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Abstract. Current studies on products of analytic functionals have been
based on applying convolution products in D′ and the Fourier exchange
formula. There are very few results directly computed from the ultra-
distribution space Z′. The goal of this paper is to introduce a definition
for the product of analytic functionals and construct a new multiplier
space F (Nm) for δ(m)(s) in a one or multiple dimension space, where
Nm may contain functions without compact support. Several examples
of the products are presented using the Cauchy integral formula and the
multiplier space, including the fractional derivative of the delta function
δ(α)(s) for α > 0.

1. Introduction

Physicists have long been using the singular function δ(x), although it can
not be properly defined within the structure of classical function theory. In ele-
mentary particle physics, one finds the need to evaluate δ2 when calculating the
transition rates of certain particle interactions [15]. Schwartz [24] established
the theory of distributions by treating singular functions as linearly continuous
functionals on the testing function space whose elements have compact support.
Although they are of great importance to quantum field theory, it is difficult to
define products, convolutions and compositions of distributions in general. The
sequential method [6]-[14], [17], [19]-[23] and complex analysis approach [1]-[5],
[7], [16]-[21], including non-standard analysis [18], have been the main tools in
dealing with those non-linear operations of distributions in the Schwartz space
D′ with many results. However, little progress has been made towards obtain-
ing products of analytic functionals in Z ′ (or Z(Rm)) directly without using
convolution results in D′ (or D′(Rm)) and the Fourier transform as a bridge.
As outlined in the abstract, we will work on the space Z ′ and initiate a move
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towards computing the product of analytic functionals without the help of the
exchange formula.

To make this paper as self-contained as possible, we state Paley-Wiener-
Schwartz theorem in the following, which will be used a couple of times through-
out the article.

Theorem 1.1. An entire function f(s) on Cm is the Fourier transform of
distribution λ(x) with compact support if and only if for all s ∈ Cm,

|f(s)| ≤ Ceb| Im s|(1 + |s|)q

for some constants C, q and b. The distribution λ(x) will in fact be supported
in the closed ball of center zero and radius b.

2. Analytic functionals in Z′

Let D be the space of infinitely differentiable functions with compact support
and let D′ be the space of distributions defined on D. We say a sequence
φ1(x), φ2(x), . . . , φν(x), . . . of test functions converges to zero in D if all of these
functions vanish outside a certain fixed bounded region K, which is independent
of ν, and converge uniformly to zero (in the usual sense) together with their
derivatives of any order.

As in [16], we define the Fourier transform of a function φ in D by

ψ(s) = F (φ)(s) = φ̃(s) =
∫ ∞

−∞
φ(x)eixs dx.

Here s = σ+ iτ is a complex variable and it is well known that ψ(s) is an entire
analytic function with the following property for q = 0, 1, 2, . . .

(1) |sqψ(s)| ≤ Cqe
a| Im s|

for some constants Cq and a depending on ψ(s). The set of all entire analytic
functions with property (1) is indeed the space

Z = F (D) = {ψ | ∃ φ ∈ D and F (φ) = ψ} .

The definition of convergence in Z can be carried over from D. That is, a
sequence of functions ψν(s) converges to zero in Z if the sequence of their
inverse images φν(s) converges to zero in D. In other words, the sequence
ψν(s) converges to zero in Z if for each function in this sequence we have

|sqψν(s)| ≤ Cqe
a| Im s|

with Cq and a independent of ν, and if the functions converge to zero uniformly
on every interval of the (real) σ axis.

The Fourier transform f̃ of a distribution f in D′ is an ultradistribution in
Z ′, i.e., a linear and continuous functional on Z. It is defined by Parseval’s
equation

(f̃ , φ̃) = 2π(f, φ).
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Clearly we have
Z ′ = F (D′) = {F (f) | f ∈ D′} .

The exchange formula is the equality

F (f ∗ g) = F (f) · F (g).

It was proven in [25] that the exchange formula holds for all convolution prod-
ucts of distributions f and g, provided f and g both have compact support.

