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ARTICLE INFO ABSTRACT

Keywords: How to define products and powers of distributions is a difficult and not completely under-
Distribution stood problem, and has been investigated from several points of views since Schwartz
Delta function established the theory of distributions around 1950. Many fields, such as differential equa-
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tions or quantum mechanics, require such operations. In this paper, we use Caputo frac-
tional derivatives and the following generalized Taylor’s formula for 0 < o < 1

t(m+1)o<

to give meaning to the distributions 6*(x) and (5’)k(x) for all k € R. These can be regarded as
powers of Dirac delta functions and have applications to quantum theory. At the end of this
paper, the distributions log d(t) and d(t?) are given by the 5-sequence and the neutrix limit.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction
The singular function J(x), which is widely used in physics and mathematics, was introduced by Dirac in 1920 as follows:

(i) 6(x) =0 for x # 0,
(ii) 4(x) = oo for x =0, and
(iii) /7, o(x)f (x)dx = f(0).

It is clear to see that the above definition of 5(x) contradicts with the integral theory in terms of Lebesgue sense, and
hence it can not be properly defined within the framework of classical function theory. In elementary particle physics [1],
one finds the need to evaluate 5°(x) when calculating the transition rates of certain particle interactions. Embacher et al.
[2] studied products of distributions containing the é functions in 1992 and found applications to quantum electrodynamics.
In perturbative computations of quantum-mechanical path integrals in curvilinear coordinates, people encounter Feynman
diagrams involving multiple temporal integrals over products of distributions, which are undefined. In addition, there are
terms proportional to powers of the § functions at the origin coming from the measure of path integration [3]. Furthermore,
products of distributions, including powers of the § functions, are in great demand for certain types of partial differential
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equations [4] and path integrals in quantum mechanics [5], which require complex computations. A definition for product of
distributions is given using delta sequences in [6]. However, §*(x) as a product of §(x) with itself is shown not to exist in
mathematical sense. In [7], Bremermann used the Cauchy representations of distributions with compact support to define

J,(x) and log d, (x). Unfortunately, his definition does not carry over to /¢ ( ) and log 6(x). Koh and Li [8] adopted the neu-
trix limit due to Van Der Corput [9] to define the distributions &*(x) and (5 ) (x) for all k € Z*, and concluded that “it remains
to show that these powers can be defined for all real k”. In 2001, Ozcag [10] utilized the Temple delta sequence, which plays
an important role in defining non-linear operations of distributions, and the neutrix limit to show that §7%(x) = 0 for all
k € Z*. The technique of neglecting appropriately defined infinite quantities and resulting finite values extracted from the
divergent integral is usually referred to as the Hadamard finite part. In fact Fisher’s [11] method in the computation of using
the neutrix limit can be regarded as a particular application of the neutrix calculus. This is a general principle for the discard-
ing of unwanted infinite quantities from asymptotic expansions and has been exploited in context of distribution by Fisher in
connection with the problem of distributional powers, multiplication ([12,13]), convolution and composition. In 2008, Agu-
irre [14] applied the Hankel transform to study &°(x) as well as 5™ (x)5 (x) under his definition of product of distributions.

On the other hand, fractional calculus first mentioned in the letter from Leibniz to L’Hopital dated 30 September 1695, can
be regarded as a branch of analysis which deals with integral-differential equations often with weakly singular kernels. A lot
of contributions to the theory of fractional calculus up to the middle of the 20th century were made by many famous math-
ematicians including Laplace, Fourier, Abel, Liouville, Riemann, Griinwald, Letnikov, Heaviside, Weyl, Erdélyi and others.
After 1970, there was a clear movement from theoretical research of fractional calculus to its applications in various fields.
Up to now, fractional calculus has been found in almost every realm of science and engineering. As far as we know, it is one of
the best tools to characterize long-memory processes and materials, anomalous diffusion, long-range interactions, long-term
behaviors, power laws, allometric scaling laws, and so on. In this current work, we use fractional derivatives to study powers
of Dirac delta function.

