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THE POWERS OF THE DIRAC DELTA FUNCTION BY

CAPUTO FRACTIONAL DERIVATIVES

C. K. LI

Abstract. One of the problems in distribution theory is the lack of definitions
of products and powers of distributions in general. In this paper, we choose a

fixed δ-sequence without compact support and the generalized Taylor’s formula
based on Caputo fractional derivatives to give meaning to the distributions
δk(x) and (δ′)k(x) for some values of k. These can be regarded as powers of
Dirac delta functions.

1. Introduction

In mathematics, the Dirac delta function, or δ (singular) function, is a general-
ized function, on the real number line that is zero everywhere except at zero, with
an integral of one over the entire real line. The delta function is sometimes thought
of as an infinitely high, infinitely thin spike at the origin, with total area one un-
der the spike, and physically represents the density of an idealized point mass or
point charge. It was introduced by theoretical physicist Paul Dirac in 1920. In
the context of signal processing it is often referred to as the unit impulse symbol
(or function). It is clear to see that this δ function contradicts with the integral
theory in terms of Lebesgue sense, and hence it cannot be properly defined within
the framework of classical function theory.
Around 1950, Schwartz established the theory of distributions by treating singu-
lar functions as linear and continuous functionals on the testing function space.
Let D(R) be the space (Schwartz) [1] of infinitely differentiable functions with
compact support in R, and let D′(R) be the space of distributions (linear and
continuous functionals) defined on D(R). Further, we shall define a sequence
ϕ1(t), ϕ2(t), · · · , ϕn(t), · · · converges to zero in D(R) if all these functions van-
ish outside a certain fixed bounded interval, and converge uniformly to zero (in
the usual sense) together with their derivatives of any order. The functional δ is
defined as

(δ, ϕ) = ϕ(0)
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where ϕ ∈ D(R). Clearly, δ is a linear and continuous functional on D(R), and
hence δ ∈ D′(R).
The definition of the product of a distribution and an infinitely differentiable func-
tion is the following (see for example [1]).
Definition 1 Let f be a distribution and let g be an infinitely differentiable func-
tion. Then the product fg is defined by

(fg, ϕ) = (f, gϕ)

for all testing functions ϕ ∈ D(R).
It follows from Definition 1 that

tkδ(m)(t) =

 (−1)kk!

(
m

k

)
δ(m−k)(t), if k ≤ m,

0, otherwise

for k,m = 0, 1, 2, · · · .
It seems impossible to define δ2, although one finds the need to evaluate δ2 when
calculating the transition rates of certain particle interactions in elementary particle
physics [2]. A definition for product of distributions is given using delta sequences
in [3]. However, δ2 as a product of δ with itself is shown not to exist in math-
ematical sense. Embacher, Grübl, and Oberguggenberger [4] studied products of
distributions containing the δ functions in 1992 and found applications to quan-
tum electrodynamics. In perturbative computations of quantum-mechanical path
integrals in curvilinear coordinates, people encounter Feynman diagrams involving
multiple temporal integrals over products of distributions, which are undefined. In
addition, there are terms proportional to powers of the δ functions at the origin
coming from the measure of path integration [5]. Furthermore, products of distri-
butions, including powers of the δ functions, are in great demand for certain types
of partial differential equations [6] and path integrals in quantum mechanics [7],
which require complex computations. Recently, Li and Li [8] used the following
δ-sequence

δn(t) =
(n
π

)1/2

e−nt2 , t ∈ R

and the neutrix limit to define powers of the distributions δ and δ′.
On the other hand, fractional calculus is the theory of integrals and derivatives
of arbitrary order, which unifies and generalizes integer-order differentiation and
n-fold integration. The beginning of fractional calculus is considered to be the
Leibniz’s letter to L’Hôspital in 1695, where the notation for differentiation of non-
integer orders was discussed.
We let Yα be the convolution kernel of order α ∈ R+ for fractional integrals, given
by

