The distributional products of particular distributions

M.A. Aguirre ${ }^{\text {a }}$, C.K. Li ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Núcleo Consolidado de Matemática Pura y Aplicada Facultad de Ciencias Exactas, UNCentro, Pinto 399, 7000 Tandil, Argentina
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Brandon University, Brandon, Man., Canada R7A 6 A9

Abstract

Dedicated to Professor H.M. Srivastava on the occasion of his 65th birthday

Abstract

Let f be a C^{∞} function on R and P be a quadratic form defined by $P(x)=P\left(x_{1}, x_{2}, \ldots, x_{m}\right)=x_{1}^{2}+\cdots+$ $x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}$ with $p+q=m$. In this paper, we mainly show that

$$
f(P) \cdot \delta^{(k)}(P)=\sum_{i=0}^{k}\binom{k}{i} f^{(i)}(0) \delta^{(k-i)}(P)
$$

where $\delta^{(k)}(P)$ is given by

$$
\left(\delta^{(k)}(P), \phi\right)=(-1)^{k} \int_{0}^{\infty}\left[\left(\frac{\partial}{2 r \partial r}\right)^{k}\left\{r^{p-2} \frac{\psi(r, s)}{2}\right\}\right]_{r=s} s^{q-1} \mathrm{~d} s
$$

In particular, we have

$$
P^{n} \cdot \delta^{(k)}(P)= \begin{cases}n!\binom{k}{n} \delta^{(k-n)}(P) & \text { if } k \geqslant n \\ 0 & \text { if } k<n\end{cases}
$$

which solves a problem raised by Li in 2004.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Particular distribution; δ-function; Product and quadratic form

1. Introduction

Physicists have long been using so-called singular functions such as δ, although these can not be properly defined within the framework of classical function theory. In elementary particle physics, one [14] finds the need to evaluate δ^{2} when calculating the transition rates of certain particle interactions. In [6], a definition

[^0]for product of distributions is given using delta sequences. However, δ^{2} as a product of δ with itself is shown not to exist. In [7], Bremermann used the Cauchy representations of distributions with compact support to define $\sqrt{\delta_{+}}$and $\log \delta_{+}$. Unfortunately, his definition does not carry over to $\sqrt{\delta}$ and $\log \delta$. Fisher, with his collaborators [8-13], has actively used Jones' δ-sequence and Van der Corput's neutrix limit [19] (in order to abandon unwanted infinite quantities from asymptotic expansions) to deduce numerous products, powers, convolutions and compositions of distributions on R since 1969 .

To extend multiplications from one-dimensional to m-dimensional, Li $[16,17]$ constructed a workable δ-sequence on R^{m} by $\delta_{n}(x)=c_{m} n^{m} \rho\left(n^{2} r^{2}\right)$, where $\rho(s)$ is a fixed infinitely differentiable function defined on $R^{+}=[0, \infty)$ having the properties:
(i) $\rho(s) \geqslant 0$,
(ii) $\rho(s)=0$ for $s \geqslant 1$,
(iii) $\int_{R^{m}} \delta_{n}(x) \mathrm{d} x=1$
and obtained non-commutative neutrix products such as $r^{-k} \cdot \nabla \delta$ as well as $r^{-k} \cdot \Delta^{l} \delta$, where Δ denotes the Laplacian. Aguirre [1] used the Laurent series expansion of r^{λ} and derived a more general product $r^{-k} \cdot \nabla\left(\Delta^{l} \delta\right)$ by calculating the residue of r^{λ}. His approach is an interesting example of using complex analysis to obtain products of distribution on $R^{m}[2-5]$.