In the following sections, we start to introduce fractional derivatives, including Riemann-Liouville and Caputo definitions,
several versions of generalized Taylor’s formulas and provide a couple of interesting results in computing Caputo fractional
derivatives efficiently in the generalized Taylor’s formula under certain conditions. Then, we will choose an infinitely differ-
entiable §-sequence without compact support to define the distributions §*(x) in Section 3, (5’)k(x) and other distributions
related to Dirac § function in Section 4. These results are fresh and novel in distribution theory and have potential applica-
tions in elementary particle physics and quantum mechanics.

2. Fractional derivatives and generalized Taylor’s formulas

Fractional calculus is the theory of integrals and derivatives of arbitrary order, which unifies and generalizes integer-order
differentiation and n-fold integration. The beginning of fractional calculus is considered to be the Leibniz’s letter to L’'Hospital
in 1695, where the notation for differentiation of non-integer orders was discussed.

We let Y, be the convolution kernel of order o € R* for fractional integrals, given by

0 1
Y, =——

['(e)

where I is the well-known Euler Gamma function, and

€ Llac (R+)

el _ 1 if t >0,
’ 0 ift<0
Definition 2.1. The fractional integral (or, the Riemann-Liouville) D * of fractional order o € R* of function ¢(t) is defined by
- 1 t aﬁ
Da(t) = Yo+ 6(0) = rip /0 (t — ) p(r)ds,

where we set the initial time to zero.
As an example, we have the following for y > —1

e y+1) .
D — ())+ 00+
oct (oc+y+1)t ’
_ k
Dyret = terHH] t

by a simple calculation.
The following properties of Y,, Dy, and the fractional derivatives can be found in [15,16].
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Property 2.1.

(i) The convolution property Y, = Yy = Y, holds for o > 0 and > 0, which implies that DgfﬁDg‘t = Dg_"?’”.
ii) Consistency property with the integer-order integral: lim,_,Dy%¢(t) = DT ¢(t), where oo >0, m € Z* and
(ii) cy property 2 gl o & o P(E)

. B t o t B 1 t "
D, ¢(r)f/0/0 /0 q&(r)drdt].‘.dtm,lfm/o (t — 1™ p(1)dr.

Definition 2.2. The Riemann-Liouville derivative of fractional order o of function ¢(t) is defined as

d" m—o 1 d" [t m—o—
WD3b(0) = 2 Dol 910) = g g [, (=" (.

wherem—-—1<a<meZ'.
It follows that

” ct*
Do = =g

v LTO+T) 5,
wbDo,t TTO-a+1)

where c is a constant and 2 > —1.
Furthermore, we can derive that for ¢(t) € C[0, co)

o -0 _ 1 dm ‘ m—o—1 ' -1
rDg Do (t) = Tim— )T («) W/o (t=1) dt/o (T—9)" ¢(s)ds

B(m—o,0) d" [* -
= Flm a0t " Jp (=" 50 = 000

wherem—-1<a<meZ".
Clearly from integration by parts and integral mean value theorem, we come to

. m-1 t o+k 1 t S m

RLDO‘t(ﬁ(t) r(é) O((jk ¥ -1) + l—*(m — OC) /0 (t - T) ' 1¢( )(T)dT
'S ¢ ( )t ik ¢(m)(0)tm—oc 1 ‘ m—o 4 (m+1)
Zr( 2kt 1) T Tm-o+1) Tm—at1) /0 (E=" g™ (D)t

¢ ( )t o+k N ¢(m)(0)tm—oc N ¢(m+l)(c)tm—x+l
OF( o+k+1) I'm—-a+1) TI'(m-—o+2)’
wherem—1<a<meZ, ¢(t) € C*[0,00) and 0 < ¢ < t. This shows that
lim D3 (0 = / ™ @z = ¢ (o), and
lim D3 (1) / ™ (D)de = ¢ (1)

in which I'(1) = 1, T'(0) = oo and I'(—k) = cc for all k € Z* are used.
Therefore, we deduce that

m-1 )
Dl ubR(t) = () - S Dk,
= k!
k=0
where me Z*.
Note that from [15]
N oL— k t‘xik
Dyt rDG 9 (t) ZRLDO t m

where m—1< o <m.

