P
∂xj

dx.

Now, since φ(x) vanishes outside of |x| ≤ R, we arrive at
∫

P=0

φ(x)ω = −
∫

P≥0

∂φ

∂P
dx,

which completes the proof.

It is well known that in one dimension every functional concentrated on a
point is a linear combination of the delta function and its derivatives. For n > 1,
we have a similar role played by generalized functions, δ(P ), δ′(P ), · · · , δ(k)(P )
(the derivatives of δ(P ) with respect to the argument P ), which we shall define
based on the differential forms ωk(φ) given by

ω0(φ) = φ · ω,

dω0(φ) = dP · ω1(φ),
· · · · · ·
dωk−1(φ) = dP · ωk(φ),
· · · · · ·

where d denotes the exterior derivative. Now we are able to define

(δ(k)(P ), φ) = (−1)k

∫

P=0

ωk(φ)

for k = 0, 1, 2, · · · , since the above integral over the P = 0 surface of any of the
ωk(φ) is uniquely determined by P (x). Furthermore, we define the generalized
function ∂δ(P )/∂P as

(
∂

∂P
δ(P ), φ) = −

∫

P=0

∂φ

∂P
ω.

We shall show that
∂

∂P
δ(P ) = δ′(P ).
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In fact,

(
∂

∂P
δ(P ), φ) = −

∫

P=0

∂φ

∂P
ω = −

∫

P=0

ω0(
∂φ

∂P
).

On the other hand,

(δ′(P ), φ) = −
∫

P=0

ω1(φ) = −
∫

P=0

∂

∂P
(

φ

∂P/∂xj
)dx1 · · · dxj−1dxj+1 · · · dxn.

Since φ = φ(x1, x2, · · · , xj(P ), · · · , xn) and ∂P/∂xj is not a function of P , we
imply

∂

∂P
(

φ

∂P/∂xj
)dx1 · · · dxj−1dxj+1 · · · dxn =

∂φ
∂P

∂P/∂xj
dx1 · · · dxj−1dxj+1 · · · dxn

= ω0(
∂φ

∂P
),

by choosing the coordinates ui = xi, and uj = P . Under these coordinates

ωk(φ) =
∂k

∂P k
(

φ

∂P/∂xj
)dx1 · · · dxj−1dxj+1 · · · dxn.

This completes the proof.

Similarly, we can obtain

∂

∂P
δ(k)(P ) = δ(k+1)(P ) for k = 1, 2, · · · .

We now prove the following recurrence relations, identities between δ(P ) and
its derivatives:

Pδ(P ) = 0
Pδ′(P ) + δ(P ) = 0
Pδ′′(P ) + 2δ′(P ) = 0
· · · · · ·
Pδ(k)(P ) + kδ(k−1)(P ) = 0
· · · · · ·

The first of these is obvious, since the integral of Pφ over the P = 0 surface
clearly vanishes. We now take the derivative with respect to P to get

Pδ′(P ) + δ(P ) = 0

as well as the rest similarly.
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2. The product X lδ(r − 1)

Let X =
∑n

i=1 xi. We shall use a recursion and Pizetti’s formula to derive
the asymptotic product X lδ(r − 1) for any integer l ≥ 1, which is not possible
to obtain along the differential form approach, since X is clearly not a function
of r.

Setting ψ(x) = X lφ(x) and obviously ψ(x) ∈ D(Rn). We naturally have

(X lδ(r − 1), φ(x)) = (δ(r − 1), X lφ(x)) =
∫

r=1

X lφ(x)dσ

=
∫

r=1

ψ(x)dσ = ΩnSψ(1).

It follows from Pizetti’s formula and ψ(0) = 0φ(0) = 0 that

(X lδ(r − 1), φ(x)) ∼ Ωn

∞∑

j=1

4jψ(0)
2j j! n(n + 2) · · · (n + 2j − 2)

.

In order to calculate X lδ(r− 1), we need to express 4jψ(0) in terms of a finite
combination of φ and its derivatives at x = 0. First, we claim for j ≥ 0 that

(2) 4j+1(Xφ) = 2(j + 1)∇4jφ + X4j+1φ

where ∇ = ∂/∂x1 + · · ·+ ∂/∂xn.

We use an inductive method to prove it. It is obviously true for j = 0.
Assume j = 1, we have

42(xiφ) = 4
∂

∂xi
4φ + xi42φ

simply by calculating the left-hand side. Hence

42(Xφ) = 4∇4φ + X42φ.

By hypothesis, it holds for the case of j − 1, that is

4j(Xφ) = 2j∇4j−1φ + X4jφ.

