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Abstract. The goal of this paper is to study the following linear fractional integro-differential
equation with variable coefficients, for the first time, in the distributional space D ′(R+) by
Babenko’s approach

u(βn)(x)+an−1(x)u(βn−1)(x)+ · · ·+a1(x)u(β1)(x)+a0(x)u(β0)(x) = g(x),

where βn > βn−1 > · · · > β0 with βn > 0 . We obtain the solution as an infinite series and
show its convergence. Furthermore, we investigate this equation with the Riemann-Liouville
and Caputo derivatives (non-sequential) instead of distributional ones, and the initial conditions
in the classical sense by a new and simpler method. Several interesting applications to solving
the fractional differential and integral equations are presented using gamma functions, some of
which cannot be achieved by ordinary integral transforms or numerical analysis.

1. Introduction

Generally speaking, a Green’s function u(t,x) , of a linear differential operator
L = L(x) acting on functions (or distributions) over a subset of Rn , at a point t , is any
fundamental solution of

Lu(t,x) = δ (t− x),

where δ (x) is the Dirac delta function. It is well known that Green’s function plays
an important role in the study of fractional differential and integral equations appearing
in mathematical and physical fields [1, 2, 3]. Many researchers have obtained explicit
formulas for Green’s functions of linear fractional differential equations with constant
coefficients [4, 5, 6, 7, 8, 9, 10]. In 1991, Miller and Ross [4] derived Green’s func-
tion from Laplace transform in the study of the following n -th order linear differential
equations on the interval I = [0,∞)

u(n)(x)+an−1u
(n−1)(x)+ · · ·+a0u(x) = g(x)

with all zero initial conditions

u(k)(0) = 0, k = 0,1, · · · ,n−1.
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Podlubny [7] obtained Green’s function for the general linear fractional differential
(sequential derivatives) equation with constant coefficients by Laplace transform and
Mittag-Leffler function. Hilter [9] et al. constructed an operational calculus of Miku-
siński type for the initial value problem of the fractional linear differential equation with
the generalized Riemann-Liouville derivatives and constant coefficients. The Miku-
siński operational calculus is an algebraic approach based on the interpretation of the
Laplace convolution as a multiplication over a function space, which is widely used
to solve differential and integral equations. Applying the fractional B-Splines wavelets
and Mittag-Leffler function, Huang and Lu [11] discussed the existence and uniqueness
of solutions of the following nonhomogeneous linear differential equation with all zero
initial conditions (fractional order)

anD
βn
0,xu(x)+ · · ·+a1D

β1
0,xu(x) = g(x), an �= 0

where all derivatives are in the Riemann-Liouville sense.

Kilbas [12] et al. studied solution by a power series method, near an ordinary
point x0 ∈ [a, b] , for the following fractional linear differential equation with variable
coefficients

u(nα)(x)+
n−1

∑
i=0

ai(x)u(iα)(x) = g(x,α),

where α ∈ (0,1] , n ∈ N and u(iα)(x) denotes sequential fractional derivatives of order
iα of the function u(x) for i = 0,1, · · · ,n .

Using the integral representation and method of successive approximations, Kim
and O [13] investigated the following fractional differential equation with continuous
variable coefficients (as well as the nonhomogeneous equations with all zero initial
conditions)

Dβn
0,xu(x)+an−1(x)D

βn−1
0,x u(x)+ · · ·+a0(x)D

β0
0,xu(x) = 0, x > 0 (1.1)

with the initial conditions

Dβn− j
0,x u(0) =

{
1 if j = 1,
0 if j = 2,3, · · · ,n0,

(1.2)

where βn > βn−1 > · · · > β0 � 0 and n0 −1 < βn � n0 ∈ Z+ . Pak [14] et al. recently
studied solutions of the following linear nonhomogeneousCaputo fractional differential
equation with continuous variable coefficients for x ∈ [0, T ]

CDβn
0,xu(x)+an−1(x)CDβn−1

0,x u(x)+ · · ·+a0(x)CDβ0
0,xu(x) = g(x),

with all zero initial conditions

Dju(0+) = 0, j = 0,1, · · · ,n0−1.
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As mentioned in the abstract, the aim of this paper is to solve the following linear
fractional integro-differential equation with variable coefficients, for the first time, in
the distributional space D ′(R+)

u(βn)(x)+an−1(x)u(βn−1)(x)+ · · ·+a1(x)u(β1)(x)+a0(x)u(β0)(x) = g(x), (1.3)

where all derivatives or integrals are in the distributional sense (sequential law holds),
and g(x) is a distribution in D ′(R+) , such as

g(x) =
{

x−1.5 if x > 0,
0 if x < 0.