We shall call a functional g on Z analytic if it can be written in the form

(g, ψ) =
∫

Γ

ḡ(s)ψ(s) ds,

where g(s) is a function and Γ is some contour in the complex plane C. Thus,
the delta function given by (δ(s − s0), ψ(s)) = ψ(s0), where s0 ∈ C, is an
analytic functional, since

ψ(s0) =
1

2πi

∮

Γ

ψ(s)
s− s0

ds,

where Γ is any contour enclosing s0 in counterclockwise. We denote

δ(s− s0) =
{

1
2πi(s− s0)

, Γ
}

.

Similarly, we have

δ(m)(s− s0) =
{

(−1)mm!
2πi(s− s0)m+1

, Γ
}

.

Following the standard notation we let E ′ be the space of distributions with
compact support. Obviously, we have D ⊂ E ′ ⊂ D′ and Z = F (D) ⊂ F (E ′) ⊂
F (D′) = Z ′.

Define a multiplier space of Z ′ as

M =
{
h(s) | h is entire and |h(s)| ≤ Ceb| Im s|(1 + |s|)q

}

for some b, q and C. By Paley-Wiener-Schwartz theorem stated in the intro-
duction, we imply that M = F (E ′) and Z ⊂ M ⊂ Z ′. For any g ∈ Z ′ and
h(s) ∈M, the product h̄(s)g(s) is well defined by

(h̄(s)g(s), ψ) = (g(s), h(s)ψ)

because h(s)ψ(s) ∈ Z. It follows that

(2) h̄(s) δ(m)(s) =
m∑

j=0

(−1)m−j

(
m

j

)
h(m−j)(0)δ(j)(s).

In particular,

sin s δ(m)(s) =
m∑

j=0

(−1)m−j

(
m

j

)
sin[(m− j)

π

2
]δ(j)(s),

where sin s = 1
2i (e

is − e−is) ∈M.
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Choosing a fixed function ω(s) ∈M, we can construct two different analytic
functionals for d > 0,

(f+(s), ψ(s)) =
∫ ∞+di

−∞+di

ω(s)ψ(s)
sn+1

ds

and

(f−(s), ψ(s)) =
∫ ∞−di

−∞−di

ω(s)ψ(s)
sn+1

ds,

where n is any non-negative integer. Those two integrals are clearly convergent
since ω(s)ψ(s) ∈ Z.

The difference between them can be simplified into the form

(f+(s)− f−(s), ψ(s)) =
∮

|s|=1

ω(s)ψ(s)
sn+1

ds

in which the integral is taken clockwise along the boundary of |s| = 1. By
Cauchy’s integral theorem

(f+(s)− f−(s), ψ(s)) = −2πi

n!

n∑

k=0

(
n

k

)
ω(n−k)(0)ψ(k)(0).

Therefore

f+(s)− f−(s) =
2πi

n!

n∑

k=0

(−1)k+1

(
n

k

)
ω(n−k)(0)δ(k)(s).

Finally we have the following product in Z ′ from equation (2)

h̄(s) (f+(s)− f−(s))

=
2πi

n!

n∑

k=0

k∑

j=0

(−1)j+1

(
n

k

)(
k

j

)
ω(n−k)(0)h(k−j)(0)δ(j)(s).

It is well known that every functional in D′ which concentrates on a point is
a finite sum of linear combinations of the delta function and its derivatives.
However, this property does not hold in general for functionals in Z ′. We are
going to build up a fractional derivative of the delta function δ(α)(s) for α > 0,
which belongs to Z ′ and can only be expressed in terms of infinite sums of the
delta function and its derivatives. Using the Cauchy-type fractional derivative,
we define

(3) (δ(α)(s), ψ(s)) = (cos απ + i sin απ)
Γ(α + 1)

2πi

∮

|s|=1

ψ(s)
sα+1

ds

in counterclockwise along |s| = 1. Here we choose the fixed analytic branch
ln 1 = 0, −π < arg s ≤ π and k = 0, such that

