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Abstract

Let f be a C1 function on R and P be a quadratic form defined by PðxÞ ¼ P ðx1; x2; . . . ; xmÞ ¼ x2
1 þ � � � þ

x2
p � x2

pþ1 � � � � � x2
pþq with p + q = m. In this paper, we mainly show that� �
0096-3

doi:10

* Co
E-m
f ðPÞ � dðkÞðPÞ ¼
Xk

i¼0

k

i
f ðiÞð0Þdðk�iÞðP Þ;
where d(k)(P) is given by
ðdðkÞðP Þ;/Þ ¼ ð�1Þk
Z 1

0

o

2ror

� �k

rp�2 wðr; sÞ
2

� �" #
r¼s

sq�1 ds:
In particular, we have
P n � dðkÞðP Þ ¼ n!
k

n

� �
dðk�nÞðPÞ if k P n;

0 if k < n;

8<
:

which solves a problem raised by Li in 2004.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Physicists have long been using so-called singular functions such as d, although these can not be properly
defined within the framework of classical function theory. In elementary particle physics, one [14] finds the
need to evaluate d2 when calculating the transition rates of certain particle interactions. In [6], a definition
003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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for product of distributions is given using delta sequences. However, d2 as a product of d with itself is shown
not to exist. In [7], Bremermann used the Cauchy representations of distributions with compact support to
define

ffiffiffiffiffiffi
dþ
p

and log d+. Unfortunately, his definition does not carry over to
ffiffiffi
d
p

and log d. Fisher, with his col-
laborators [8–13], has actively used Jones’ d-sequence and Van der Corput’s neutrix limit [19] (in order to
abandon unwanted infinite quantities from asymptotic expansions) to deduce numerous products, powers,
convolutions and compositions of distributions on R since 1969.

To extend multiplications from one-dimensional to m-dimensional, Li [16,17] constructed a workable
d-sequence on Rm by dn(x) = cmnmq(n2r2), where q(s) is a fixed infinitely differentiable function defined on
R+ = [0,1) having the properties:

(i) q(s) P 0,
(ii) q(s) = 0 for s P 1,

(iii)
R

Rm dnðxÞdx ¼ 1

and obtained non-commutative neutrix products such as r�k Æ$d as well as r�k ÆDld, where D denotes the
Laplacian. Aguirre [1] used the Laurent series expansion of rk and derived a more general product r�k Æ$(Dld)
by calculating the residue of rk. His approach is an interesting example of using complex analysis to obtain
products of distribution on Rm [2–5].

The problem of defining products of distributions on a manifold (such as the unit sphere) has been a serious
challenge since Gel’fand introduced special types of generalized functions, such as P k

þ and d(k)(P). Aguirre [3]
employed the Taylor expansion of distribution d(k�1)(m2 + P) and gave a meaning of the product
d(k�1)(m2 + P) Æd(l�1)(m2 + P). Li [18] applied the expansion formula stated below:
Z
X

o
k

ork
/ðrxÞdx ¼ ð�1Þk

Xk

i¼0

k

i

� �
Cðm; iÞdðk�iÞðr � 1Þ;/ðxÞ

 !
to evaluate the product of f(r) and d(k)(r � 1) on the unit sphere of Rm with the condition k 6 m � 1.
The objective of this paper is to use a much simpler method of deriving the product of f(r) Æd(k)(r � 1) for all

k and further study a more general product f(H) Æd(k)(H), where H is a regular hypersurface. In Section 4, we
find the product Pn Æd(k)(P), which is an open problem in [18], as well as a general product f(P) Æd(k)(P) where f

is a C1 function on R.

2. The product f(r) Æd(k)(r � 1)

Let r ¼ ðx2
1 þ x2

2 þ � � � þ x2
mÞ

1
2. The distribution d(k)(r � 1) focused on the unit sphere X of Rm is defined

by
ðdðkÞðr � 1Þ;/Þ ¼ ð�1Þk
Z

X

ok

ork
½/ðrxÞrm�1�dx
where / is a Schwartz testing function.

Theorem 1. Let f(x) be a smooth function at x = 1. Then the product f(r) Æd(k)(r � 1) exists and
f ðrÞ � dðkÞðr � 1Þ ¼
Xk

j¼0

ð�1Þj
k

j

� �
f ðjÞð1Þdðk�jÞðr � 1Þ
for any non-negative integer k.