Yα =
tα−1
+

Γ(α)
∈ L1

loc(R
+),

where Γ is the well-known Euler Gamma function, and

tα−1
+ =

{
tα−1 if t > 0,
0 if t ≤ 0.
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Definition 2 The fractional integral (or, the Riemann-Liouville) D−α
0,t of fractional

order α ∈ R+ of function ϕ(t) is defined by

D−α
0,t ϕ(t) = Yα ∗ ϕ(t) = 1

Γ(α)

∫ t

0

(t− τ)α−1ϕ(τ)dτ,

where we set the initial time to zero.
As an example, we have the following for γ > −1

D−α
0,t t

γ =
Γ(γ + 1)

Γ(α+ γ + 1)
tα+γ ,

D−α
0,t e

t = tα
∞∑
k=0

1

Γ(α+ γ + 1)
tk.

The following properties of Yα, D
−α
0,t , and the fractional derivatives can be found

in [9] and [10].
Property 1
(i) The convolution property Yα ∗ Yβ = Yα+β holds for α > 0 and β > 0, which

implies that D−α
0,t D

β
0,t = D−α−β

0,t .

(ii) Consistency property with the integer-order integral: limα→m D−α
0,t ϕ(t) = D−m

0,t ϕ(t),

where α > 0, m ∈ Z+ and

D−m
0,t ϕ(t) =

∫ t

0

∫ tm−1

0

· · ·
∫ t1

0

ϕ(τ)dτdt1 · · · dtm−1 =
1

(m− 1)!

∫ t

0

(t−τ)m−1ϕ(τ)dτ.

Definition 3 The Riemann-Liouville derivative of fractional order α of function
ϕ(t) is defined as

RLD
α
0,tϕ(t) =

dm

dtm
D

−(m−α)
0,t ϕ(t) =

1

Γ(m− α)

dm

dtm

∫ t

0

(t− τ)m−α−1ϕ(τ)dτ,

where m− 1 < α < m ∈ Z+.
It follows that

RLD
α
0,tc =

ctα

Γ(1− α)
,

RLD
α
0,tt

λ =
Γ(λ+ 1)

Γ(λ− α+ 1)
tλ−α,

where c is a constant and λ > −1.
Definition 4 The Caputo derivative of fractional order α of function ϕ(t) is defined
as

CD
α
0,tϕ(t) = D

−(m−α)
0,t

dm

dtm
ϕ(t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1ϕ(m)(τ)dτ,

where m− 1 < α < m ∈ Z+.
It follows that

CD
α
0,tt

p =

{
Γ(p+1)

Γ(p−α+1) t
p−α, m− 1 < α < m ∈ Z+, p > m− 1, p ∈ R,

0, m− 1 < α < m ∈ Z+, p ≤ m− 1, p ∈ Z+.

To make this paper self-contained as much as possible, we provide a short survey
on generalized Taylor’s formulas in the following, which is mainly given in [8].
The ordinary Taylor’s formula has been generalized by many authors. Riemann
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[11] had already written a formal version of the generalized Taylor’s series for a real
number r:

ϕ(t+ h) =
∞∑

m=−∞

hm+r

Γ(m+ r + 1)
RLD

m+r
0,t ϕ(t),

where for α < 0, RLD
α
0,tϕ(t) = D−α

0,t ϕ(t) is the Riemann-Liouville fractional integral

of order −α in Definition 2. Moreover, RLD
0
0,tϕ(t) = D0

0,tϕ(t) = ϕ(t).
The proof of validity of the Riemann expansion above for certain classes of func-
tions was undertaken by Hardy [12], both for finite and infinite initial time (we set
it to zero in this paper, as mentioned in Definition 2).
On the other hand, a variant of the generalized Taylor’s series was given by Dzherbashyan
and Nersesian ([13] and [14]). For ϕ having all of the required continuous deriva-
tives, they derived that

ϕ(t) =
m−1∑
k=0

D(αk)ϕ(0)

Γ(1 + αk)
xαk +

1

Γ(1 + αk)

∫ t

0

(t− x)αm−1D(αk)ϕ(x)dx,

where t > 0, α0, α1, · · · , αm is an increasing sequence of real numbers such that

0 < αk − αk−1 ≤ 1, k = 1, 2, · · · ,m and D(αk)ϕ = D
αk−αk−1−1
0,t RLD0,t

1+αk−1ϕ.