1
sα+1

= s−(α+1) = e−(α+1) ln s · e−(α+1)2kπi

is an analytic single-valued function.
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Assume that α 6= 0, 1, 2, . . . and let ψ(s) =
∑∞

n=0 ansn be the Taylor series
which converges uniformly on |s| = 1. Equation (3) therefore yields

(δ(α)(s), ψ(s))

= (cos απ + i sinαπ)
Γ(α + 1)

2πi

∞∑
n=0

an

∮

|s|=1

sn

sα+1
ds

= (cos απ + i sinαπ)
Γ(α + 1)

2πi

∞∑
n=0

an

(∫

C1

sn−α−1ds +
∫

C2

sn−α−1ds

)
,

where C1 and C2 are the parts of |s| = 1 in the upper and lower σ axis respec-
tively.

We compute directly
∫

C1

sn−α−1ds =
sn−α

n− α

∣∣∣∣
π

0

=
1

n− α
(cos(n− α)π + i sin(n− α)π − 1)

and ∫

C2

sn−α−1ds =
sn−α

n− α

∣∣∣∣
0

−π

=
1

n− α
(1− cos(n− α)π + i sin(n− α)π).

Adding the two terms we get∫

C1

sn−α−1ds +
∫

C2

sn−α−1ds =
2i sin(n− α)π

n− α
=

2i(−1)n sin απ

α− n
,

so that

(δ(α)(s), ψ(s)) = (cos απ + i sin απ)
Γ(α + 1)

π
sin απ

∞∑
n=0

(−1)nan

α− n
.

Since the Taylor series coefficient

an =
ψ(n)(0)

n!
=

(−1)n

n!
(δ(n)(s), ψ(s)),

we arrive at

(4) δ(α)(s) = (cos απ + i sin απ) sin απ
Γ(α + 1)

π

∞∑
n=0

δ(n)(s)
(α− n)n!

for all α > 0. Clearly we have

δ( 1
2 )(s) =

i

2
√

π

∞∑
n=0

δ(n)(s)
( 1
2 − n)n!

.

In particular, we let α → n and note that all terms on the right-hand side of
equation (4) disappear except the nth term. Thus,

lim
α→n

(cos απ + i sin απ) sin απ
Γ(α + 1)

π

∞∑
n=0

δ(n)(s)
(α− n)n!

= δ(n)(s),

which indicates that it is an extension of the normal derivative δ(n)(s).
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It remains to be shown that δ(α)(s) is linear and continuous on Z. Obviously
it is linear since

(δ(α)(s), ηψ1 + ξψ2) = η (δ(α)(s), ψ1) + ξ (δ(α)(s), ψ2).

Let {ψm} be a sequence converging to zero in Z. Then

ψm(s) =
∫ ∞

−∞
φm(x)eixs dx,

where {φm} converges to zero in D, which means ∀ ε > 0, ∃ N = N(ε) such
that |φm(x)| < ε for m > N . Assume suppφm ⊂ K, we infer that for m > N

|ψm(s)| ≤
∫

K

ε|eixs|dx ≤ M(ρ0),

where |s| = ρ0 > 1. It follows from the fact that ψ(s) is an entire function that
∣∣∣∣∣
ψ

(n)
m (0)
n!

∣∣∣∣∣ ≤
M(ρ0)

ρn
0

,

which implies that

(cosαπ + i sin απ) sin απ
Γ(α + 1)

π

∞∑
n=0

(−1)nψ
(n)
m (0)

n!(α− n)

uniformly converges with respect to m. Hence

lim
m→∞

(δ(α)(s), ψm(s))

= lim
m→∞

(cos απ + i sin απ) sin απ
Γ(α + 1)

π

∞∑
n=0

(−1)nψ
(n)
m (0)

n!(α− n)

= (cos απ + i sinαπ) sin απ
Γ(α + 1)

π

∞∑
n=0

(−1)n limm→∞ ψ
(n)
m (0)

n!(α− n)
= 0

since the sequence with its derivatives converges to zero uniformly on every
interval of the (real) σ axis.