Note that this cannot be done in the classical sense as g(x) = x−1.5
+ is not locally in-

tegrable, and furthermore its Laplace transform does not exist. Moreover, we apply
Babenko’s approach to solve the initial value problem of (1.1) and (1.2), as well as the
nonhomogeneous case with all zero initial conditions in a much simpler way. Several
applicable examples to solving linear fractional and integral equations with variable co-
efficients are presented utilizing gamma functions, some of which cannot be achieved in
the normal sense since we deal with distribution g(x) on the right-hand side of equation
(1.3).

2. Fractional calculus of distribution

In order to study equation (1.3) in the generalized sense, we briefly introduce
the following basic concepts with examples of finding distributional derivatives and
Babenko’s approach for an integro-differential equation in distribution with constant
coefficients. Let D(R) be the Schwartz space (testing function space) [15] of infinitely
differentiable functions with compact support in R , and D ′(R) the (dual) space of
distributions defined on D(R) . A sequence φ1,φ2, · · · ,φn, · · · goes to zero in D(R) if
and only if these functions vanish outside a certain fixed and bounded set, and converge
to zero uniformly together with their derivatives of any order. Clearly, D(R) is not
empty since it contains zero as well as the following function

φ(x) =

{
e

1
x2−1 if |x| < 1,

0 otherwise.

Evidently, any locally integrable function f (x) on R is a (regular) distribution in D ′(R)
as

( f , φ) =
∫ ∞

−∞
f (x)φ(x)dx

is well defined. Furthermore, f is linear and continuous on D(R) . Indeed, we have for
φ , ψ ∈ D(R) , and constants c1 and c2

( f , c1φ + c2ψ) = c1( f , φ)+ c2( f , ψ).
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If a sequence {φn}∞
n=1 converges to zero in D(R) then it has compact support and

converges to zero uniformly. This implies that

lim
n→∞

( f , φn) = lim
n→∞

∫ ∞

−∞
f (x)φn(x)dx = 0.

In particular, the unit step function θ (x) defined as

θ (x) =
{

1 if x > 0,
0 if x < 0,

is a member of D ′(R) as it is locally integrable. In addition, the functional δ (x− x0)
on D(R) , given by

(δ (x− x0),φ(x)) = φ(x0),

is clearly linear and continuous on D(R) . Therefore, δ (x− x0) ∈ D ′(R) .

Let f ∈ D ′(R) . The distributional derivative f ′ (or d f/dx ), is defined as

( f ′, φ) = −( f , φ ′)

for φ ∈ D(R) . Hence,(
δ (n)(x− x0),φ(x)

)
= (−1)n

(
δ (x− x0),φ (n)(x)

)
= (−1)nφ (n)(x0).

The distributional derivative (global sense) is certainly an extension of the classical one
(local sense). Any locally integrable function must have the distributional derivative,
although its classical derivative may not exist.

Assume f is a distribution in D ′(R) and ψ is a C∞ function (infinitely differen-
tiable). Then the product ψ f is well defined by

(ψ f , φ) = ( f , ψφ)

for all functions φ ∈ D(R) , since ψφ ∈ D(R) . The problem of defining products of
two arbitrary distributions has been open and an active research area since distribution
theory was introduced around 1950 [16, 17, 18]. For example, it seems hard to define
the distribution δ 2(x) , as(

δ 2(x), φ(x)
)

= (δ (x)δ (x), φ(x)) = (δ (x), δ (x)φ(x)) = δ (0)φ(0)

is undefined.
As an example of finding distributional derivatives, we show that

dm

dxm

(
θ (x)
1+ x

)
= δ (m−1)(x)+ · · ·+(−1)m−1(m−1)!δ (x)+

(−1)mm!θ (x)
(1+ x)m+1 ,

where m = 0,1, · · · .
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Clearly,

dm

dxm

(
1

1+ x

)
=

(−1)m m!
(1+ x)m+1 , x � 0,

dm

dxm

(
1

1+ x

)∣∣∣∣
x=0

= (−1)m m!.