The problem of defining products of distributions on a manifold (such as the unit sphere) has been a serious challenge since Gel'fand introduced special types of generalized functions, such as P_{+}^{λ} and $\delta^{(k)}(P)$. Aguirre [3] employed the Taylor expansion of distribution $\delta^{(k-1)}\left(m^{2}+P\right)$ and gave a meaning of the product $\delta^{(k-1)}\left(m^{2}+P\right) \cdot \delta^{(l-1)}\left(m^{2}+P\right)$. Li [18] applied the expansion formula stated below:

$$
\int_{\Omega} \frac{\partial^{k}}{\partial r^{k}} \phi(r \omega) \mathrm{d} \omega=(-1)^{k}\left(\sum_{i=0}^{k}\binom{k}{i} C(m, i) \delta^{(k-i)}(r-1), \phi(x)\right)
$$

to evaluate the product of $f(r)$ and $\delta^{(k)}(r-1)$ on the unit sphere of R^{m} with the condition $k \leqslant m-1$.
The objective of this paper is to use a much simpler method of deriving the product of $f(r) \cdot \delta^{(k)}(r-1)$ for all k and further study a more general product $f(H) \cdot \delta^{(k)}(H)$, where H is a regular hypersurface. In Section 4, we find the product $P^{n} \cdot \delta^{(k)}(P)$, which is an open problem in [18], as well as a general product $f(P) \cdot \delta^{(k)}(P)$ where f is a C^{∞} function on R.

2. The product $f(r) \cdot \delta^{(k)}(r-1)$

Let $r=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{m}^{2}\right)^{\frac{1}{2}}$. The distribution $\delta^{(k)}(r-1)$ focused on the unit sphere Ω of R^{m} is defined by

$$
\left(\delta^{(k)}(r-1), \phi\right)=(-1)^{k} \int_{\Omega} \frac{\partial^{k}}{\partial r^{k}}\left[\phi(r \omega) r^{m-1}\right] \mathrm{d} \omega
$$

where ϕ is a Schwartz testing function.
Theorem 1. Let $f(x)$ be a smooth function at $x=1$. Then the product $f(r) \cdot \delta^{(k)}(r-1)$ exists and

$$
f(r) \cdot \delta^{(k)}(r-1)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} f^{(j)}(1) \delta^{(k-j)}(r-1)
$$

for any non-negative integer k.
Proof. Obviously, we have for any testing function ϕ

$$
\left(f(r) \cdot \delta^{(k)}(r-1), \phi\right)=(-1)^{k} \int_{\Omega} \frac{\partial^{k}}{\partial r^{k}}\left[\phi(r \omega) f(r) r^{m-1}\right] \mathrm{d} \omega .
$$

It follows that

$$
\frac{\partial^{k}}{\partial r^{k}}\left[\phi(r \omega) f(r) r^{m-1}\right]=\sum_{j=0}^{k}\binom{k}{j}\left[\frac{\partial^{j}}{\partial r^{j}} f(r)\right]\left[\frac{\partial^{k-j}}{\partial r^{k-j}}\left(\phi(r \omega) r^{m-1}\right)\right] .
$$

Thus,

$$
\begin{aligned}
\left(f(r) \cdot \delta^{(k)}(r-1), \phi\right) & =\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} f^{(j)}(1)(-1)^{k-j} \int_{\Omega} \frac{\partial^{k-j}}{\partial r^{k-j}}\left[\phi(r \omega) r^{m-1}\right] \mathrm{d} \omega \\
& =\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} f^{(j)}(1)\left(\delta^{(k-j)}(r-1), \phi\right),
\end{aligned}
$$

which completes the proof of theorem.
In particular, we have

$$
(r-1)^{n} \cdot \delta^{(k)}(r-1)= \begin{cases}-1^{n} n!\binom{k}{n} \delta^{(k-n)}(r-1) & \text { if } k \geqslant n \\ 0 & \text { otherwise }\end{cases}
$$

which is a nicer and simpler result than the one in [18].
Choosing $f(r)=\sin r$, we get

$$
\sin r \cdot \delta^{(k)}(r-1)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \sin \left(1+j \frac{\pi}{2}\right) \delta^{(k-j)}(r-1) .
$$