To end this section, we would like to point out that the following identity is
clearly satisfied

ψ(α)(0) = sin απ
Γ(α + 1)

π

∞∑
n=0

(−1)nψ(n)(0)
n!(α− n)

for all ψ ∈ Z.

3. A new multiplier space for δ(m)(s)

Let τ(x) be an infinitely differentiable function satisfying the following con-
ditions:

(i) τ(x) = 1 for |x| ≤ 1, (ii) τ(x) = 0 for |x| ≥ 2.
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We construct the sequence τn(x) = τ(x/n) in D and δn(s) =
1
2π

F (τn) in Z.

Putting ψ = φ̃ = F (φ), we have from Parseval’s equation

(τn, φ) =
1
2π

(F (τn), F (φ)) = (δn, ψ).

Thus,

lim
n→∞

(δn, ψ) = lim
n→∞

(τn, φ) =
∫ ∞

−∞
φ(x)dx = (1, φ)

for all φ ∈ D. Using F (1) = 2πδ, we get limn→∞(δn, ψ) = (δ, ψ) for all ψ ∈ Z.
Hence {δn} is a delta sequence in Z. It follows from Parseval’s equation that

(δn(s), ψ(s + v)) =
1
2π

(F (τn), F (eixvφ)) = (τn(x), eixvφ) = F (τnφ).

Obviously, τn(x)φ(x) converges to φ(x) in D, which implies that (δn(s), ψ(s +
v)) converges to ψ(v) in Z. This gives us

lim
n→∞

(f̃ ∗ δn, ψ) = lim
n→∞

(f̃(v), (δn(s), ψ(s + v))) = (f̃ , ψ)

for arbitrary ψ ∈ Z and it follows that {f̃ ∗ δn} is a sequence converging to f̃
in Z ′

Now we are ready to give a new definition for the product of analytic func-
tionals in Z ′ using the delta sequence δn(s).

Definition 3.1. Let h(s) be a continuous function and let g(s) ∈ Z ′. Then
the product h̄(s) · g(s) is defined as

(h̄(s) · g(s), ψ) = lim
n→∞

(g(s), (h(s) ∗ δn)ψ)

provided the limit exists.

In particular, if h(s) ∈ M and g(s) ∈ Z ′, then h̄(s) · g(s) = h̄(s)g(s),
which is defined in section 2. By Definition 3.1, we only need to show that
(h(s)∗δn)ψ converges to h(s)ψ in Z. Assume that h(s) = F (λ(x)), where λ(x)
is a distribution with compact support, and ψ = F (φ) for some φ ∈ D. Then
(h(s)∗δn)ψ = F ((τnλ)∗φ), and it is not hard to prove that (τnλ)∗φ converges
to λ ∗ φ in D. Indeed, we easily see that λ ∗ φ in D since both λ and φ have
compact support and let γ be the function in D and γ = 1 on suppλ. Then

((τnλ− λ) ∗ φ(m))(x) = (λ(y), (τn(y)− 1)φ(m)(x− y)γ(y)) → 0

uniformly on every compact subset of R. This implies that (h(s) ∗ δn)ψ con-
verges to h(s)ψ in Z.

Let m be any non-negative integer and we define the space Nm with the
normal addition and scalar multiplication as

Nm =
{

φ(x) | F (φ(x)) is entire and
∣∣∣∣
∫ ∞

−∞
xjφ(x)dx

∣∣∣∣ < ∞
}
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for j = 0, 1, 2, . . . , m. Obviously Nm is not empty since e−x2 ∈ Nm for all
m ≥ 0 because

F (e−x2
) =

∫ ∞

−∞
eixs−x2

dx = e−
1
4 s2√

π

is an entire function and

(5)
∫ ∞

−∞
xme−x2

dx =
1
2
Γ(

1
2
m +

1
2
)(1 + (−1)m).