Trujillo, Rivero, and Bonilla [15] established the following generalized Taylor’s for-
mula under certain conditions for ϕ and α ∈ [0, 1]:

ϕ(t) =

n∑
j=0

cj
Γ((j + 1)α)

t(j+1)α−1 +Rn(t), (1)

where

Rn(t) =
RLD̂

(n+1)α
0,t ϕ(ζ)

Γ((n+ 1)α+ 1)
t(n+1)α, 0 ≤ ζ ≤ t,

and

cj = Γ(α)[x1−α
RLD̂

jα
0,t]ϕ(0

+), ∀j = 0, 1, · · · , n,
and the sequential fractional derivative is denoted by

RLD̂
jα
0,t = RLD

α
0,t · · ·RLD

α
0,t, j-times and j ∈ Z+.

We would also like to mention that there is another version of fractional Taylor’s
series in the Riemann-Liouville form in [16], which is a particular case of Equation
(1).
The following theorem due to Odibat and Shawagfeh in 2007 can be found in [17].

Theorem 1 (Generalized Taylor’s Theorem) Suppose that CD̂
kα
0,tϕ(t) ∈ C(a, b] for

k = 0, 1, 2, · · ·m+ 1, where 0 < α < 1, then we have

ϕ(t) =
m∑
i=0

(t− a)iα

Γ(iα+ 1)
(CD̂

iα

a,tϕ)(a) +
(CD̂

(m+1)α
a,t ϕ)(ζ)

Γ((m+ 1)α+ 1)
(t− a)(m+1)α

with a ≤ ζ ≤ t, ∀t ∈ (a, b], where CD̂
iα
0,t = CD

α
0,t CD

α
0,t · · · ·CDα

0,t.
In particular, we have for a = 0,

ϕ(t) =
m∑
i=0

tiα

Γ(iα+ 1)
(CD̂

iα
0,tϕ)(0) +

(CD̂
(m+1)α
0,t ϕ)(ζ)

Γ((m+ 1)α+ 1)
t(m+1)α. (2)
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Note that for α = 1,

ϕ(t) =
m∑
i=0

(t− a)i

i!
ϕ(i)(a) +

ϕ(m+1)(ζ)

(m+ 1)!
(t− a)m+1,

which is the classical Taylor’s formula.
Remark: One understands, in fractional calculus, that CD̂

iα
0,t = CD

α
0,t CD

α
0,t ·

· · ·CDα
0,t ̸= CD

iα
0,t in general. Generally speaking, it is easier to compute CD

iα
0,tϕ(t)

than CD̂
iα
0,tϕ(t). The following two theorems shown by Li and Deng in [18] describe,

under certain circumstances, that CD
iα
0,tϕ(t) = CD̂

iα
0,tϕ(t).

Theorem 2 If ϕ(t) ∈ C1[0, T ] for T > 0, then

CD
α2
0,t CD

α1
0,tϕ(t) = CD

α1
0,t CD

α2
0,tϕ(t) = CD

α1+α2
0,t ϕ(t), t ∈ [0, T ],

where α1, α2 ∈ R+ and α1 + α2 ≤ 1.

In particular, we obtain

CD̂
2·0.5
0,t = CD

0.5
0,t CD

0.5
0,tϕ(t) = ϕ′(t), and

CD̂
2·0.3
0,t = CD

0.3
0,t CD

0.3
0,tϕ(t) = CD

0.6
0,tϕ(t).