Clearly for $k=0,1$, we have

$$
\begin{aligned}
& f(r) \cdot \delta(r-1)=f(1) \delta(r-1) \quad \text { and } \\
& f(r) \cdot \delta^{\prime}(r-1)=f(1) \delta^{\prime}(r-1)-f^{\prime}(1) \delta(r-1),
\end{aligned}
$$

respectively.
If $f(r)=1 / r$, we arrive at

$$
\frac{1}{r} \cdot \delta^{(k)}(r-1)=\sum_{j=0}^{k}\binom{k}{j} j!\delta^{(k-j)}(r-1) .
$$

To end this section, we would like to point out that following a similar approach to that of Theorem 1 one can carry out the product of $f(r)$ and $\delta^{(k)}\left(r^{2}-1\right)$, where

$$
\left(\delta^{(k)}\left(r^{2}-1\right), \phi\right)=\frac{(-1)^{k}}{2} \int_{\Omega}\left(\frac{\partial}{2 r \partial r}\right)^{k}\left(\phi r^{m-2}\right) \mathrm{d} \omega .
$$

3. The product $f(H) \cdot \delta^{(k)}(H)$

Let $H\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be any sufficiently smooth function such that on $H=0$ we have

$$
\operatorname{grad} H \neq 0
$$

which means that there are no singular points on $H=0$. Then the generalized function $\delta(H)$ can be defined in the following way:

$$
(\delta(H), \phi)=\int_{P=0} \psi\left(0, u_{2}, \ldots, u_{m}\right) \mathrm{d} u_{2} \cdots \mathrm{~d} u_{m},
$$

where $\phi_{1}\left(u_{1}, \ldots, u_{m}\right)=\phi\left(x_{1}, \ldots, x_{m}\right)$ and $\psi=\phi_{1}(u) D\binom{x}{u}$.

Similarly, we shall define

$$
\left(\delta^{(k)}(H), \phi\right)=(-1)^{k} \int_{P=0} \psi_{u_{1}}^{(k)}\left(0, u_{2}, \ldots, u_{m}\right) \mathrm{d} u_{2} \cdots \mathrm{~d} u_{m}
$$

As an example, we consider the generalized function $\delta\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right)$, where $\sum_{i=1}^{m} \alpha_{i}^{2}=1$. The equation

$$
\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}=0
$$

determines a hypersurface which passes through the origin and is orthogonal to the unit vector α. Making the substitution

$$
u_{1}=\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}, \quad u_{2}=x_{2}, \ldots, u_{m}=x_{m},
$$

we thus arrive at

$$
\left(\delta\left(\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}\right), \phi\right)=\int_{\sum_{\alpha_{i} x_{i}=0}} \phi \mathrm{~d} u_{2} \cdots \mathrm{~d} u_{m} .
$$

Theorem 2. Let f be a C^{∞} function and let H be defined as above. Then the product $f(H) \cdot \delta^{(k)}(H)$ exists and

$$
f(H) \cdot \delta^{(k)}(H)=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} f^{(i)}(0) \delta^{(k-i)}(H) .
$$

Proof. Using the substitutions $u_{1}=H\left(x_{1}, \ldots, x_{m}\right), u_{2}=x_{2}, \ldots, u_{m}=x_{m}$, we arrive at

$$
\left(f(H) \cdot \delta^{(k)}(H), \phi\right)=\left.(-1)^{k} \int_{H=0} \frac{\partial^{k}}{\partial u_{1}^{k}}\left\{f\left(u_{1}\right) \phi_{1} D\binom{x}{u}\right\}\right|_{u_{1}=0} \mathrm{~d} u_{2} \cdots \mathrm{~d} u_{m}
$$

and

$$
\left.\frac{\partial^{k}}{\partial u_{1}^{k}}\left\{f\left(u_{1}\right) \phi_{1} D\binom{x}{u}\right\}\right|_{u_{1}=0}=\left.\sum_{i=0}^{k}\binom{k}{i} f^{(i)}(0) D_{u_{1}}^{k-i} \phi_{1} D\binom{x}{u}\right|_{u_{1}=0} .
$$