Hence it follows that

4j+1(Xφ) = 44j(Xφ) = 4(2j∇4j−1φ + X4jφ)
= 2j∇4jφ +4(X4jφ) = 2(j + 1)∇4jφ + X4j+1φ.

Clearly, we have from equation (2) that

(3) 4j(Xφ(x))
∣∣
x=0

= 2j∇4j−1φ(0) = −2j(4j−1∇δ(x), φ(x))

for j ≥ 1.
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Next, we are going to calculate 4j(X2φ(x))
∣∣
x=0

based on 4j(Xφ(x)). In-
deed,

4j(X2φ(x)) = 4j(XXφ(x)) = 2j∇4j−1(Xφ(x)) + X4j(Xφ(x)).

By simple calculation,

∇(Xφ(x)) = nφ(x) + X∇φ(x).

Hence it follows that

4j(X2φ(x))
∣∣
x=0

= 2nj4j−1φ(0) + 2j4j−1(X∇φ(x))
∣∣
x=0

.

Using equation (3), we obtain

4j−1(X∇φ(x))
∣∣
x=0

= 2(j − 1)∇24j−2φ(0).

Thus,

4j(X2φ(x))
∣∣
x=0

= 2nj4j−1φ(0) + 22j(j − 1)∇24j−2φ(0).

In order to construct a recursion of computing 4j(X lφ(x)), we need to search
for a pattern, and continue on

4j(X3φ(x)) = 4j(XX2φ(x)) = 2j∇4j−1(X2φ(x)) + X4j(X2φ(x)).

Similarly,
∇(X2φ(x)) = 2nXφ(x) + X2∇φ(x).

Therefore,

4j(X3φ(x))
∣∣
x=0

= 2j4j−1(2nXφ(x) + X2∇φ(x))
∣∣
x=0

= 22nj4j−1(Xφ(x))
∣∣
x=0

+ 2j4j−1(X2∇φ(x))
∣∣
x=0

.

Since,

4j−1(Xφ(x))
∣∣
x=0

= 2(j − 1)∇4j−2φ(0) and

4j−1(X2∇φ(x))
∣∣
x=0

= 2n(j − 1)4j−2∇φ(0) + 22(j − 1)(j − 2)∇34j−3φ(0).

Finally, we arrive at

4j(X3φ(x))
∣∣
x=0

= 23nj(j − 1)∇4j−2φ(0) + 22nj(j − 1)4j−2∇φ(0)

+ 23j(j − 1)(j − 2)∇34j−3φ(0).

In general,

4j(X lφ(x)) = 4j(XX l−1φ(x)) = 2j∇4j−1(X l−1φ(x)) + X4j(X l−1φ(x)).

Clearly,
∇(X l−1φ(x)) = n(l − 1)X l−2φ(x) + X l−1∇φ(x).
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Hence,

4j(X lφ(x))
∣∣
x=0

= 2j4j−1(n(l − 1)X l−2φ(x) + X l−1∇φ(x))
∣∣
x=0

= 2nj(l − 1)4j−1(X l−2φ(x))
∣∣
x=0

+ 2j4j−1(X l−1∇φ(x))
∣∣
x=0

.

This is obviously dependent on the two previous terms of

4j−1(X l−2φ)
∣∣
x=0

and 4j−1(X l−1φ)
∣∣
x=0

,

and forms a recursion for computing 4j(X lφ(x)), although the author is unable
to write out the explicit formula at this moment.

In particular, we have

Xδ(r − 1) ∼ −Ωn

∞∑

j=0

4j∇δ(x)
2j j!n(n + 2) · · · (n + 2j)

,

X2δ(r − 1) ∼ Ωnδ(x) +
Ωn4δ(x)
2(n + 2)

+
Ωn∇2δ(x)
n(n + 2)

+Ωn

∞∑

j=2

n4jδ(x) + 2j∇24j−1δ(x)
2j j!n(n + 2) · · · (n + 2j)

.

3. The product f(P1, · · · , Pk)
∂|α|δ(P1,··· ,Pk)

∂P
α1
1 ···∂P

αk
k

We now turn our attention to new generalized functions associated with
manifolds S of lower dimension defined by k equations of the form

P1(x1, · · · , xn) = 0, P2(x1, · · · , xn) = 0, · · · , Pk(x1, · · · , xn) = 0.

where k is in general greater than one. Following [1], we shall make the two
assumptions:

(i) The Pi are infinitely differentiable functions.

(ii) The Pi(x1, · · · , xn) = ηi hypersurfaces (i = 1, 2, · · · , k) form a lattice
such that in the neighborhood of every point of S there exists a local coordinate
system in which ui = Pi(x1, · · · , xn) for i = 1, 2, · · · , k and the remaining
uk+1, · · · , un can be chosen so that the Jacobian D

(
x
u

)
> 0.