Theorem 3 If ϕ(t) ∈ Cm[0, T ] for T > 0, then

CD
α
0,tϕ(t) = CD

αn
0,t · · ·CD

α2
0,t CD

α1
0,tϕ(t), t ∈ [0, T ]

where α =
∑n

i=1 αi, αi ∈ (0, 1], m− 1 ≤ α < m ∈ Z+ and there exists ik < n such

that
∑ik

j=1 αj = k for k = 1, 2, · · · ,m− 1.
Using this theorem, we get as an example,

CD
101·0.5
0,t ϕ(t) = CD

0.5
0,t CD

0.5
0,t · · ·CD0.5

0,tϕ(t) = CD̂
101·0.5
0,t ϕ(t), if ϕ(t) ∈ C51[0, T ],

CD
100· 13
0,t ϕ(t) = CD

1
3
0,t CD

1
3
0,t · · ·CD

1
3
0,tϕ(t) = CD̂

100· 13
0,t ϕ(t), if ϕ(t) ∈ C34[0, T ].

In this paper, we will adopt a new δ-sequence and the generalized Taylor’s formula
of equation (2) to define powers of the distributions δk(t) and (δ′)k(t) for some
values of k ∈ R due to simplicity of the coefficients in the equation, which can be
further simplified by Theorems 2 and 3 under certain conditions. Without a doubt,
using other Taylor’s formulas given above to define powers of the distributions will
require more complicated computations for the coefficients, although it is doable.

2. The distributions δk(t) and (δ′)k(t)

In order to study the distribution δk(t), we choose the following δ-sequence
without compact support

δn(t) =
n

π

1

(nt)2 + 1
for t ∈ R,

which implies that

(δ(t), ϕ(t)) = lim
n→∞

(δn(t), ϕ(t)) = lim
n→∞

n

π

∫ ∞

−∞

1

(nt)2 + 1
ϕ(t)dt = ϕ(0). (3)

We define for all k > 1/2

(δk(t), ϕ(t)) := N − lim
n→∞

∫ ∞

−∞

(n
π

)k 1

((nt)2 + 1)k
ϕ(t)dt (4)
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where N is the neutrix having domain N ′ = {1, 2, 3, · · · } and range the real num-
bers, with negligible functions that are finite linear sums of functions

nλ lnr−1 n, lnr n (λ > 0, r = 1, 2, · · · )

and all functions of n that converge to zero in the normal sense as n tends to infinity
(see [19] and [20]).
Remark: The reason we define equation (4) only for k > 1/2 is that the integral∫ ∞

−∞

1

(y2 + 1)k
dy

diverges for all k ≤ 1/2.
Clearly, we have from equation (4)

(δ0(t), ϕ(t)) = N − lim
n→∞

(δ0n(t), ϕ(t)) = (1, ϕ(t)) =

∫ ∞

−∞
ϕ(t)dt for ϕ(t) ∈ D(R),

which infers that δ0(t) = 1.
For 1/2 < k < 1, we make the substitution y = nt in equation (4) and come to

(δk(t), ϕ(t)) = N − lim
n→∞

1

πk

1

n1−k

∫ ∞

−∞

ϕ(y/n)

(y2 + 1)k
dy = 0,

since ϕ is a bounded function. Thus, δk(t) = 0.
Furthermore, it follows from equation (3) that δ1(t) = δ(t). As for k > 1, we obtain
from equation (4)

(δk(t), ϕ(t))

= N − lim
n→∞

(∫ ∞

0

(n
π

)k 1

((nt)2 + 1)k
ϕ(t)dt+

∫ ∞

0

(n
π

)k 1

((nt)2 + 1)k
ϕ(−t)dt

)
:= N − lim

n→∞
(I1 + I2).