From the above, the Riemann-Liouville derivative D, is a reasonable extension between d" ' /dt"™ ' and d" /dt™. How-
ever, it has certain disadvantages when tying to model real-world phenomena with fractional differential equations. Hence,
we shall introduce a modified fractional differential operator “Dg, proposed by Caputo in 1967.
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Definition 2.3. The Caputo derivative of fractional order « of function ¢(t) is defined as

m o) dm 1 ) \/(: (t— _L_)m—ocfl (f)(m)(f)df,

D5, o(t) = m¢( ) = Tm—o)

wherem—-1<oa<meZ'.
It follows that
T'(p+1) P
CDS ttp — I(p—o+1) ’
' 0, m-l<a<meZ', p<m-1, peZ'.

m-l<a<meZ', p>m—-1, pecR,

Obviously, we get from the above definition

. 1 t m—o— ] m m—
lim °Dg,¢(t) = llm) (m/o (t—1) d‘c) /¢ 7)dt = ™ V(1) — ¢"™V(0), and

oa—(m-1)" oa—(m-1)"
. (m) 0 m—o -1 ot t
allrn? Dj . p(t) = allr,?, <1"42m E c)xt+ 0 + Tm—at ) / (t—17)™ ¢<m+1>(¢)dr> = ¢™(0) + /0 "™ (T)dT = ¢ (8)

if p(t) € C"10, 00).
On the other hand, integration by parts and differentiation show that

m—1 4k
; t
“Dj(6) = wDj, <¢<t> - kz_;,,dw")(m)
if p(t) e C"[0,00)and m -1 <a<meZ".
The ordinary Taylor’s formula has been generalized by many authors. Riemann [17] had already written a formal version
of the generalized Taylor’s series for a real number r:

hTrH»I’

plt+h) = Z Tmiri1)

rDoy o(8),

where for o < 0, r.Dj ¢(t) = Dyi(t) is the Riemann-Liouville fractional integral of order —o in Definition 2.1. Moreover,
g $(t) = Dg $(t) = (8).

The proof of validity of the Riemann expansion above for certain classes of functions was undertaken by Hardy [18], both
for finite and infinite initial time (we set it to zero in this paper, as mentioned in Definition 2.1).

On the other hand, a variant of the generalized Taylor’s series was given by Dzherbashyan and Nersesian [19,20]. For ¢
having all of the required continuous derivatives, they derived that

1 D p(0) 1

- %y ‘ — x)fm 1 ple
PO =D i o) i J, €0 P s

where t >0, o, %1, ..., om is an increasing sequence of real numbers such that 0 <oy — o1 <1, k=1,2,...,m and
D) ¢ = D”k ka 1—1 D”“k 1.
Trupllo et al. [21] establlshed the following generalized Taylor’s formula under certain conditions for ¢ and o € [0,1]:

(j+1)a—1
E:roﬂ (0 4 Ry (1), (1)
where
wDG B0 i
= < I
MO =yt 0 0SESt
and

¢ = (@)K *uDf]p(0"), ¥j=0,1,...,n
and the sequential fractional derivative is denoted by
RL Agft = RLDgﬁt .. ~RLDg_t7 ] — times andj S Z+.

We would also like to mention that there is another version of fractional Taylor’s series in the Riemann-Liouville form in
[22], which is a particular case of Eq. (1).
The following theorem due to Odibat and Shawagfeh in 2007 can be found in [23].
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Theorem 2.1 (Generalized Taylor’s Theorem). Suppose that CD’{,‘}d)(t) e C(a,b) fork =0,1,2,...m+ 1, where 0 < o < 1, then we

have

i (<D%¢)(0)

= (t - a) ryio:
(1) = Zm(cl)a,fd’)(a) +m(f —-a

i=0
with a < { < t, Vt € (a,b), where °Di, = D% D%, ...Dj,.
In particular, we have for a =0,

(<95770) 0

m tizx .
t) = - CDmt 0 +7t(m+1)1_
$(t) ;F(zaJrl)( 0 >( ) F(m+1a+1)

Note that for o = 1,

N~y 2O e

which is the classical Taylor’s formula.

Remark. One understands, in fractional calculus, that “Di, = D °D§,

to illustrate this. Clearly,

1 ! 1
P06y o\ 1-06-1 4. 04
D°~ft7—1"(0.4)/0 (t—1) dt —1"(1.4)t , and

CDO.G 04

...D%, # DY, in general. Here is a simple example

06 05g; _ 04B(04.04) o, 1 gy

t
06, _ _
BE DR = e ayroa ) (€9
But,

cpl2p 1 /[ 2121 g
D‘”t_l"(O.S) A (t—1) (1)"dt =0.