Let φ ∈ D(R) . Using integration by parts,(
dm

dxm

(
θ (x)
1+ x

)
, φ(x)

)
= (−1)m

∫ ∞

0

φ (m)(x)
1+ x

dx

= (−1)m φ (m−1)(x)
1+ x

∣∣∣∣∣
∞

0

+(−1)m
∫ ∞

0

φ (m−1)(x)
(1+ x)2 dx

= (−1)m−1φ (m−1)(0)+ (−1)m
∫ ∞

0

φ (m−1)(x)
(1+ x)2 dx

=
(

δ (m−1)(x), φ(x)
)

+(−1)m φ (m−2)(x)
(1+ x)2

∣∣∣∣∣
∞

0

+(−1)m2!
∫ ∞

0

φ (m−2)(x)
(1+ x)3 dx

=
(

δ (m−1)(x), φ(x)
)

+(−1)m−1φ (m−2)(0)+ (−1)m2!
∫ ∞

0

φ (m−2)(x)
(1+ x)3 dx

= · · ·
=
(

δ (m−1)(x)+ · · ·+(−1)m−1(m−1)!δ (x), φ(x)
)

+(−1)mm!
∫ ∞

0

φ(x)
(1+ x)m+1 dx.

This infers that

dm

dxm

(
θ (x)
1+ x

)
= δ (m−1)(x)+ · · ·+(−1)m−1(m−1)!δ (x)+

(−1)mm!θ (x)
(1+ x)m+1 .

We should note that this function is not differentiable at x = 0 in the classical sense.
Assume that f and g are distributions in D ′(R+) (the set of all distributions con-

centrated on R+ , which is a subspace of D ′(R)). Then the convolution f ∗ g is well
defined by the equation [15]

(( f ∗ g)(x), φ(x)) = (g(x), ( f (y), φ(x+ y)))

for φ ∈ D(R) . This also implies that

f ∗ g = g ∗ f and ( f ∗ g)′ = g′ ∗ f = g ∗ f ′.

Furthermore, the distribution Φλ =
xλ−1
+

Γ(λ )
∈ D ′(R+) is an entire analytic function

of λ on the complex plane [19, 20], and

xλ−1
+

Γ(λ )

∣∣∣∣∣
λ=−n

= δ (n)(x), for n = 0,1,2, . . . (2.1)
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which plays an important role in fractional calculus of distributions. Let λ and μ be
arbitrary numbers, then the following identities

Φλ ∗Φμ = Φλ+μ (2.2)

d
dx

Φλ = Φλ−1 (2.3)

are satisfied [21].

Let λ be an arbitrary complex number and g(x) be a distribution in D ′(R+) . We
define the primitive of order λ of g as the distributional convolution

gλ (x) = g(x)∗ xλ−1
+

Γ(λ )
= g(x)∗Φλ . (2.4)

Note that this is well defined since the distributions g and Φλ are in D ′(R+) . We shall
write the convolution

g−λ =
dλ

dxλ g = g(λ )(x) = g(x)∗Φ−λ

as the fractional derivative of the distribution g of order λ if Reλ � 0, and
dλ

dxλ g is

interpreted as the fractional integral if Reλ < 0.
It follows from equation (2.2) that differentiation and integration of the same order

are mutually inverse processes, and the following sequential fractional derivative law
holds

dλ

dxλ

(
dμg
dxμ

)
=

dλ+μg

dxλ+μ =
dμ

dxμ

(
dλ g

dxλ

)

for any complex numbers λ and μ .
Note that there is no difference between the Riemann-Liouville derivative and the

Caputo derivative in D ′(R+) [22]. Indeed, let g(x) be any distribution concentrated on
R+ . Then

g−λ (x) = g(x)∗ x−λ−1
+

Γ(−λ )
= g(x)∗ dm

dxm

xm−λ−1
+

Γ(m−λ )

=
dm

dxm

(
g(x)∗ xm−λ−1

+

Γ(m−λ )

)
= g(m)(x)∗ xm−λ−1

+

Γ(m−λ )
,

where m−1 < λ < m ∈ Z+ .
In this paper, we extend Babenko’s approach [23] to distribution theory and solve

equation (1.3), which is an integro-differential equation with variable coefficients. Gen-
erally speaking, Babenko’s method itself is similar to Laplace transform method in the
ordinary sense, but it can be used in more cases [8] such as solving integral or frac-
tional differential equations with distributions whose Laplace transforms do not exist,
as indicated below.
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To illustrate Babenko’s approach in detail, we are going to solve the following
integro-differential equation with constant coefficients in the space D ′(R+)

u(1.5)(x)+u(0.5)(x)−2u(−0.5)(x) = x−1.1
+ (2.5)

where
u(−0.5)(x) = Φ0.5(x)∗ u(x).