By the generalized Taylor’s formula from equation (2), we have

ϕ(t) =
m∑
i=0

tiα

Γ(iα+ 1)
(CD̂

iα
0,tϕ)(0) +

(CD̂
(m+1)α
0,t ϕ)(ζ)

Γ((m+ 1)α+ 1)
t(m+1)α

=
m−1∑
i=0

tiα

Γ(iα+ 1)
(CD̂

iα
0,tϕ)(0) +

tmα

Γ(mα+ 1)
(CD̂

mα
0,t ϕ)(0) +

(CD̂
(m+1)α
0,t ϕ)(ζ)

Γ((m+ 1)α+ 1)
t(m+1)α

where mα = k − 1, m ∈ Z+ and 0 < α ≤ 1 (note that it reduces to the classical
Taylor’s formula when α = 1).
Thus,

I1 =

m−1∑
i=0

1

Γ(iα+ 1)
(CD̂

iα
0,tϕ)(0)

(n
π

)k
∫ ∞

0

1

((nt)2 + 1)k
tiαdt

+
1

Γ(mα+ 1)
(CD̂

mα
0,t ϕ)(0)

(n
π

)k
∫ ∞

0

1

((nt)2 + 1)k
tmαdt

+
1

Γ((m+ 1)α+ 1)

(n
π

)k
∫ ∞

0

1

((nt)2 + 1)k
t(m+1)α(CD̂

(m+1)α
0,t ϕ)(ζ)dt

= I11 + I12 + I13.



18 C. K. LI JFCA-2016/7(1)

Setting y = nt again, we get

I11 =

m−1∑
i=0

1

Γ(iα+ 1)
(CD̂

iα
0,tϕ)(0)

(n
π

)k 1

niα+1

∫ ∞

0

yiα

(y2 + 1)k
dy.

Hence

N − lim
n→∞

I11 = 0.

Since ϕ(t) ∈ D(R), there exists a positive real number M1 such that

sup
t∈R+

∣∣∣(CD̂(m+1)α
0,t ϕ)(t)

∣∣∣ ≤ M1, for m ∈ Z+ and 0 < α ≤ 1

which infers that

lim
n→∞

I13 = 0.

Coming to I12, we use the following formula∫ ∞

0

yk−1

(1 + y2)k
dy =

Γ2(k/2)

2Γ(k)

to imply that

I12 =
1

Γ(mα+ 1)
(CD̂

mα
0,t ϕ)(0)

(n
π

)k
∫ ∞

0

1

((nt)2 + 1)k
tmαdt

=
1

πkΓ(mα+ 1)
(CD̂

mα
0,t ϕ)(0)

∫ ∞

0

yk−1

(1 + y2)k
dy

=
1

πkΓ(mα+ 1)

Γ2(k/2)

2Γ(k)
(CD̂

mα
0,t ϕ)(0)

=
Γ2(k/2)

2πkΓ2(k)
(CD̂

mα
0,t ϕ)(0).

Therefore,

N − lim
n→∞

I1 =
Γ2(k/2)

2πkΓ2(k)
(CD̂

mα
0,t ϕ)(0) =

Γ2(k/2)

2πkΓ2(k)
(CD̂

k−1
0,t ϕ)(0).

Following the similar calculation, we derive that

N − lim
n→∞

I2 = (−1)mα Γ2(k/2)

2πkΓ2(k)
(CD̂

mα
0,t ϕ)(0)

= (−1)k−1 Γ2(k/2)

2πkΓ2(k)
(CD̂

k−1
0,t ϕ)(0).

Finally,

(δk(t), ϕ(t)) := N − lim
n→∞

(I1 + I2)

=
((−1))mα + 1)Γ2(k/2)

2πkΓ2(k)
(CD̂

mα
0,t ϕ)(0)

=
((−1)k−1 + 1)Γ2(k2 )

2πkΓ2(k)
(CD̂

k−1
0,t ϕ)(0).