Furthermore, we have N0 ⊃ N1 ⊃ · · · ⊃ Nm ⊃ · · · and Z = F (D) ⊂ F (Nm) 6=
M as D ⊂ Nm for all m ≥ 0, which clearly contains functions without compact
support.

Theorem 3.1. Let h(s) = F (φ) ∈ F (Nm) and m be a non-negative integer.
Then the product h̄(s) and δ(m)(s) exists in Z ′ and

h̄(s) · δ(m)(s) =
m∑

j=0

(−1)m−j(cos(m− j)
π

2

+ i sin(m− j)
π

2
)
(

m

j

) ∫ ∞

−∞
xm−jφ(x)dx δ(j)(s).

Proof. By Definition 3.1

(h̄(s) · δ(m)(s), ψ(s)) = lim
n→∞

(δ(m)(s), (h(s) ∗ δn)ψ(s)).

It follows that

h(s) ∗ δn = (δn(s), h(s + v)) =
∫ ∞

−∞
τn(x)eixvφ(x)dx.

Since φ(x) is locally integrable and τn(x)φ(x) ∈ E ′, we claim from Paley-
Wiener-Schwartz theorem that

∫ ∞

−∞
τn(x)eixvφ(x)dx = F (τnφ) ∈M,

which implies that (h(s) ∗ δn)ψ ∈ Z. Hence

(δ(m)(s), (h(s) ∗ δn)ψ(s))

= (−1)m
m∑

j=0

(
m

j

)
(h(s) ∗ δn)(m−j)(0)ψ(j)(0)
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= (−1)m
m∑

j=0

(
m

j

) ∫ ∞

−∞
τn(x)(ix)m−jφ(x) dxψ(j)(0)

=
m∑

j=0

(−1)m−j

(
m

j

) ∫ ∞

−∞
τn(x)(ix)m−jφ(x)dx (δ(j)(s), ψ(s)) and

lim
n→∞

∫ ∞

−∞
τn(x)(ix)m−jφ(x)dx

= Cm,j

∫ ∞

−∞
xm−jφ(x)dx,

where we define

Cm,j = im−j = cos(m− j)
π

2
+ i sin(m− j)

π

2
.

This completes the proof of Theorem 3.1. ¤

We would like to mention that Theorem 3.1 provides a powerful method
for computing the product h̄(s) · δ(m)(s) when it is difficult to evaluate the
Fourier transform h(s) = F (φ) for φ ∈ Nm. As an example, let us consider
φ(x) = xke−x2 ∈ Nm for some positive integer k. Using identity (5) and
Theorem 3.1, it is possible to derive the following product, although we have
trouble obtaining the Fourier transform h(s) = F (xke−x2

)

h̄(s) · δ(m)(s)

=
1
2

m∑

j=0

(−1)m−jCm,j

(
m

j

)
Γ(

1
2
m− 1

2
j +

1
2
k +

1
2
)(1 + (−1)m−j+k) δ(j)(s).

Remark. Since any ultradistribution in Z ′ is not only infinitely differentiable,
but also expandable or analyzable in the sense that for every g ∈ Z ′

g(s + h) =
∞∑

q=0

g(q)(s)
hq

q!
,

where the series on the right converges in Z ′, and g(s+h) is the ultradistribution
obtained from g(s) by translation through h. Therefore we can easily compute
other products, such as h̄(s) · δ(m)(s+1) and h̄(s) · δ(m)(s−1) by Theorem 3.1.