Note that this cannot be done in the classical sense as the distribution x−1.1
+ is not locally

integrable and its Laplace transform does not exist.
Clearly, equation (2.5) can be converted into

Φ−1.5 ∗ u+ Φ−0.5∗ u−2Φ0.5∗ u = Γ(−0.1)Φ−0.1

in terms of the distributional convolution. This implies

u+ Φ1 ∗ u−2Φ2∗ u = Γ(−0.1)Φ1.4.

By Babenko’s approach (treating differential or integral operators as variables), we ar-
rive at

u(x) = Γ(−0.1)
1

δ + Φ1−2Φ2
∗Φ1.4 = Γ(−0.1)

∞

∑
k=0

(−1)k(Φ1 −2Φ2)k ∗Φ1.4

= Γ(−0.1)
∞

∑
k=0

(−1)k
k

∑
i=0

(
k
i

)
(−2Φ2)iΦk−i

1 ∗Φ1.4.

Using identities
Φk−i

1 = Φk−i, (−2Φ2)i = (−2)iΦ2i,

we derive that

u(x) = Γ(−0.1)
∞

∑
k=0

(−1)k
k

∑
i=0

(
k
i

)
(−2)iΦk+i+1.4

= Γ(−0.1)
∞

∑
k=0

k

∑
i=0

(−1)k
(

k
i

)
(−2)i xk+i+0.4

+

Γ(k+ i+1.4)
.

Using the following formula

∞

∑
k=0

k

∑
i=0

ai,k−i =
∞

∑
j=0

∞

∑
i=0

ai, j,

we also imply that

u(x) = Γ(−0.1)
∞

∑
j=0

∞

∑
i=0

(−1) j+i
(

j + i
i

)
(−2)i x j+2i+0.4

+

Γ( j +2i+1.4)
.

We will show in the next section that this double series is absolutely and uniformly
convergent on any interval [0,T ] for all T > 0. Therefore, u(x) is continuous on R+ .
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3. The fractional integro-differential equation with variable coefficients

Let ai(x) ∈C[0,∞) for i = 0,1,2, · · · ,n−1 and g ∈ D ′(R+) . In this section,
we mainly focus on solving equation (1.3) distributionally with the conditions βn >
βn−1 > · · · > β0 and βn > 0. Note that this is an integro-differential equation if βh is
negative for some 0 � h � n−1. For example, we have

u(1.5)(x)+2x2u(0.2)(x)+
sinx√

π

∫ x

0
(x− t)−0.5u(t)dt = x−1.2

+ + δ (x)

by choosing the values β2 = 1.5, β1 = 0.2, β0 = −0.5, a0(x) = sinx, a1(x) = 2x2 and
g(x) = x−1.2

+ + δ (x) .
First, we consider the fundamental solution (Green’s function) for the correspond-

ing equation

u(βn)(x)+an−1(x)u(βn−1)(x)+ · · ·+a1(x)u(β1)(x)+a0(x)u(β0)(x) = δ (x). (3.1)

Equation (3.1) can evidently be converted into

u ∗Φ−βn +an−1(x) · (u ∗Φ−βn−1
)+ · · ·+a0(x) · (u ∗Φ−β0

) = δ (x).

Applying ∗Φβn to the above equation from the right-hand side and considering the
convolutional operator ∗ has a higher precedence than the product · , we get

u+an−1(x) ·u ∗Φβn−βn−1
+ · · ·+a0(x) ·u ∗Φβn−β0

= δ (x)∗Φβn = Φβn .

By Babenko’s approach,

u(x) =
1

δ +an−1(x) ·Φβn−βn−1
+ · · ·+a0(x) ·Φβn−β0

∗Φβn

=
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

ai(x) ·Φβn−βi

)k

∗Φβn ,

where (
n−1

∑
i=0

ai(x) ·Φβn−βi

)k

is defined as k -time convolutions, rather than a power.

THEOREM 1. Let ai(x)∈C[0,∞) for i = 0,1, · · · ,n−1 . Then the linear fractional
integro-differential equation (3.1) has the solution

u(x) =
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

ai(x) ·Φβn−βi

)k

∗Φβn ,

which is continuous on the interval [0,∞) if βn � 1 , and u(x) ∈ L(0,T ) for all T > 0
if 0 < βn < 1 .
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Proof. Clearly,∣∣∣∣∣∣
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

ai(x) ·Φβn−βi

)k

∗ xβn−1
+

Γ(βn)

