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The Products of Distributions on

Manifolds and Invariant Theorem
| C.K. Li*

Abstract. The problem of defining products of distributions on
manifolds has been very difficult since there is a serious lack of de-
finitions for products and powers of generalized functions overall,
although they are in great demand for quantum field theory. Few
results have been obtained so far in the area of interest. In this
paper, we initially study the products, such as f(P)&*)(P) and
f(P,Q)8(PQ), on regular manifolds, where

69 (P), ) = (-1)* [~ wi(4).
P=0
Then utilizing Pizetti’s formula, we compute the product X §(P),
which one is unable to obtain along the differential form approach.
Furthermore, we use the delta sequence and the convolution given on
the P = 0 to derive an invariant theorem, that powerfully converts
the products of distributions on manifolds into the well-defined prod-
ucts of a single variable. Several examples, including the product of
P7(z) and 8% (P(z)), are presented by the invariant theorem.
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Keywords: Invariant theorem, manifold, distribution, product, dif-
ferential form, convolution and Pizetti’s formula

1. Differential Forms

To make this paper as self-contained as possible, we begin to state
Pizetti’s formula and briefly introduce differential forms, which are ex-
tremely helpful in defining distributions on manifolds in an invariant way.
Please refer to reference [1] for detail.

*Partially supported by the Natural Sciences and Engineering Research Council of
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Assume do is the Euclidean area on the unit sphere in R®, and Sg(r) is the
mean value of ¢(z) € D(R™) on the sphere of radius r, defined by

Selr) = g [ dtea)do

where Q, = 277 /T (%) is the hypersurface area of the unit sphere Q. We
can write out the Taylor’s series for S(r), namely

- L anigy,2 L o@k)gy,26
S¢(T) = ¢(0) + ETSQS(O)T +-c 4 (27:-)75@3 (0)7‘ +- -
had LkG0)r2E . .
g?kk!n(n+2)-~~(n+2k—2) A is the Laplacian

which is the well-known Pizetti's formula and it plays an important role in
the work of Li, Aguirre and Fisher [2-8].

A differential form of kth degree on an n-dimensional manifold with coor-
dinates z1,z3,---,Z, is an expression of the form

Z Qiyigeeiy (x)dxixdxiz cee d.’Eik,

where the sum is taken over all possible combinations of & indices. The
coeflicients a;,,..4,(x) are assumed to be infinitely differentiable functions
of the coordinates. Two forms of degree k are considered equal if they are
transformed into each other when products of differentials are transposed
according to the anti-commutation rule

d.’IIid.'ZIj = —-da:jda:i
and all similar terms are collected.

This rule implies that if a term in a differential torm has two differentials
with the same index, it must be zero. It can be used to write any differen-
tial form into canonical form, in which the indices in each term appear in
increasing order. Clearly, the anti-commutation rule hoids for any differen-
tial forms of first degree. Indeed, let & =} aj{z)dzj and § =Y by(z)dzy;
then

aff = Zaj(a:)bk(:z)dxjdzk = - Zaj(:z:)bk(z)dxkdxj = —fa.
ik gk
Let us find how differential forms transform under an infinitely differentiable
change of coordinates given by z; = z;(z},z%, - ,z,). We have

= Oz; , ,
Jj=1 2
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and
a.’IIi Jz;
— . . ____l o e 0 _—lk I .o !
E aj,..; dzi, -+ -dx;, = E E Qi i oy ey - dxl .
. ) ) = oz’ oz’ K
1y < <1 Hn<-<ix J Ji P

In the sum we have obtained, terms in which the same differential occurs
twice will vanish. Different terms containing the same combination of dif-
ferentials can be combined using the anti-commutation rule, which holds
also for the d:c;-. Then it follows that for j; < jo < --- < jp, the coefficient
of drj, -+-dzj, is multiplied by the Jacobian

P ’
]

D(x)il xiz o0 e mikx 2 e I

We thus arrive at

. . ' ' ’
E a,-l...ikdx,-l "'d.’L‘ik = E ajy"jkdle '"'dxjkv

1< o Lige J1<--<Jk

where

! = y A : I. I. s 0 a ! - .
Gy = D, D(&);, Ty -+ w7, - 2 ai
iy <<y

The exterior derivative of a differential form
a= Za’il'“ikdzix -eodry,
is defined as the (k + 1)st degree differential form
da = Z ( aig:—ﬁdxi) dx;, - - dz;,,
o

which, of course, can be simplified by using the anti-commutation rule. Let
a(x) be a scalar function. Then

da(z) = Z 8;? dz;.

i=1

It is easily shown that according to the anti-commutation rule, any differ-
ential form o satisfies the equation '

dda = 0.