Consider the element of volume in Rn

dv = dx1 · · · dxn

a differential form of degree n, and let us write it as the product of the first-
degree differential forms dP1 · · · dPk with an additional differential form ω of
degree n− k; i.e.

dv = dP1 · · · dPkω.
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It was proven in [1] that such ω exists, but can not be unique, and

dP1 · · · dPk =
∑

i1<···<ik

D

(
P1 P2 · · · Pk

xi1 xi2 · · · xik

)
dxi1 · · · dxik

.

We define the generalized function δ(P1, · · · , Pk) by the equation

(δ(P1, · · · , Pk), φ) =
∫

S

φω.

It can be easily shown that this definition is independent of the particular choice
of ω.

Let us denote ω0,··· ,0(φ) = φω. Then we define the differential form ω1,0,··· ,0(φ)
(whose integral over S will give ∂δ(P1, · · · , Pk)/∂P1) as follows. We take the
exterior derivative of the differential form of degree n− 1, dP2 · · · dPkω0,··· ,0(φ),
and write it in the form

d(dP2 · · · dPkω0,··· ,0(φ)) = dP1 · · · dPkω1,0,··· ,0(φ).

We choose the local coordinate system in which the ui = Pi for i = 1, · · · , k,
and denote φ(x1(u1, · · · , un), · · · , xn(u1, · · · , un)) by φ̃(u1, · · · , un) = φ̃(u); we
then obtain

ω0,··· ,0(φ) = φω = φ̃D

(
x

u

)
duk+1 · · · dun,

dP2 · · · dPkω0,··· ,0(φ)ω0,··· ,0(φ) = φ̃D

(
x

u

)
du2 · · · dun,

d(dP2 · · · dPkω0,··· ,0(φ)ω0,··· ,0(φ)) =
∂

∂u1

[
φ̃D

(
x

u

)]
du1 · · · dun,

which implies

ω1,0,··· ,0(φ) =
∂

∂u1

[
φ̃D

(
x

u

)]
duk+1 · · · dun.

Any of the k indices of ω0,··· ,0(φ) can be changed from zero to one in the same
way.

In general, assuming that we know ωα1,··· ,αk
(φ), we may raise its jth index by

multiplying on the left by all the dPi with i 6= j, taking the exterior derivative,
and writing

d(dP1 · · · dPj−1dPj+1 · · · dPkωα1,··· ,αk
(φ))

= (−1)jdP1 · · · dPkωα1,··· ,αj−1,αj+1,αj+1,··· ,αk
(φ).

This defines the ωα1,··· ,αk
(φ) for any nonnegative integral indices.
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Obviously, if ω0,··· ,0(φ) is not unique, neither are the ωα1,··· ,αk
(φ). We now

define the generalized function ∂|α|δ(P1,··· ,Pk)

∂P
α1
1 ···∂P

αk
k

, where |α| = α1 + · · ·+ αk, by

(
∂|α|δ(P1, · · · , Pk)
∂Pα1

1 · · · ∂Pαk

k

, φ) = (−1)|α|
∫

S

ωα1,··· ,αk
(φ),

which is independent of the choice of ωα1,··· ,αk
.

Theorem 1. Let f(u1, · · ·uk) be an infinitely differentiable function of k vari-
ables. Then the product f(P1, · · · , Pk)∂|α|δ(P1,··· ,Pk)

∂P
α1
1 ···∂P

αk
k

exists and

f(P1, · · · , Pk)
∂|α|δ(P1, · · · , Pk)
∂Pα1

1 · · · ∂Pαk

k

=
α1∑

j1=0

· · ·
αk∑

jk=0

(−1)|α|−|j|

(
α1

j1

)
· · ·

(
αk

jk

)
∂|α|−|j|

∂uα1−j1
1 · · · ∂uαk−jk

k

f(0, · · · , 0)
∂|j|δ(P1, · · · , Pk)

∂P j1
1 · · · ∂P jk

k

.

Before going into the proof, we would like to give the following products, if
f(P1, · · · , Pk) = Pi, by Theorem 1.