In particular for k = 1,

(δ(t), ϕ(t)) =
((−1)1−1 + 1)Γ2( 12 )

2πΓ2(1)
(CD̂

1−1
0,t ϕ)(0) = ϕ(0). (5)
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It follows that

δ2l(t) = 0 for l = 1, 2, 3, · · ·

δ2l+1(t) =
Γ2(l + 1/2)

π2l+1[(2l)!]2
δ(2l)(t)

for l = 0, 1, 2, · · · .
Using

Γ(l + 1/2) =
1 · 3 · 5 · · · (2l − 1)

2l
√
π =

(2l)!

4ll!

√
π for l = 0, 1, 2, · · · ,

We have

δ2l+1(t) = Clδ
(2l)(t),

where

Cl =
1

24l(l!)2 π2l
for l = 0, 1, 2, · · · .

Now we can summarize to get
Theorem 4

δ0(t) = 1,

δk(t) = 0 for 1/2 < k < 1,

(δk(t), ϕ(t)) =
((−1)k−1 + 1)Γ2(k2 )

2πkΓ2(k)
(CD̂

k−1
0,t ϕ)(0) for k ≥ 1

where (CD̂
k−1
0,t ϕ)(0) = (CD̂

mα
0,t ϕ)(0) = (CD

α
0,t · CDα

0,t · · · ·CDα
0,tϕ)(0) (m-times) and

(−1)k = cos kπ + i sin kπ for k ∈ [0,∞). In particular,

δ2l(t) = 0 for l = 1, 2, 3, · · · , and

δ2l+1(t) =
1

24l(l!)2 π2l
δ(2l)(t) for l = 0, 1, 2, · · · .

Remark:
(i) We would like to point out that Theorem 4 is a generalization of Theorem 1
obtained in [21], where the case for k ∈ Z+ is mainly discussed.
(ii) The choice of α ∈ (0, 1] is not unique. For example, we can pick up m =
1, α = 0.5 or m = 2, α = 0.25 (and others) if k = 1.5. Generally speaking, we

choose α and m in Theorem 4 to make (CD̂
k−1
0,t ϕ)(0) as simple as possible. Hence

(CD̂
0.5
0,tϕ)(0) = (CD

0.5
0,tϕ)(0), which is Caputo derivative of order 1/2.

It follows from Theorem 4 that

δ2(t) = 0,

δ3(t) =
1

16π2
δ′′(t),

(δ1.5(t), ϕ(t)) =
(i+ 1)Γ2(0.75)

2π2Γ2(1.5)
(CD

0.5
0,tϕ)(0) =

2(i+ 1)Γ2(0.75)

π3
(CD

0.5
0,tϕ)(0), i =

√
−1
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since Γ(1.5) = 1
2

√
π.

We use Theorems 3 and 4 to derive

(δ
103
3 (t), ϕ(t)) =

((−1)
100
3 + 1)Γ2( 1036 )

2π103/3Γ2( 1033 )
(CD̂

100
3

0,t ϕ)(0)

=
(1− i

√
3)Γ2( 1036 )

4π103/3Γ2( 1033 )
(CD

100
3

0,t ϕ)(0).

Similarly, we are able to define the distribution (δ′)k(t) for all k > 1/3, based on
the derivative of the δ-sequence

δ′n(t) =
2n3

π

−t

((nt)2 + 1)2
, and

((δ′)k(t), ϕ(t)) := N − lim
n→∞

((δ′n)
k(t), ϕ(t))

= N − lim
n→∞

2kn3k

πk

(∫ ∞

0

(−t)k

((nt)2 + 1)2k
ϕ(t)dt+

∫ ∞

0

tk

((nt)2 + 1)2k
ϕ(−t)dt

)
= N − lim

n→∞
(S1 + S2). (6)

Clearly, we have for k = 0 that

((δ′)0(t), ϕ(t)) =

∫ ∞

−∞
ϕ(t)dt = (1, ϕ(t))

which claims that (δ′)0(t) = 1.
Remark: The reason we define equation (6) only for k > 1/3 is that the integral∫ ∞