4. The case of several variables

The Fourier transform of a function φ(x1, x2, . . . , xm) ∈ D(Rm) is defined
by

ψ(s) = ψ(s1, s2, . . . , sm)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
φ(x1, x2, . . . , xm) exp[i(x1s1 + · · ·+ xmsm)]dx1 · · · dxm
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or, more briefly, by

ψ(s) =
∫

Rm

φ(x)ei(x,s)dx,

where (x, s) = x1s1 + · · ·+ xmsm.
The new function ψ(s), defined in Cm, the space of m complex dimensions,

is continuous and analytic in each of its variables sk. If φ(x) vanishes for
|xk| > ak, k = 1, 2, . . . ,m, then ψ(s) satisfies the inequality

(6) |sq1
1 · · · sqm

m ψ(s1, . . . , sm)| ≤ Cq exp (a1| Im s1|+ · · ·+ am| Im sm|).
Conversely, every entire function ψ(s1, s2, . . . , sm) satisfying (6) is the Fourier
transform of some φ(x1, x2, . . . , xm) ∈ D(Rm) which vanishes for |xk| > ak,
k = 1, 2, . . . , m.

The space of all entire functions ψ(s) satisfying inequality (6) with the nat-
ural definitions of the linear operations will be called Z(Rm), i.e.,

Z(Rm) = F (D(Rm)) = {ψ(s) | ∃ φ ∈ D(Rm) and F (φ) = ψ} .

We define the convergence in Z(Rm) as follows. A sequence {ψν(s)} is said
to converge to zero in Z(Rm) if the sequence of the inverse Fourier transforms
converges to zero in D(Rm).

Let τ(x) = τ(x1, x2, . . . , xm) be an infinitely differentiable function satisfying
the following conditions:

(i) τ(x) = 1 for |x| =
√

x2
1 + · · ·+ x2

m ≤ 1, (ii) τ(x) = 0 for |x| ≥ 2.

We build up the sequence τn(x) = τ(
x1

n
,
x2

n
, . . . ,

xm

n
) ∈ D(Rm) and clearly

τn(x)φ(x) converges to φ(x) in D(Rm), which implies that F (τn(x)φ(x)) con-

verges to F (φ(x)) = ψ(s) in Z(Rm). Define δn(s) =
1
2π

F (τn) in Z(Rm), we
have

(δn(s), ψ(s + v)) = (ψ ∗ δn)(v) = F (τn(x)φ(x)) → F (φ(x)) = ψ(s),

therefore (δn(s), ψ(s + v)) converges to ψ(v) in Z(Rm). This gives us

lim
n→∞

(f̃ ∗ δn, ψ) = lim
n→∞

(f̃(v), (δn(s), ψ(s + v))) = (f̃ , ψ)

for arbitrary ψ ∈ Z(Rm) and it follows that {f̃ ∗ δn} is a sequence converging
to f̃ in Z ′(Rm)

Definition 4.1. Let h(s) be a continuous function and let g(s) ∈ Z ′(Rm).
Then the product h̄(s) · g(s) is defined as

(h̄(s) · g(s), ψ) = lim
n→∞

(g(s), (h(s) ∗ δn)ψ)

provided the limit exists.
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Assume N is the set of all nonnegative integers and

Nm = {j = (j1, j2, . . . , jm) | ji ∈ N , 1 ≤ i ≤ m}.
Let |j| = j1+j2+· · ·+jm and xj = xj1

1 xj2
2 · · ·xjm

m . We define the space Np(Rm)
with the normal addition and scalar multiplication as

Np(Rm) =
{

φ(x) | F (φ(x)) is entire on Cm and
∣∣∣∣
∫

Rm

xjφ(x)dx

∣∣∣∣ < ∞
}

for |j| = 0, 1, 2, . . . , |p|. Obviously Np(Rm) is not empty since e−r2 ∈ Np(Rm)
for all p ∈ Nm because

F (e−r2
) =

∫

Rm

eixs−x2
dx = e−

1
4 s2

π
m
2

is an entire function on Cm and∫

Rm

xpe−r2
dx =

1
2
Γ(

1
2
p1 +

1
2
)(1 + (−1)p1) · · · 1

2
Γ(

1
2
pm +

1
2
)(1 + (−1)pm).

is finite.
One can easily extend Theorem 3.1 to the case of several variables and we

leave this for interested readers.
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