I(1.4)T(0.4)

(0.8)

Generally speaking, it is easier to compute CD{ftq&(t) than CD{fftqﬁ(t). The following two theorems shown by Li and Deng in

[24] describe, under certain circumstances, that “Dy,¢(t) = DI, ¢(t).

Theorem 2.2. If ¢(t) € C'[0,T] for T > O, then

CDg,thDg}td’(t) = CDS}tCDg,zrql’(t) = CDg.ltHZQb(t)’ te [07 ﬂv

where o, o, € R and oy + 0 < 1.
In particular, we obtain

“D3P° = DDy () = ¢'(1), and
D3P = DYDY p(t) = DL b(t).

Theorem 2.3. If ¢(t) € C"[0,T] for T > 0, then
“Dg,h(t) = “Dgy ... “Dgi D p(t),  t€[0,T]

where o =31 o4, o € (0,1], m—1< o< meZ" and there exists i, < n such that Z;k:]ocj:kfork: 1,2,...,m—1.

Using this theorem, we get as an example,

DS O p(t) = CDRTDY; ... DY p(t) = DO p(t), if p(t) € C'0,T],

1001 ~100-1

Dy, *o(t) = CDg’thar L Dg () =Dy, P o(t), if (t

)y e C**0,T].

In this paper, we will adopt the generalized Taylor’s formula of Eq. (2) to define powers of the distributions 5(t) and
(6’)k(t) for all k € R due to simplicity of the coefficients in the equation, which can be further simplified by Theorems 2.2
and 2.3 under certain conditions. Without a doubt, using other Taylor’s formulas given above to define powers of the distri-
butions will require more complicated computations for the coefficients, although it is doable.

3. The distribution 6*(¢) for all keR

Let D(R) be the space of infinitely differentiable function with compact support in R, and let D'(R) be the space of distri-
butions defined on D(R). Further, we shall define a sequence ¢, (t), ¢,(t),..., ¢,(t),... converges to zero in D(R) if all these
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functions vanish outside a certain fixed bounded interval, and converge uniformly to zero (in the usual sense) together with
their derivatives of any order. The function 4(t) is defined as

(0(6), ¢(1)) = #(0)

where ¢(t) € D(R). Clearly, é(t) is a linear and continuous functional on D(R), and hence §(t) € D'(R).
There are two main approaches (see [22,25]) to define fractional derivatives and integrals of generalized functions (dis-
tributions). The first goes back to the Schwartz method and is based on the definition of a fractional integral as a convolution

t1—1
Yr = +
axf () *f
of the function Y, = % with generalized function f. This definition is suited to the case of half-line t > 0 since the convo-

lution is well defined in the Schwartz sense. The second way, also commonly used, is based on using the adjoint operator
(similar to Zemanian’s [26] techniques to define the generalized integral transforms, such as Hankle transform). Namely,

(Doif.¢) = (f. D, L)

where D, % is the adjoint operator of D¢, given by

D 2v(x) = rL) /[w (t— 0" "y(r)dr.

(o
The Lizorkin space is of particular interest and it consists of rapidly decreasing infinitely smooth functions in the space S
([22,27]), which are orthogonal to all polynomials. This space is introduced as the Fourier pre-image of a subspace of S and
invariant with respect to fractional integration and differentiation operators. This is not the case for the whole space S of the
rapidly decreasing test functions because the fractional integrals and derivatives of the functions from the space S dot not
always belong to the space S. Hence, the Lizorkin space is a very convenient one while dealing both with the Fourier trans-
form and with the fractional integration and differentiation operators.
The definition of the product of a distribution and an infinitely differentiable function is the following (see for example
[27]).