Let us assume that
@ = Z a,-l...,-kdzil s d.’l:,‘k
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and the claim holds since

Bzail...ik (:L‘) - 8zail...,‘k (:L‘)
8(6,'61,']' N szax,-

and the anti-commutation rule
da:,-da:j = —dxjdx,-.

Let o be a differential form of degree n — 1 defined on some bounded n-
dimensional region G with a piecewise smooth boundary I'. We assume an
orientation of G corresponding to the positive direction of the normal to I'.

/ /
G r

which is called the Gauss-Ostrogradskii formula.

As an example, consider a second degree form « given below in three di-
mensions

a = a1dz2dz3 + axdradzy + azdzidzs
and its exterior derivative is

da; Bay das
do=(z—+ — + ——)dx:d
o (9331 + 31132 + 8123) 1 .’L‘2d$3,
so that the Gauss-Ostrogradskii formula turns to be

60.1 6(12 6&3

// aldzzd:tg + axdzadz + azdzidzy = / (—- + —+ —)dmlded.’I:g
r G 3121 622 8.’1:3

which is seen in calculus.

2. The Products on Manifolds

We consider a manifold S given by P(x;,x2,--+,2,) =0, where P is
an infinitely differentiable function such that

gradP = {gg—,g—g,,%} #0
on S, which therefore has no singular points.
The differential form w is defined by
dP-w=dv

where dv = dz - -~dz,, and dP is the differential form of P. Note that if
P(z) is the Euclidean distance of z from the P = 0 surface, the differential
form w on S coincides with the Euclidean element of area do on S.
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Since gradP # 0 on S, there exists j (1 < j < n) such that 9P/0z; # 0.
We may introduce a local coordinate system u;, us,---,u, to be

U =2y, -, u5 = Plx), -, up = . (1)

o(2)=[2C)] -

and thus we may set

Then

d:L‘l e dxj_ldxjﬂ .- 'd.'ltn

— (_1}71
w=(-1) 9P]oz;

We naturally define the characteristic function 6(P) for the region P > 0
as

O(P), $(z)) = /P  dla)is

where ¢ € D(R™), and the generalized function §(P) by
6(P), ) = [ o
P=0

As an example, consider the generalized function §(r — c), where r? =
Yo ,z%,and ¢ > 0. The equation r — ¢ = 0 defines the sphere O, of radius
c. Since P — ¢ = 0 is the Euclidean distance from the surface of the sphere,
at 7 = ¢ the differential form w coincides with the Euclidean element of
area dO, on the sphere, so that

(5tr=). &)= [ g0

It was proved in [1] that

89(P) _ 8P
ij - ij

8(P).

We shall first add the folloWing identity, which has never appeared so far,
according to the author’s knowledge

a0(P) _
5P = §(P).
Indeed, 26(P)
9 0
(S5 #(@) = ~(O(P), 556())-
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Since ¢ = ¢(z1, T2, -+, x;(P), -+, zn) by the substitution of (1), we come
to

~(0(P), 26(z)) = ~(0(P), ""”f’ . =" [ 5D s

On the other hand,
(8(P), ¢(z)) = $(z)w.
P=0
Let us assume that P > 0 defines a bounded region. Then we may apply
the Gauss-Ostrogradskii formula to the above integral over this region and

to the differential form of degree n — 1 in the integrand. We also use the
fact that P increases into the interior of the reglon to derive

Hz)w = — /P>0 d(¢(z)w)

P=0
and
04(z) 1 a TN
a8a) = 5 g da 4 65 (Gha = 2D g i
Zj zj 7 Bz

which implies

_ 9¢(z) 1
P=0¢(x)w— /on Oz; P

dzj
Hence the identity holds on any bounded region.
If P > 0 does not define a bounded region, we replace it by its intersection

G g with a sufficiently large ball |z| < R outside of which ¢(z) is known to
vanish. Let I'r be the boundary of Gg, we have

RV R

T r 0% 5

Now since ¢(x) vanishes outside of jz| < R, we arrive at

0¢
Hz)w = — —=dz,
P=0 (=) P20 OP

which completes the proof. ]