Piδ
′
Pi

(P1, · · · , Pk) + δ(P1, · · · , Pk) = 0,

· · · · · ·
Piδ

(m)
Pi,··· ,Pi

(P1, · · · , Pk) + mδ
(m−1)
Pi,··· ,Pi

(P1, · · · , Pk) = 0,

which were obtained in [1].
Proof. Making the substitution (without loss of generality) ui = Pi for

i = 1, · · · , k, and denoting

φ̃(u) = φ̃(u1, · · · , un) = φ(x1(u1, · · · , un), · · · , xn(u1, · · · , un)),

we come to

(f(P1, · · · , Pk)
∂|α|δ(P1, · · · , Pk)
∂Pα1

1 · · · ∂Pαk

k

, φ) = (
∂|α|δ(P1, · · · , Pk)
∂Pα1

1 · · · ∂Pαk

k

, f(P1, · · · , Pk)φ)

= (−1)|α|
∫

S

∂|α|

∂uα1
1 · · · ∂uαk

k

[
f(u1, · · · , uk)φ̃D

(
x

u

)]
duk+1 · · · dun

= (−1)|α|
∫

S

α1∑

j1=0

· · ·
αk∑

jk=0

(
α1

j1

)
· · ·

(
αk

jk

)
∂|α|−|j|

∂uα1−j1
1 · · · ∂uαk−jk

k

f(u1, · · · , uk)

· ∂|j|

∂uj1
1 · · · ∂ujk

k

[
φ̃D

(
x

u

)]
duk+1 · · · dun

= (−1)|α|
α1∑

j1=0

· · ·
αk∑

jk=0

(
α1

j1

)
· · ·

(
αk

jk

)
∂|α|−|j|

∂uα1−j1
1 · · · ∂uαk−jk

k

f(0, · · · , 0) ·

·
∫

S

∂|j|

∂uj1
1 · · · ∂ujk

k

[
φ̃D

(
x

u

)]
duk+1 · · · dun
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Using the identity
∫

S

∂|j|

∂uj1
1 · · · ∂ujk

k

[
φ̃D

(
x

u

)]
duk+1 · · · dun = (−1)|j|(

∂|j|δ(P1, · · · , Pk)
∂P j1

1 · · · ∂P jk

k

, φ),

we complete the proof of Theorem 1. 2

To end this section, we would like to mention that Aguirre studied the fol-
lowing product

P l1
1 · · ·P lk

k

∂|α|δ(P1, · · · , Pk)
∂Pα1

1 · · · ∂Pαk

k

,

which is a special case of Theorem 1 if f(P1, · · · , Pk) = P l1
1 · · ·P lk

k .

4. The generalized function δ(Q1P1, · · · , QkPk)

Assuming that Q is a nonvanishing function and P is a manifold of dimension
n− 1, we have for any m ≥ 0 that

(4) δ(m)(QP ) = Q−(m+1)δ(m)(P ).

This is a powerful formula which can be used to derive some products, such as
X lδ(r2 − 1), since

δ(r2 − 1) =
1
2
δ(r − 1).

We are interested in extending equation (4) to smooth manifolds of lower dimen-
sion. First of all, we would like to see how the differential form ω and functional
δ(P1, · · · , Pk) change while making the substitution

Wj(x) =
k∑

i=1

αij(x)Pi(x).

Here the αij(x) are assumed to be infinitely differentiable functions and the
matrix they form is assumed nonsingular. The defining equations for the initial
differential form ω and for the new one ω̃ are

dP1 · · · dPkω = dv = dW1 · · · dWkω̃

= (
∑

αi1dPi) · · · (
∑

αikdPi)ω̃.

By expanding the terms in parentheses and using the anti-commutation rule
dPidPj = −dPjdPi, we write det ||αij ||dP1 · · · dPk ω̃ = dv, which implies

ω̃ =
1

det ||αij ||ω.

Hence
(δ(W1, · · · ,Wk), φ) = (δ(P1, · · · , Pk),

φ

det ||αij || ).
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Let us find the generalized function δ(QP1, · · · , QPk) , where Q 6= 0. By the
substitution W1 = QP1, · · · ,Wk = QPk, we arrive at det ||αij || = Q−k(x). This
indicates

(5) δ(QP1, · · · , QPk) = Q−k(x)δ(P1, · · · , Pk).

In particular, we obtain for k = 1 that δ(QP1) = Q−1δ(P1), which coincides
with equation (4) for m = 0.

It follows that

δ(m)(QP1, · · · , QPk) = Q−(k+m)(x)δ(m)(P1, · · · , Pk)

by differentiating both sides of equation (5) m times with respect to some Pi.

Similarly,

δ(Q1P1, · · · , QkPk) =
1

Q1 · · ·Qk
δ(P1, · · · , Pk)

where the Qi are nonzero and infinitely differentiable functions. Let |α| =
α1 + · · ·+ αk, then

δ|α|(Q1P1, · · · , QkPk) =
1

Q1+α1
1 · · ·Q1+αk

k

δ|α|(P1, · · · , Pk).
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2004.
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