Definition 3.1. Let f be a distribution and let g be an infinitely differentiable function. Then the product fg is defined by
(fg, &) = (f.84)

for all testing functions ¢ € D(R).
It follows from Definition 3.1 that

k m m— .
tké(m)(t) _ (—1)’]{!(}( >5( k)([.)7 it k<m,

0, otherwise

fork, m=0,1,2,...
However, it seems impossible to define §2(t) since

(8%(6), (1)) = (8(t), 6(1)(t)) = 5(0)$(0)

is undefined. Furthermore, §(t)¢(t) = ¢(0)4(t) is not a member of D(R). Indeed, 5(t)¢p(t) € D'(R).

As outlined in the introduction, powers of the ¢ functions (such as §(t) and &'(t)) have been in demand in physics for com-
puting the transition rates of certain particle interactions, although they cannot be properly defined. In this section, we shall
utilize Caputo fractional derivatives and the generalized Taylor’s formula in Eq. (2) to give meaning to the distribution &*(t)
for all k, which has never appeared in research of distribution theory so far.

Choosing the following §-sequence without compact support

Sul(t) = (%)l/ze*“fz, teR.
Obviously,

(3(0),(6)) = Iim(6,(8), 6(6)) = $(0) 3)
We define for all k € R

(04(0). (1)) == N ~ lim(ok(t). () =N — Jim [ (2)"e-sa€ gyt @)

o0

where N is the neutrix having domain N’ = {1,2,3,...} and range the real numbers, with negligible functions that are finite
linear sums of functions
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win"'n, In'n (1>0,r=1,2_..)

and all functions of n that converge to zero in the normal sense as n tends to infinity (see [9,28]).
Clearly, we have from Eq. (4)

((8). $(0)) = N — lim (1) / o(t) #(t)) for ¢(t) € D(R),

which implies that 6°(t) = 1.
For k < 0, we make the substitution t = y/— .y in Eq. (4) and come to

" k/z\/—v —1/knb 2 \/—T B
@000 =im(7) g (=0

where supp ¢ € [a, b]. Thus, 5(t) = 0 for k < 0.
Setting t = \/iny and M = sup,|¢(t)|, we arrive at

K k/2 B
‘(6n(t), ) / e’dy —0asn — oo

for 0 < k < 1. Therefore b"( t)=
Furthermore, it follows from Eq. (3) that 6'(t) = &(¢). As for k > 1, we obtain from Eq. (4)

(84(6), §(t)) = N - lim ( /0 T(B) e s+ /0 NG k/ze”‘"tqu(—t)dt) =N lim(ly + 1)

n—oo
By the generalized Taylor’s formula from Eq. (2)

m Dy ) (0)
:Zl"zoc+1 (Dk: >(0)+1"(((n:)+1)oc)+1)

izx
(m+1)o

“ tia ryio tm Fymo (CDg‘IZJrl)agb) (C) m+1)a
- ;F(ioc +1) (Do) 0 + T(mo+ 1) (“Dgze)0) + T(m+ Dot 1) ey

where moo=k —1, meZ* and 0 < o < 1 (note that it reduces to the classical Taylor's formula when o = 1).

Thus,
e ()0 [ e ()0 2)” e
+ m (%) v /0 " gt s (CD gt (b) (O)dt

=h1+ Tl +1s.
Setting t = \/;l;y again, we get

MS

:O

1 int1

_m7 1 Cpyio mk2 1\ e —y2.,iot
'“‘;r(iaﬂ)(DOI JOG) (7 /0 eryidy.
Hence
N — limln =0.

n—oo

Since ¢(t) € D(R), there exists a positive real number M; such that

sup‘(CDm” ¢>>(t)‘ <My, formeZ and 0 << 1

teR™
which infers that

]imI]g =0.

n—oo

Coming to I;,, we use the following formula

o0 oo K
/ e*yzymzxdy _ / e Zy"’ldy _ '@
0 0 2

to imply that
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. k2 oo o (& k/2 - I 1\ /e,
e = pgrn (D) O() [ e dt:zr((i) () (o8 )<0):2r((212) () (o).
Therefore,
. Ik W re 2
N - limf, :zr((zlz) (%) (‘Dgza) :2r((212) (%) (D5i'¢) @)

Following the similar calculation, we derive that

. }ln;lz _ % <%> k/2 (Cngf )(0) — (_]2);% (L) k/2 (Cljg’l(p) (0).