It is-well known that in one dimension every functional concentrated
on a point is a linear combination of the delta function and its deriva-
tives. For n > 1, we have a similar role played by generalized functions,
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8(P), §'(P),---, 6®(P) (the derivatives of §(P) with respect to the argu-
ment P), which we shall define based on the differential forms w{¢) given
by

wo(9) = ¢ w,
dwo(¢) = dP - wi(9),

where d denotes the exterior derivative. Now we are able to define

(6®(P), ) = (~1)* L (0

for k=0,1,2,--, since the above integral over the P = 0 surface of any of
the wi(¢) is uniquely determined by P(z). Furthermore, we define gener-
alized function 86(P)/OP as

a _ ¢
(5p0(P), 6) = - /P g

We shall show that 8
Y
6P5(P) = §'(P).

In fact, 5 96
__ [ 9%, __ 99
(ﬁJ(P)v ¢) = L=O an = \/}.)=OWO(3P)E

On the other hand,
- / wi ()
P=0

9., ¢
-7 P=0 —a—p-(ap/axj)dxl.“dxj-ldzj‘*'l.“dxnv

(&'(P), ¢)

il

Since ¢ = ¢(z1,z2,- -, z;(P), -, %n) and OP/dz; is not a function of P,
we imply ;

—Q—(~¢—)dx1--~dz- dziss---dr, = 5 dey - -dasdz;

3P \bP/ox; J-10Fj41 B 8Pog; Tt M1t
. dz,

9¢

3p)

I

wo(
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by choosing the coordinates u; = z;, and u; = P. Under these coordinates

ok ¢
wi(g) = W(m)dﬁ oo dzj_1dT 41 dTp.

This completes the proof. D
Similarly, we can obtain
7]
aP

We now prove the following recurrence relations, identities between §(P)
and its derivatives:

§E(P) = 5+ (P)  fork=1,2,---.

P§(P) =0
P§'(P)+5(P) =0
P§"(P) +26'(P) =0

The first of these is obvious, since the integral of P¢ over the P = 0 surface
clearly vanishes. We now take the derivative with respect to P to get

P§'(P)+6(P)=0
as well as the rest similarly.

Remark. Gel'fand [1] derived the same relations by applying the identity
a opP
—40(P) =6 (P)—
89:,- ( ) § (P)a.’tj’

which is slightly more complicated than our apprcach.

Let us now construct §*)(r —c), where 72 = 3 | z?. We use the spherical
coordinates

r; = rcosb,

T2 = rsinf; cos by,

Z3 = rsin 8 sin 8, cos 03,

Zp-1 =Fsinfysinby---sinf,_5cosb,,4

T, =rsinf;sinfy---sinb,_osinb, .,
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and uy =7, up =6,,---,u, = 0,—1. We obtain
w=r""1dQ

where d = sin® 20;sin® %0, -5in0,_0df; - --dfp—; is the element of
area on the unit sphere r = 1. This gives

k
S (¢ 1)d,

wy = ¢w = ¢r* 1 dQ and wi{¢) = 67‘k(

so that

J(k)(r—c)gbdx = (_1)k/ gi(d’rn_l)dﬂ - (—1)k/ o R
Rn ’ r=1 ork . ¢l 0. ork ¢
where O, is the sphere r — ¢ = 0, and dO, is the Euclidean element of area
of it.

Theorem 2.1. Let f be an infinitely differentiable function. Then the
product f(P)§*)(P) ezists and

k

Z(_l)k—j (I;) f(k—j)(0)5(j)(p)

j=0

k
>o-17 () ot

=0

F(PYSW(P)

Before going into the proof, however, we would like to give out the followmg
product if f(P) = P* by Theorem 2.1.

pta<k>(P)={ (-1 (5)s®-D(P) 1<k,

otherwise
which, of course, generalizes the identity

P§®(P) + k6% -D(P) =0 forall k> 0.