Proof. Obviously, we have for any testing function /
ðf ðrÞ � dðkÞðr � 1Þ;/Þ ¼ ð�1Þk
Z

X

o
k

ork
½/ðrxÞf ðrÞrm�1�dx:
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It follows that
ok

ork
½/ðrxÞf ðrÞrm�1� ¼

Xk

j¼0

k

j

� �
oj

orj
f ðrÞ

� �
ok�j

ork�j
ð/ðrxÞrm�1Þ

� �
:

Thus,
ðf ðrÞ � dðkÞðr � 1Þ;/Þ ¼
Xk

j¼0

ð�1Þj
k

j

� �
f ðjÞð1Þð�1Þk�j

Z
X

ok�j

ork�j
½/ðrxÞrm�1�dx

¼
Xk

j¼0

ð�1Þj
k

j

� �
f ðjÞð1Þðdðk�jÞðr � 1Þ;/Þ;
which completes the proof of theorem. h

In particular, we have
ðr � 1Þn � dðkÞðr � 1Þ ¼ �1nn!
k

n

� �
dðk�nÞðr � 1Þ if k P n;

0 otherwise;

8<
:

which is a nicer and simpler result than the one in [18].
Choosing f(r) = sinr, we get
sin r � dðkÞðr � 1Þ ¼
Xk

j¼0

ð�1Þj
k

j

� �
sin 1þ j

p
2

	 

dðk�jÞðr � 1Þ:
Clearly for k = 0,1, we have
f ðrÞ � dðr � 1Þ ¼ f ð1Þdðr � 1Þ and

f ðrÞ � d0ðr � 1Þ ¼ f ð1Þd0ðr � 1Þ � f 0ð1Þdðr � 1Þ;
respectively.
If f(r) = 1/r, we arrive at
1

r
� dðkÞðr � 1Þ ¼

Xk

j¼0

k

j

� �
j!dðk�jÞðr � 1Þ:
To end this section, we would like to point out that following a similar approach to that of Theorem 1 one can
carry out the product of f(r) and d(k)(r2 � 1), where
ðdðkÞðr2 � 1Þ;/Þ ¼ ð�1Þk

2

Z
X

o

2ror

� �k

ð/rm�2Þdx:
3. The product f(H) Æd(k)(H)

Let H(x1,x2, . . . ,xm) be any sufficiently smooth function such that on H = 0 we have
gradH 6¼ 0;
which means that there are no singular points on H = 0. Then the generalized function d(H) can be defined in
the following way:
ðdðHÞ;/Þ ¼
Z

P¼0

wð0; u2; . . . ; umÞdu2 � � � dum;
where /1(u1, . . . ,um) = /(x1, . . . ,xm) and w ¼ /1ðuÞD
x
u

� �
.
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Similarly, we shall define
ðdðkÞðHÞ;/Þ ¼ ð�1Þk
Z

P¼0

wðkÞu1
ð0; u2; . . . ; umÞdu2 � � � dum:
As an example, we consider the generalized function d(a1x1 + � � � + amxm), where
Pm

i¼1a
2
i ¼ 1. The equation
a1x1 þ � � � þ amxm ¼ 0
determines a hypersurface which passes through the origin and is orthogonal to the unit vector a. Making the
substitution
u1 ¼ a1x1 þ � � � þ amxm; u2 ¼ x2; . . . ; um ¼ xm;
we thus arrive at Z

ðdða1x1 þ � � � þ amxmÞ;/Þ ¼ P

aixi¼0

/du2 � � � dum:
Theorem 2. Let f be a C1 function and let H be defined as above. Then the product f(H) Æd(k)(H) exists and
f ðHÞ � dðkÞðHÞ ¼
Xk

i¼0

k

i

� �
ð�1Þif ðiÞð0Þdðk�iÞðHÞ:
Proof. Using the substitutions u1 = H(x1, . . . ,xm), u2 = x2, . . . ,um = xm, we arrive at
ðf ðHÞ � dðkÞðHÞ;/Þ ¼ ð�1Þk
Z

H¼0

o
k

ouk
1

f ðu1Þ/1D
x

u

� �� �����
u1¼0

du2 � � � dum
and
o
k

ouk
1

f ðu1Þ/1D
x

u

� �� �����
u1¼0

¼
Xk

i¼0

k

i

� �
f ðiÞð0ÞDk�i

u1
/1D

x

u

� �����
u1¼0

:

Hence,
ðf ðHÞ � dðkÞðHÞ;/Þ ¼ ð�1Þk
Xk

i¼0

k

i

� �
f ðiÞð0Þ

Z
H¼0

o
k�i

ouk�i
1

/1D
x

u

� �����
u1¼0

du2 � � � dum

¼
Xk

i¼0

k

i

� �
ð�1Þif ðiÞð0Þðdðk�iÞðHÞ;/Þ;
which completes the proof of theorem. h

In particular, we have
H � d0ðHÞ ¼ �dðHÞ;
H 2 � d0ðHÞ ¼ 0:
4. The product Pn Æd(k)(P)

Assume that both p > 1 and q > 1. Let P be a quadratic form defined by P ðxÞ ¼ P ðx1; x2; . . . ; xmÞ ¼ x2
1þ

� � � þ x2
p � x2

pþ1 � � � � � x2
pþq with p + q = m, then the P = 0 hypersurface is a hypercone with a singular point