Finally,

—_1)™ k kj2 _q\k-1 k k2
#0100 =N - limy + 1) = SV LD (O epgg)0) = ST () caiig) o),

In particular for k =1,

N2, .
o000 =" T (2) (D0)(0) = 000) )
It follows that

ty=0forl=1,2,3,...

21+1 _ F(M) 1 e/ 21)
0 (t)*r(zlil)<(2l+1)n> $(0)

for | =0,1,2,.... We have included [ = 0 in the latter due to Eq. (5).
Using

1.3.5...21-1)

T(l+1/2) = 3 Y forl=0,1,2,...

We have
() = G *(e),

where
1

= Y )T

fori=0,1,2,....

Now we can summarize to get

Theorem 3.1.

o) =1,
o(t)=0fork<1and k0,

- T k2,
0.0 =T T () (D e) 0 fork > 1

knt

where (@5_}%) (0) = (Cﬁgf? )(O) = (‘D D}, ...°D%,$)(0)(m-times) and (—1)" =coskn +isinkn for k € [0,00). In
particular,
t)=0forl=1,2,3,..., and
1

2141 _ (1) _
B (t)722,“(2“1)(2“1)/2“15 (t)for[=0,1,2,....

Remark 1.

(i) We would like to point out that Theorem 3.1 is a generalization of Theorem 1 obtained in [8], where the case for k € Z*
is mainly discussed.
(ii) The choice of o € (0, 1] is not unique. For example, we can pick upm =1, oo = 0.5 or m = 2, a = 0.25 (and others) if

k = 1.5. Generally speaking, we choose o« and m in Theorem 3.1 to make <Cl5’(‘,;‘¢) (0) as simple as possible. Hence

(Cf)g;f(b) (0) = (CD3;E¢> (0), which is Caputo derivative of order 1/2.
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It follows from Theorem 3.1 that

V() =0,
3*(t) =0,
3 — 1 N4
6°(t) = 12\@7;0 (b),
i 0.75
@, 001 = % (ﬁ) (“D839)(0), i=v—1

As indicated in the introduction, Bremermann failed to define /5(t) by the Cauchy representations [7].
We use Theorems 2.3 and 3.1 to derive

0 1 L1 3 \103/6 g 1_i/3) (s 3 \1036
(090, 9(0)) = )ZF@J)(G)(mBn) (D)0 = 4}(3%)(6)(103%) (Do) 0).

4. The distribution (5')*(t) for all keR

Considering the derivative of the 5-sequence, we have

3(t) = (%)1/28’”‘2(—2110.
We define for all k € R
()0 6(0) = N = lim(@)}(0) 6(0) = N~ Lim2*n* [~ (%) R (6)

Clearly, we have for k = 0 that

(@ @160) = [~ ot = (1.9(0)

which claims that (§ ) t)y=1.
Setting t = \/— &y in Eq. (6) for k < 0, we can prove that

ik
(&) (1) =0.
Making the substitution t = \/kiny and M = sup,|4(t)|, we get

1

(@ 0. o(0)] < 2m(2) e (l) [ erytay—oasn— o

o kn

for 0 < k < 1/2. This implies that ((5’)k(t) =0 for k€ (—o00,1/2) and k # 0.
For k > 1/2, we come to
k : k ke (N2 e k = kne?
()4 (01.9(0) = N = lim()}(0).0(6) =N - 2 (2)" ([ " (cofgiode [ e toodr)
n—oo n—oo 0 0

=N-— llm(h -‘rlz).

n—oo
By the generalized Taylor’s formula in Eq. (2)
(D 9)(©

- C u (m-+1)o
;Fla-H (g >(0)+F((m+1)oc+l)t

L

m— ioc tme

(“D§y " ¢) (0)

1" i) <CDIO“[¢)( )+ m <CD6"§C )(0) + mt(mﬂ)a

i=0

where ma=2k—1, meZ" and 0 < o < 1.
Following the similar calculations in Section 3 and using the formula

‘ 3k
y 3k—1
[ ervtar=5r (%),

we obtain

((3)(6), $(t) =

((*1)k+(*])2k71)r(37k) k-1
<14 (0 7
2K (k)P KT (2K) (D8 "0) @ 7
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where (CDgF;l(p) 0) = (Cngg )(0) — (D% D%, ... D2 $)(0)(m-times).
In particular for k = 1, we get

(8)' (1), (1)) = 2L 312

NG ¢'(0) = —¢/(0) = (9'(t), (1))

This shows that

() (t) = 3'().