Hence,

$$
\begin{aligned}
\left(f(H) \cdot \delta^{(k)}(H), \phi\right) & =\left.(-1)^{k} \sum_{i=0}^{k}\binom{k}{i} f^{(i)}(0) \int_{H=0} \frac{\partial^{k-i}}{\partial u_{1}^{k-i}} \phi_{1} D\binom{x}{u}\right|_{u_{1}=0} \mathrm{~d} u_{2} \cdots \mathrm{~d} u_{m} \\
& =\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} f^{(i)}(0)\left(\delta^{(k-i)}(H), \phi\right),
\end{aligned}
$$

which completes the proof of theorem.
In particular, we have

$$
\begin{aligned}
& H \cdot \delta^{\prime}(H)=-\delta(H), \\
& H^{2} \cdot \delta^{\prime}(H)=0 .
\end{aligned}
$$

4. The product $P^{n} \cdot \boldsymbol{\delta}^{(k)}(\boldsymbol{P})$

Assume that both $p>1$ and $q>1$. Let P be a quadratic form defined by $P(x)=P\left(x_{1}, x_{2}, \ldots, x_{m}\right)=x_{1}^{2}+$ $\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}$ with $p+q=m$, then the $P=0$ hypersurface is a hypercone with a singular point (the vertex) at the origin.

We start by assuming that $\phi(x)$ vanishes in a neighborhood of the origin. The distribution $\delta^{(k)}(P)$ is defined by

$$
\left(\delta^{(k)}(P), \phi\right)=\left.(-1)^{k} \int \frac{\partial^{k}}{\partial P^{k}}\left\{\frac{1}{2} \phi\left(r^{2}-P\right)^{\frac{1}{2}(q-2)}\right\}\right|_{P=0} r^{p-1} \mathrm{~d} r \mathrm{~d} \Omega^{(p)} \mathrm{d} \Omega^{(q)},
$$

which is convergent.

Furthermore, if we transform from P to $s=\sqrt{r^{2}-P}$ we note that $\partial / \partial P=-(2 s)^{-1} \partial / \partial s$, and we may write this in the form

$$
\left(\delta^{(k)}(P), \phi\right)=\int\left[\left(\frac{\partial}{2 s \partial s}\right)^{k}\left\{s^{q-2} \frac{\phi}{2}\right\}\right]_{s=r} r^{p-1} \mathrm{~d} r \mathrm{~d} \Omega^{(p)} \mathrm{d} \Omega^{(p)} .
$$

Let us now define

$$
\psi(r, s)=\int \phi \mathrm{d} \Omega^{(p)} \mathrm{d} \Omega^{(p)} .
$$

Hence,

$$
\left(\delta^{(k)}(P), \phi\right)=\int_{0}^{\infty}\left[\left(\frac{\partial}{2 s \partial s}\right)^{k}\left\{s^{q-2} \frac{\psi(r, s)}{2}\right\}\right]_{s=r} r^{p-1} \mathrm{~d} r
$$

Theorem 3. The product P^{n} and $\delta^{(k)}(P)$ exists and

$$
P^{n} \cdot \delta^{(k)}(P)= \begin{cases}n!\binom{k}{n} \delta^{(k-n)}(P) & \text { if } k \geqslant n \\ 0 & \text { if } k<n\end{cases}
$$

Proof. We start with

$$
\begin{aligned}
\left(P^{n} \cdot \delta^{(k)}(P), \phi\right) & =\left.(-1)^{k} \int \frac{\partial^{k}}{\partial P^{k}}\left\{P^{n} \frac{1}{2} \phi\left(r^{2}-P\right)^{\frac{1}{2}(q-2)}\right\}\right|_{P=0} r^{p-1} \mathrm{~d} r \mathrm{~d} \Omega^{(p)} \mathrm{d} \Omega^{(q)} \\
& =\int_{0}^{\infty}\left[\left(\frac{\partial}{2 s \partial s}\right)^{k}\left\{\left(r^{2}-s^{2}\right)^{n} s^{q-2} \frac{\psi(r, s)}{2}\right\}\right]_{s=r} r^{p-1} \mathrm{~d} r .
\end{aligned}
$$