(the vertex) at the origin.
We start by assuming that /(x) vanishes in a neighborhood of the origin. The distribution d(k)(P) is defined

by
ðdðkÞðP Þ;/Þ ¼ ð�1Þk
Z

o
k

oP k

1

2
/ðr2 � P Þ

1
2ðq�2Þ

� �����
P¼0

rp�1 dr dXðpÞ dXðqÞ;
which is convergent.
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Furthermore, if we transform from P to s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � P
p

we note that o/oP = �(2s)�1o/os, and we may write
this in the form
ðdðkÞðP Þ;/Þ ¼
Z

o

2sos

� �k

sq�2 /
2

� �" #
s¼r

rp�1 dr dXðpÞdXðpÞ:
Let us now define
wðr; sÞ ¼
Z

/dXðpÞ dXðpÞ:
Hence,
ðdðkÞðP Þ;/Þ ¼
Z 1

0

o

2sos

� �k

sq�2 wðr; sÞ
2

� �" #
s¼r

rp�1 dr:
Theorem 3. The product Pn and d(k)(P) exists and
P n � dðkÞðP Þ ¼ n!
k

n

� �
dðk�nÞðP Þ if k P n;

0 if k < n:

8<
:

Proof. We start with
ðP n � dðkÞðP Þ;/Þ ¼ ð�1Þk
Z

o
k

oP k P n 1

2
/ðr2 � P Þ

1
2ðq�2Þ

� �����
P¼0

rp�1 dr dXðpÞdXðqÞ

¼
Z 1

0

o

2sos

� �k

ðr2 � s2Þnsq�2 wðr; sÞ
2

� �" #
s¼r

rp�1 dr:
Making the substitutions u = r2 and v = s2, we have
o

2sos
¼ 1

2s
2s

o

ov
¼ o

ov
;

which leads us to
ðP n � dðkÞðP Þ;/Þ ¼ 1

4

Z 1

0

o

ov

� �k

ðu� vÞnv
q�2

2 w1ðu; vÞ
n o" #

u¼v

u
p�2

2 du:
Clearly,
ok

ovk
ðu� vÞnv

q�2
2 w1ðu; vÞ

n o����
u¼v

¼
Xk

i¼0

k

i

 !
Di

vðu� vÞnDk�i
v v

q�2
2 w1ðu; vÞ

n o�����
u¼v

¼
X
i<n

k

i

 !
Di

vðu� vÞnDk�i
v v

q�2
2 w1ðu; vÞ

n o�����
u¼v

þ
X
i¼n

k

i

 !
Di

vðu� vÞnDk�i
v v

q�2
2 w1ðu; vÞ

n o�����
u¼v

þ
X
i>n

k

i

 !
Di

vðu� vÞnDk�i
v v

q�2
2 w1ðu; vÞ

n o�����
u¼v

¼ I1 þ I2 þ I3;
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where Di
v ¼ o=ovi. It follows that
I1 ¼ I2 ¼ 0
since i 5 n. As for I2, we arrive at
I2 ¼
ð�1Þnn!

k

n

� �
Dk�n

v v
q�2

2 w1ðu; vÞ
n o���

u¼v
if k P n;

0 if k < n:

8<
:

Substituting I2 back and using
ðdðk�nÞðP Þ;/Þ ¼ ð�1Þk�n
Z

ok�n

oP k�n

1

2
/ðr2 � P Þ

1
2ðq�2Þ

� �����
P¼0

rp�1 dr dXðpÞ dXðqÞ;
we obtain
P n � dðkÞðP Þ ¼ n!
k

n

� �
dðk�nÞðP Þ if k P n;

0 if k < n;

8<
:

which completes the proof of theorem. h

Remark. We assumed that / disappears in a neighborhood of the origin, so that the integrals in the proof of
Theorem 3 converge for any k. However, if k < 1

2
ðp þ q� 2Þ, these integrals will converge for any /. If, on the

other hand, k P 1
2
ðp þ q� 2Þ, we can apply an identical approach on ðdðkÞ1 ðP Þ;/Þ and ðdðkÞ2 ðPÞ;/Þ (see [15]) and

the results still follow.
Obviously, we can extend Theorem 3 to a more general product in the following:

Theorem 4. Let f be a C1 function on R. Then the product f(P) and d(k)(P) exists and
f ðP Þ � dðkÞðPÞ ¼
Xk

i¼0

k

i

� �
f ðiÞð0Þdðk�iÞðP Þ:
Proof. It follows by replacing Pn by f(P) in the proof of Theorem 3 and noting that
ok

ovk
f ðu� vÞv

q�2
2 w1ðu; vÞ

n o����
u¼v

¼
Xk

i¼0

k

i

 !
Di

vf ðu� vÞDk�i
v v

q�2
2 w1ðu; vÞ

n o�����
u¼v

¼
Xk

i¼0

k

i

 !
ð�1Þif ðiÞð0ÞDk�i

v v
q�2

2 w1ðu; vÞ
n o���

u¼v
:

In particular, we have
sin P � dðkÞðP Þ ¼
Xk

i¼0

k

i

 !
sin

ip
2

dðk�iÞðP Þ;

eP � dðkÞðPÞ ¼
Xk

i¼0

k

i

 !
dðk�iÞðP Þ: �
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