Similarly, we deduce that for k = 1/2

; 1/4
()"7(0.0(0) = VZH (%) T(3/41000)

which infers that
1/4

. (2
"' (t) = ﬁe4<ﬁ> ['(3/4)8(t).

Indeed, we can directly derive the above result from Eq. (6) without using the neutrix limit.
It follows from Eq. (7) that

(3'(t)=0forl=1,2,...,
(@2 (0) = 1-3.5...(614+1) S (p).
207 21+ 1)°F (4l + 1)1

In summary,

Theorem 4.1.

(@)’ =1,

(3 (t) =0 for k < 1/2 and k # 0,

1/4

)20 = V2e(2) T /a0,

(=D + )™ HrE
2% (km)t kKT (2k)

where (D3¢ )(0) = (°Dgi¢) (0) = (°D§, D3, ... °Dj ) (0)(m-times). In particular,

((8)(0), p(8)) =

) (CD5§-1¢) (0) for k > 1,2

() ()=0forl=1,2,..., and
(5,)21+1(t) _ 1 -3.5...(61+1)
220+ 1) (4l + 1)!

WD) for 1=0,1,2,....

Remark 2.

(i) According to the authors’ knowledge, no one has given meaning to the distribution (6’)"(t) for all k € R previously. We
should note that Theorem 4.1 is a generalization of Theorem 2 in [8], where the case for k € Z* is mainly considered.

(ii) Again, the choice of o € (0,1] in Theorem 4.1 is not unique. We generally choose o« and m in Theorem 4.1 to make
(Cﬁgf‘ﬂd)) (0) as simple as possible by Theorem 2.3.

By the way, we can define the distributions log §(t) mentioned in the introduction and d(t?), and show that
logs(t) = — % log 7, and
() =0

by the é-sequence and the neutrix limit.
Indeed,

(logd(t), g(t)) = N — lim (log ay(t), 4(t)) = N  lim (log (%) VR ontt ¢,(t)>

n—oo

=N-lim (% logn —% log 7 — nt? loge, (/)(t)> = <—% log 7, rf)(f)).

n—oo
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Furthermore,
k
log 8*(t) = — 5 logm

for all k € R.
Finally,

6).00) =N lim ()" [ e gy

Setting t = (—)1/4y, we get

@0 =N-Jm(®)" (1) [ ¢<( )”4y>dy_o.

To end this paper, we would like to mention that it is worth considering powers of the distributions (t +i0)™" and
(t —i0)™", based on the following applications and importance.
From Gel'fand and Shilov [27], we have for m € Z+

(-1 in

m-Tr O ®

(t£i0) ™" ="+ (=)t F
which implies that

(1" T oy

(t+ iO)im = tim 7Wa B (t),
T G O Aoy
(t—i0) ™=t "'+7((m)71)’!“5< ().
In particular, for m = 2 we get
1 (1) + ¢~ ) 200)
((t+10 > / dt —in¢'(0), and
1 o(t) + ¢(-— ) 2¢(0) o
((t_ o > / dt + ing'(0).

The current approach we adopt in this paper to define powers of the distributions §(t) and §'(t) is infeasible to give
meaning to powers of high derivative orders of Dirac delta function, as there is no a simple expression for 6!™ () when m
is large. However, Eq. (8) may provide a workable way of defining powers of high derivative orders of the delta function with
applications described in the introduction, if we are able to define powers of the distributions (t 4 i0)™" and (t —i0)™"
Clearly, carrying out such procedures will require products of distributions and complicated computations. Furthermore,
the distribution t™™ is related to the Cauchy principle value of 1/t™, which has applications to seeking weak solutions (in
distributional sense) of differential equations [29].

5. Conclusions

In this paper, we mainly study arbitrary powers of the delta function §(t) and its derivative §'(t) using Caputo derivative
and the generalized Taylor’s expansion. The satisfactory results are presented in Sections 3 and 4. How to define powers of
other distributions may attract attention, although it is a challenge and we hope such studies will appear somewhere in the
future.
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