Making the substitutions $u=r^{2}$ and $v=s^{2}$, we have

$$
\frac{\partial}{2 s \partial s}=\frac{1}{2 s} 2 s \frac{\partial}{\partial v}=\frac{\partial}{\partial v},
$$

which leads us to

$$
\left(P^{n} \cdot \delta^{(k)}(P), \phi\right)=\frac{1}{4} \int_{0}^{\infty}\left[\left(\frac{\partial}{\partial v}\right)^{k}\left\{(u-v)^{n} v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right]_{u=v} u^{\frac{p-2}{2}} \mathrm{~d} u .
$$

Clearly,

$$
\begin{aligned}
\left.\frac{\partial^{k}}{\partial v^{k}}\left\{(u-v)^{n} v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v}= & \left.\sum_{i=0}^{k}\binom{k}{i} D_{v}^{i}(u-v)^{n} D_{v}^{k-i}\left\{v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v} \\
= & \left.\sum_{i<n}\binom{k}{i} D_{v}^{i}(u-v)^{n} D_{v}^{k-i}\left\{v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v} \\
& +\left.\sum_{i=n}\binom{k}{i} D_{v}^{i}(u-v)^{n} D_{v}^{k-i}\left\{v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v} \\
& +\left.\sum_{i>n}\binom{k}{i} D_{v}^{i}(u-v)^{n} D_{v}^{k-i}\left\{v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v}=I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where $D_{v}^{i}=\partial / \partial v^{i}$. It follows that

$$
I_{1}=I_{2}=0
$$

since $i \neq n$. As for I_{2}, we arrive at

$$
I_{2}= \begin{cases}\left.(-1)^{n} n!\binom{k}{n} D_{v}^{k-n}\left\{v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v} & \text { if } k \geqslant n \\ 0 & \text { if } k<n\end{cases}
$$

Substituting I_{2} back and using

$$
\left(\delta^{(k-n)}(P), \phi\right)=\left.(-1)^{k-n} \int \frac{\partial^{k-n}}{\partial P^{k-n}}\left\{\frac{1}{2} \phi\left(r^{2}-P\right)^{\frac{1}{2}(q-2)}\right\}\right|_{P=0} r^{p-1} \mathrm{~d} r \mathrm{~d} \Omega^{(p)} \mathrm{d} \Omega^{(q)},
$$

we obtain

$$
P^{n} \cdot \delta^{(k)}(P)= \begin{cases}n!\binom{k}{n} \delta^{(k-n)}(P) & \text { if } k \geqslant n, \\ 0 & \text { if } k<n,\end{cases}
$$

which completes the proof of theorem.
Remark. We assumed that ϕ disappears in a neighborhood of the origin, so that the integrals in the proof of Theorem 3 converge for any k. However, if $k<\frac{1}{2}(p+q-2)$, these integrals will converge for any ϕ. If, on the other hand, $k \geqslant \frac{1}{2}(p+q-2)$, we can apply an identical approach on $\left(\delta_{1}^{(k)}(P), \phi\right)$ and $\left(\delta_{2}^{(k)}(P), \phi\right)$ (see [15]) and the results still follow.

Obviously, we can extend Theorem 3 to a more general product in the following:
Theorem 4. Let f be a C^{∞} function on R. Then the product $f(P)$ and $\delta^{(k)}(P)$ exists and

$$
f(P) \cdot \delta^{(k)}(P)=\sum_{i=0}^{k}\binom{k}{i} f^{(i)}(0) \delta^{(k-i)}(P) .
$$