Proof. By the definition

(F(P)S™(P), ¢(z)) = (6 (P), f(P)d(z))
= (-1 / [ o (P)sta)

= l)k/ aPk(fggg(x))dxl"'d$j~1d$j+1"'d$n
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[ < )
= (-1 / s Z( )f‘k P 355 5p/az; 40 i 1de

j=0
dzy,
(RN, G
— k p(k—3) . .
- 2:3( N0 [ S R - dsyadagen
- dzy
k
-3 (’;)(—1)k-ff<k‘f>(0>(6(f>(P), 4(2))
j=0 M/
which completes the proof. O

Remark. Since every functional g of the form
@ 0= [ o@D
5 JP=

where . .
§hr++in

oLt ... dxly’

can be written as the sum of multiplet layers (see {1]), given by

j = (j19j21"‘,jn) and DJ =

9= be(@)s®)(P).
k

We can easily obtain the product f(P)g by Theorem 2.1

We now consider two functions P(z) and Q(z) such that the P = 0 and
Q = 0 hypersurfaces have, as before, no singutar points. Assume further
that these surfaces fail to intersect and that the PQ = 0 surface also has
no singular points. We have '

Theorem 2.2. Let f be an infinitely differentiable function of two variables.
Then the product (P, Q)6{PQ) exists and

f(0,Q)
Q

F(PQ)SPQ) = /50

o(P) + 6(Q).

In particular, we get

P§(PQ)=68(Q) and Q5(PQ) = 6(P),
§(PQ) = Q7'5(P) + P715(Q).
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Proof. Let wp be the differential form corresponding to the P = 0 surface,
wg be the differential form corresponding to the Q = 0 surface and w be
the differential form corresponding to the PQ = 0 surface. Then

wpdP=dv on P=0
wodP=dv on Q=0
wd(PQ) =w(PdQ +QdP)=dv on PQ=0

Now on the P = 0 surface we arrive at
wQdP = dv = wpdP

which implies w = Q 'wp. Similarly, on the Q = 0 surface w = P lwg.
This leads directly to

(F(P,QI(PQ), 9(z)) = (5(PQ), J(P,Q)4(=))
- / F(P,Q)dw + / F(P.Q)duw
P=0 Q=0

= f(0,Q)¢Q 'wp + / f(P,0)pP  wg
0 Q=0

P=
f(0,Q) f(P,0)
(C5e(P) + £54(Q), 9) |
which completes the proof. O

We assume @ is a nonvanishing function. From Q§(PQ) = 6(P) we
obtain §(PQ) = Q~'6(P). Then the derivative with respect to P gives

Q8'(PQ) = Q7'¢'(P) implying &'(PQ) = Q72§'(P).
In a similar way, we have fot any k > 0 and Q # 0 that
§B(PQ) = Q=+ (p). 2)
To end this section, we shall apply Pizetti’s formula to compute the product
' X&(P) (obviously different from all the above products), where X = Zn:zi

=1

and P is the unit sphere given by r = 1.

Setting ¥(z) = X ¢(z), we use the fact that w = do (Euclidean area) on P

to get
(X8(P), (@) = (6(P), Xo(a)) = [ Xo(ohw

= P(z)do = QpSy(1).
P=0
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iy Pizetti’s formula given in Section 1, we come to

So1) = $(0) + " (0) + -+ b O0) + -+ and
(2K)18%9(0)
2Eln(n+2)-(n+2k-2)

Y(0) =
It follows from ¥(0) = 04(0) = 0 that

A*p(0)
2)- - (n+2k—2)

(X6(P), ¢(z)) = Qn ); 2% kln(n +

In order to calculate A¥)(0), we claim for k > 0 that
AFFY X @) = 2(k + 1) VARG + X AR g
where V = 8/0z; + - - - + 8/8z,,.

We use an inductive method to prove it. It is obviously true for k£ = 0.

Assume k = 1, we have

A (wig) = 42

D¢+ 3 A%
ax,-

simply by calculating the left-hand side. Hence
AN X P) = AVAY + X D3¢
By hypothesis, it holds for the case of k — 1, that is
AF(X @) = 26V 1o + X A,

Hence it follows that

AR X ) = AN (X ) = A(RKVAF~ ¢+ X Ak g)
= 2kVAFG + A(X LF)
=2(k+1)VA*S + X AFF14.
By the claim we have
AFP(0) = 26VAFT1(0) = —2k(A* 1V (), ().

Finally, .
1nally, X(S(P) g i AkV5(I)
- nk=02’°k!n(n+2)---(n+2k)'
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Remark. By equation (2) we can easily derive the product X§(r2—1) since
1
8(r2—1) = 55(1’ - 1).

In 1991, Aguirre expressed distribution 6®)(r — 1) in terms of an
infinite sum of linear combinations of A!§ (see [9]). Therefore, it would
not be hard to compute the product X §%)(r —1). However, an interesting
problem is how to deduce general products X'6(*)(r — 1) for integers [ and
k > 0. The author leaves this for interested readers.