0

yk

(y2 + 1)2k
dy

diverges for all k ≤ 1/3.
Setting y = nt in equation (6) for 1/3 < k < 1/2, we can prove that

((δ′)k(t), ϕ(t)) := N − lim
n→∞

((δ′n)
k(t), ϕ(t))

= lim
n→∞

2kn3k

πk

1

n1+k

(∫ ∞

0

(−1)kyk

(y2 + 1)2k
ϕ(y/n)dy +

∫ ∞

0

yk

(y2 + 1)2k
ϕ(−y/n)dy

)
= 0 (7)

since ϕ is a bounded function. Therefore, (δ′)k(t) = 0.
For k = 1/2, we get from equation (6) that

((δ′)1/2(t), ϕ(t)) := N − lim
n→∞

((δ′n)
1/2(t), ϕ(t))

= lim
n→∞

21/2n3/2

π1/2

1

n1+1/2

(∫ ∞

0

iy1/2

y2 + 1
ϕ(y/n)dy +

∫ ∞

0

y1/2

y2 + 1
ϕ(−y/n)dy

)
=

√
2

π
(i+ 1)ϕ(0)

∫ ∞

0

y1/2

y2 + 1
dy.

Using ∫ ∞

0

y1/2

y2 + 1
dy =

Γ(3/4)Γ(1/4)

2
,
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we infer that

(δ′)1/2(t) = (i+ 1)
Γ(3/4)Γ(1/4)√

2π
δ(t) (8)

which coincides with the result obtained in [8].
For k > 1/2, we apply the generalized Taylor’s formula from equation (2)

ϕ(t) =
m∑
i=0

tiα

Γ(iα+ 1)
(CD̂

iα
0,tϕ)(0) +

(CD̂
(m+1)α
0,t ϕ)(ζ)

Γ((m+ 1)α+ 1)
t(m+1)α

=

m−1∑
i=0

tiα

Γ(iα+ 1)
(CD̂

iα
0,tϕ)(0) +

tmα

Γ(mα+ 1)
(CD̂

mα
0,t ϕ)(0) +

(CD̂
(m+1)α
0,t ϕ)(ζ)

Γ((m+ 1)α+ 1)
t(m+1)α

where mα = 2k − 1 (m ∈ Z+ and 0 < α ≤ 1/2), to derive that

S1 = (−1)k
2kn3k

πk

m−1∑
i=0

(CD̂
iα
0,tϕ)(0)

Γ(iα+ 1)

∫ ∞

0

tk+iα

((nt)2 + 1)2k
dt

+(−1)k
2kn3k

πk

(CD̂
mα
0,t ϕ)(0)

Γ(mα+ 1)

∫ ∞

0

tk+mα

((nt)2 + 1)2k
dt

+(−1)k
2kn3k

πk

1

Γ((m+ 1)α+ 1)

∫ ∞

0

tk+(m+1)α

((nt)2 + 1)2k
(CD̂

(m+1)α
0,t ϕ)(ζ)dt

= S11 + S12 + S13.

Following the previous calculations above, we can show that

N − lim
n→∞

S11 = 0 and lim
n→∞

S13 = 0

by noting that the integral∫ ∞

0

yk+(m+1)α

(y2 + 1)2k
=

∫ ∞

0

y3k−1+α

(y2 + 1)2k
dy

converges for k > 1/2 and 0 < α ≤ 1/2.
Coming to S12, we use the following formula∫ ∞

0

y3k−1

(y2 + 1)2k
dy =

Γ(3k/2)Γ(k/2)

2Γ(2k)

to imply that

N − lim
n→∞

S1 = S12 = (−1)k
2kn3k

πk

(CD̂
mα
0,t ϕ)(0)

Γ(mα+ 1)

∫ ∞

0

tk+mα

((nt)2 + 1)2k
dt

= (−1)k
2k

πk

(CD̂
mα
0,t ϕ)(0)

Γ(2k)

∫ ∞

0

y3k−1

(1 + y2)2k
dy

= (−1)k
2k

πk

(CD̂
mα
0,t ϕ)(0)

Γ(2k)

Γ(3k/2)Γ(k/2)

2Γ(2k)

= (−1)k
2kΓ(3k/2)Γ(k/2)(CD̂

mα
0,t ϕ)(0)

2Γ2(2k)πk
.