Proof. It follows by replacing P^{n} by $f(P)$ in the proof of Theorem 3 and noting that

$$
\begin{aligned}
\left.\frac{\partial^{k}}{\partial v^{k}}\left\{f(u-v) v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v} & =\left.\sum_{i=0}^{k}\binom{k}{i} D_{v}^{i} f(u-v) D_{v}^{k-i}\left\{v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v} \\
& =\left.\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} f^{(i)}(0) D_{v}^{k-i}\left\{v^{\frac{q-2}{2}} \psi_{1}(u, v)\right\}\right|_{u=v}
\end{aligned}
$$

In particular, we have

$$
\begin{aligned}
& \sin P \cdot \delta^{(k)}(P)=\sum_{i=0}^{k}\binom{k}{i} \sin \frac{\mathrm{i} \pi}{2} \delta^{(k-i)}(P), \\
& e^{P} \cdot \delta^{(k)}(P)=\sum_{i=0}^{k}\binom{k}{i} \delta^{(k-i)}(P) .
\end{aligned}
$$

Acknowledgements

M.A. Aguirre was partially supported by the Comisión de Investigaciones Científicas (Argentina) and C.K. Li was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[1] M.A. Aguirre, A convolution product of (2j)-th derivative of Diracs delta in r and multiplicative distributional product between r^{-k} and $\nabla\left(\Delta^{j} \delta\right)$, Int. J. Math. Math. Sci. 13 (2003) 789-799.
[2] M.A. Aguirre, A generalization of convolution product of the distributional families related to the diamond operator, Thai J. Math. 2 (2004) 97-106.
[3] M.A. Aguirre, The expansion in series (of Taylor Types) of $(k-1)$ derivative of Diracs delta in $m^{2}+P$, Integr. Transform. Spec. Func. 14 (2003) 117-127.
[4] M.A. Aguirre, The expansion of $\delta^{(k)}\left(m^{2}+P\right)$, Integr. Transform. Spec. Func. 8 (1999) 139-148.
[5] M.A. Aguirre, The series expansion of $\delta^{(k)}(r-c)$, Math. Notat. 35 (1991) 53-61.
[6] P. Antosik, J. Mikusinski, R. Sikorski, Theory of Distributions the Sequential Approach, PWN-Polish Scientific Publishers, Warsawa, 1973.
[7] J.H. Bremermann, Distributions, Complex Variables, and Fourier Transforms, Addison-Wesley, Reading, MA, 1965.
[8] L.Z. Cheng, C.K. Li, A commutative neutrix product of distributions on R^{m}, Math. Nachr. 151 (1991) 345-356.
[9] B. Fisher, On defining the convolution of distributions, Math. Nachr. 106 (1982) 261-269.
[10] B. Fisher, The product of distributions, Quart. J. Math. 22 (1971) 291-298.
[11] B. Fisher, A. Kilicman, On the Fresnel integrals and the convolution, Int. J. Math. Math. Sci. 41 (2003) 2635-2643.
[12] B. Fisher, C.K. Li, Examples of the neutrix product of distributions on R^{m}, Rad. Mat. 6 (1990) 129-137.
[13] B. Fisher, K. Taş, On the non-commutative neutrix product of the distributions x_{+}^{λ} and x_{+}^{μ}, Acta. Math. Sin., in press.
[14] S. Gasiorowicz, Elementary Particle Physics, Wiley, New York, 1966.
[15] I.M. Gel'fand, G.E. Shilov, Generalized Functions, vol. I, Academic Press, New York, 1964.
[16] C.K. Li, An approach for distributional products on R^{m}, Integral Transform. Spec. Func. 16 (2005) 139-151.
[17] C.K. Li, The product of r^{-k} and $\nabla \delta$, Int. J. Math. Math. Sci. 24 (2000) 361-369.
[18] C.K. Li, The products on the unit sphere and even-dimension spaces, J. Math. Anal. Appl. 305 (2005) 97-106.
[19] J.G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math. 7 (1959-60) 291-398.

[^0]: * Corresponding author.

 E-mail addresses: maguirre@exa.unicen.edu.ar (M.A. Aguirre), lic@brandonu.ca (C.K. Li).