3. Invariant Theorem

In order to obtain more complicated products defined on manifolds,
such as the product of Pt and §(¥)(P), where

(ﬂq¢ﬁiLNPWﬂ¢@M&

we need the following invariant theorem, which computes the products of
distributions on manifolds based on the products of a single variable.

Let p(z) be a fixed infinitely differentiable function on R with four
properties

(i) p(z) 2 6,

(i) p(z) = 0 for |z > 1,
(iti) p(z) = p(-=),

(iv) S, ple)dz =1

Obviously, Temple sequence &,, (a:) = mp(mz) is an infinitely differentiable
sequence converging to § in D’(R). Let f be an arbitrary distribution in
D'(R), we define

Jm(z) = (f % 8n)(z) = (f(t), Sm(z —1))

form =1,2,---. It follows that {f,(z)} is a regular sequence converging to
the distribution f in D'(R). The definition of the product of a distribution
and an infinitely differentiable function is the following (see for example

(1)-

Definition 3.1. Let f be a distribution in D'(R) and let g be an infinitely
differentiable function. Then the product fg is defined by

(fg, ) = (f, 99)
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for all functions ¢ in D(R).

We use the following definition [10] for the commutative neutrix products
of distributions in a single variable.

Definition 3.2. Let f and g be distributions in D'(R) and let f,(z) =
(f *6.)(z) and gm(z) = (g*dm)(x). We say that the commutative neutrix
product fo g of f and g exists and is equal to A if

N = lim 2{(fng, )+ (fom B} = (b 9

for all function ¢ € D(R), where N is the neutrix [11] having domain
N’ ={1,2,---} and range the real numbers, with negligible functions that
are finite linear sums of functions

m*n""lm, In"m (A>0, r=1,2,---)

and all functions of m that converge to zero in the normal sense as m
tends to infinity. If the normal limit exists, then it is simply called the
commutative product.

To see Definition 3.2 extends Definition 3.1, we let g be a C* function.
Clearly, g,n¢ has an uniform support and converges to g¢ in D(R). For any
f in D'(R), we imply that

(fog, @)= N = lim_>{(fng, §)+ (fm, &)}
= N = lm (s 98)+ (F, am®)} = (s 06) = (5, 6).

Let f(t) be a distribution of one variable and P be given as in Section
2. We define for ¢ € D{R™) (see [12]) that

(F(P), ¢(=)) = (f(2), ¥(1))

where

P(t) =f ¢(z)w and dP-w=dv.
P(z)=t

Clearly ¥(t) € D(R), since there is at least one unbounded z; when ¢ is
large, which implies that ¢ vanishes.

As an example, we consider the functional 7* defined by

&= [ P ©)
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for ReA > —n. Using the spherical coordinates in Equation (3), we write

,rz\ — ® A n-1 -
(%, 8) /0 T {/QdJ(rw)r da}d

= -/:o r'\{L ¢(re)w}dr = (r, /(;(ﬁ(rw)w),

where Q is the unit sphere.

As we will see, the sequence 6,,(P) plays an important role in ‘obtaining
the invariant ‘theorem. First, we claim that lim,, .o 6m (P(z)) = §(P(x)).
Indeed,

lim_ (Gn(P()), 6(@) = Tim (5n(t), $(0)) = (6(0), ¥(0) = ((P(2)), (=)
Let f be a distribution of one variable. The convolution f(P(z)) * ¢ is
defined by -

fPey-o= [ e [
where ¢ € D(R™).

Influenced by Aguirre’s work in [12], we shall show that & (P(z))*¢ =
1) holds locally for ¢ € D(R™), under the condition that dP/8z; = 1 for
some 1 (1 <i<n). In fact,

¢(z - IL')(A),
(z)=t

6n(P@) b &) = ([ dn)et [ e =, o)

z):t

- f ) /_ Z Sm(t)dt /P Ve dtais
_ [ O; S (t)dt /P o | e

which is permissible by Fubini’s theorem. Hence,

(Bm(P@))* 9, ¢) = / " sm(t)dt /P
= (6 (P(@)), (@ * )21, - -, 0)).

Making substitution u; = z1,---,u; = P(z), -+, u, = 7, locally and using
OP/8z; = 1 (thus the Jacobian = 1), we arrive at

(5m(P(x))) (d) * ¢)(:L‘1, ce axn)) = (5m(ui)v (¢1 * (/171)(“11 cee 7un))
= (6mlus) * P1(ur, -+, ua), d1{us, -+, un)).