Similarly, we can infer that

N − lim
n→∞

S2 = (−1)2k−1
2kΓ(3k/2)Γ(k/2)(CD̂

mα
0,t ϕ)(0)

2Γ2(2k)πk
.
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Hence

((δ′)k(t), ϕ(t)) =
(−1)k + (−1)2k−1

2

2kΓ(3k/2)Γ(k/2)(CD̂
mα
0,t ϕ)(0)

Γ2(2k)πk

=
(−1)k + (−1)2k−1

2

2kΓ(3k/2)Γ(k/2)(CD̂
2k−1
0,t ϕ)(0)

Γ2(2k)πk
(9)

where (CD̂
2k−1
0,t ϕ)(0) = (CD̂

mα
0,t ϕ)(0) = (CD

α
0,t · CDα

0,t · · · ·CDα
0,tϕ)(0) (m-times).

In particular for k = 1, we get

((δ′)1(t), ϕ(t)) =
−2Γ(3/2)√

π
ϕ′(0) = −ϕ′(0) = (δ′(t), ϕ(t)).

This shows that
(δ′)1(t) = δ′(t).

Similarly, we deduce that for k = 1/2

((δ′)1/2(t), ϕ(t)) = (i+ 1)
Γ(3/4)Γ(1/4)√

2π
ϕ(0)

which infers that

(δ′)1/2(t) = (i+ 1)
Γ(3/4)Γ(1/4)√

2π
δ(t),

which is identical with equation (8).
It follows from equation (9) that

(δ′)2l(t) = 0 for l = 1, 2, · · · ,

(δ′)2l+1(t) =
22l+1Γ(l + 1/2)Γ(3l + 1 + 1/2)

π2l+1[(4l + 1)!]2
δ(4l+1)(t).

In summary,
Theorem 5

(δ′)0(t) = 1,

(δ′)k(t) = 0 for 1/3 < k < 1/2,

(δ′)1/2(t) = (i+ 1)
Γ(3/4)Γ(1/4)√

2π
δ(t),

((δ′)k(t), ϕ(t)) =
(−1)k + (−1)2k−1

2

2kΓ(3k/2)Γ(k/2)(CD̂
2k−1
0,t ϕ)(0)

Γ2(2k)πk
for k > 1/2

where (CD̂
2k−1
0,t ϕ)(0) = (CD̂

mα
0,t ϕ)(0) = (CD

α
0,t ·CDα

0,t · · · ·CDα
0,tϕ)(0) (m-times). In

particular,

(δ′)2l(t) = 0 for l = 1, 2, · · · , and

(δ′)2l+1(t) =
22l+1Γ(l + 1/2)Γ(3l + 1 + 1/2)

π2l+1[(4l + 1)!]2
δ(4l+1)(t) for l = 0, 1, 2, · · · .

Remark:
(i) We should note that Theorem 5 is a generalization of Theorem 2 in [21], where
the case for k ∈ Z+ is mainly considered.
(ii) Again, the choice of α ∈ (0, 1/2] in Theorem 5 is not unique. We generally

choose α and m in Theorem 5 to make (CD̂
2k−1
0,t ϕ)(0) as simple as possible by

Theorem 3.
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3. Conclusion and acknowledgement

In this paper, we use a new delta sequence to define the distributions δk(x)
and (δ′)k(x) by the generalized Taylor’s formula and the neutrix limit, which have
potential applications in elementary particle physics and quantum mechanics. This
research is partially supported by BURC.
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