(¢ * P)w
(z)=t
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Since liMm—oo Om (i) * Y1{u1, -+~ un) = Y1 (1, - -, uz), we imply
Jim (6 (P(2)) * ¢, ¢) = ($1(u1,*++  ua), dr(ur, -+, un))
= (¥(z1,+*, Za), (21,1 Zn));
which completes the proof. 0
In particular, we have
§(zi + Pi(z1,, Tic1, Tit1, - o &) * P(z) = P(z) for i=1,2,---,n
where P; is any infinitely differentiable function.

Next, we shall prove that lim,, .o 6 (P(z)) * f(P(z)) = f(P(z)) if fisa
distribution of a single variable and P is regular. Consider

(Om(P(z)) * f(P(x)), ¢(x))

= /Ru/ f(t)dt/ . om(z — T) w §(z)dx

/ f® dt/;(z) t/ Om(z — 2)¢p(z)dz w.

/Rn dm(z — z)¢p(x)dz

converges to ¢(z) in D(R™) as m — oo by the four properties of p(z).
Therefore,

Since the sequence

iy (6 (P(a) * J(P(@)), ¢ = [ " fw [ otew
m—eo —00 P(z)=t
= (f(P(x)), ¢(x)),

which completes the proof. ' }

Definition 3.3. Let f(t) and g(t) be distributions of one variable and let
P(z) be a regular (n — 1} dimensional manifold. Then the commutative
neutrix product f(P(z)) o g(P(x)) of f(P(z)) and g(P(z)) is defined as

(/(P@) 0 9(P(z)), $)
=N~ lim {((f(P@)) *6(P))s(P(a)), 6)
+(F(P@)(9(P()) * (P (), $)}

if the left-hand side limit exists for all function ¢ € D(R™). If the normal
limit exists, then it is simply called the commutative product.
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Theorem 3.1 (Invariant Theorem.) Assume P(z) is a regular (n — 1)
dimensional manifold and the commutative neutriz product h(t) = f(t)og(t)
exists. Then the commutative neutriz product f(P(z)) o g(P(x)) also exists
and

f(P(z)) ¢ g(P(z)) = h(P(z)).
Proof. It follows from Definition 3.3 that

(F(P()) 0 9(P(a)), )

=N lim L{((P@) * 6n(PEN)e(P(a)), )
HPE) (P * 5n(P@)), 6))
= N~ lim {700 * 6n(6)), $(1)
HalO((O) 6 (0), B0
= (), ¥(0)) = ((P(2)), $(a),

where

(1) = / dz)w for o(x)e DR,
P(z)=t

which completes the proof. 0

As a simple example to use the invariant theorem, we let P(z) = z;+z3+1,
which is obviously regular. The functional 8(P) is given by

0(P), $(z)) = /

z1+z24120

B(z1, w0)dz = / b(z1, z9)do

zy4+ze2>2—1

and the functional §(P) is defined as

(6(P), ¢(z)) = /

Ti+z2+1=0

$(z1, T2)w = /¢("1 = T3, T2)dTs.
It was proved in [7] that
8(t) 0 () = %5(0,

which implies
8(P) o 6(P) = %5(13)

by the invariant theorem. Note that it seems infeasible to compute this
product along the differential form approach discussed in Section 2.
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Using the invariant theorem, we can easily get Theorem 2.1, since by
Definition 3.1

'k

>ot-041(5) =m0

j=0

k

S (-1 (’;) FO©)5% ),
j=0

if f(t) is an infinitely differentiable function of one variable, and the fact
Definition 3.2 extends Definition 3.1.

]

F()6® (@)

Applying Definition 3.2, one can derive that the product z% o 5tk (2
exists and :
(=" (r+ k)

2k!
for r,k =0,1,2,---. In particular, we have (z) 0 6)(z) = 6()(x)/2 since
z% = 6(z).

Let P(z) be a regular (n — 1) dimensional manifold. It follows from
equation (4) and the invariant theorem that

2, 0 5 (z) = §®) () (4)

Py (a) 0 6+9(P(a)) = LI HD)

0(P(z)) 0 6 (P(z)) = 6™ (P(x))/2.

§M(P(z)),

However, the differential form method is clearly unable to carry out these
products since PJ(x) is discontinuous with respect to the argument P.
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