∣∣∣∣∣∣�
∞

∑
k=0

(
n−1

∑
i=0

|ai(x)| ·Φβn−βi

)k

∗ xβn−1
+

Γ(βn)

by noting that

Φ j
βn−βi

∗ xβn−1
+

Γ(βn)
= Φβn j−βi j ∗

xβn−1
+

Γ(βn)
= Φβn j+βn−βi j � 0

for all j, i = 0,1, · · · ,n−1.
Since ai(x) ∈C[0,∞) , there exist constants Mi > 0 such that |ai(x)| � Mi for all

i = 0,1, · · · ,n−1 and x ∈ [0,T ] , where T is positive. Therefore,

|u(x)| �
∞

∑
k=0

(
n−1

∑
i=0

MiΦβn−βi

)k

∗ xβn−1
+

Γ(βn)

=
∞

∑
k=0

∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

Mk0
0 · · ·Mkn−1

n−1

Φk0
βn−β0

∗ · · · ∗Φkn−1
βn−βn−1

∗ xβn−1
+

Γ(βn)

=
∞

∑
k=0

∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

Mk0
0 · · ·Mkn−1

n−1

· xβn−1+k0(βn−β0)+···+kn−1(βn−βn−1)
+

Γ(βn + k0(βn−β0).+ · · ·+ kn−1(βn−βn−1))
.

If βn � 1 and x ∈ [0,T ] , then

|u(x)| � T βn−1
∞

∑
k=0

∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

Mk0
0 · · ·Mkn−1

n−1

· Tk0(βn−β0)+···+kn−1(βn−βn−1)

Γ(βn + k0(βn−β0).+ · · ·+ kn−1(βn−βn−1))

= T βn−1E(βn−β0,···,βn−βn−1), βn

(
M0T

βn−β0 , · · · ,Mn−1T
βn−βn−1

)
where

E(βn−β0,···,βn−βn−1), βn

(
M0T

βn−β0 , · · · ,Mn−1T
βn−βn−1

)
is the value at z0 = M0T βn−β0 , · · · ,zn−1 = Mn−1Tβn−βn−1 of the multivariate Mittag-
Leffler function E(βn−β0,···,βn−βn−1), βn(z0, · · · ,zn−1) given in [24]. This implies that

∞

∑
k=0

(−1)k

(
n−1

∑
i=0

ai(x) ·Φβn−βi

)k

∗Φβn
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is absolutely and uniformly convergent on the interval [0,T ] , and hence u(x) is contin-
uous on [0,T ] . Since T is arbitrary, u(x) is continuous on [0,∞) . Assume 0 < βn < 1.
Then for all T > 0,

∫ T

0
|u(x)|dx �

∞

∑
k=0

∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

Mk0
0 · · ·Mkn−1

n−1

·
∫ T

0

xβn−1+k0(βn−β0)+···+kn−1(βn−βn−1)
+

Γ(βn + k0(βn −β0).+ · · ·+ kn−1(βn−βn−1))
dx

=
∞

∑
k=0

∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

Mk0
0 · · ·Mkn−1

n−1

· T βn+k0(βn−β0)+···+kn−1(βn−βn−1)

Γ(βn +1+ k0(βn −β0).+ · · ·+ kn−1(βn−βn−1))

= T βnE(βn−β0,···,βn−βn−1), βn+1

(
M0T

βn−β0 , · · · ,Mn−1T
βn−βn−1

)
,

which is a finite value. This completes the proof of Theorem 1. �
As an application of Theorem 1, we present the following example.

EXAMPLE 1. Assume α > 0. The linear fractional integro-differential equation
with a variable coefficient

u(2)(x)+u(x)+ xαu(−0.5)(x) = δ (x)

has the solution

u(x) =
∞

∑
k=0

(−1)k
k

∑
i=0

(
k
i

)
Ci,α

x(α+0.5)i+2k+1
+

Γ((α +0.5)i+2k+2)

in the distributional space D ′(R+) , where

Ci,α =

⎧⎨
⎩

1 if i = 0,
Γ(α +4.5)Γ(2α +7) · · ·Γ(iα +4.5+(i−1)2.5)
Γ(4.5)Γ(α +7) · · ·Γ((i−1)α +4.5+(i−1)2.5)

if i � 1.

By Theorem 1,

u(x) =
∞

∑
k=0

(−1)k (Φ2 + xα ·Φ2.5)
k ∗Φ2

=
∞

∑
k=0

(−1)k
k

∑
i=0

(
k
i

)
Φk−i

2 ∗ (xα ·Φ2.5)
i ∗Φ2.
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We need find the term (xα Φ2.5)
i ∗Φ2 . Clearly,

(xα ·Φ2.5)∗Φ2 =
xα+3.5
+

Γ(4.5)
=

Γ(α +4.5)
Γ(4.5)

Φα+4.5,

(xα ·Φ2.5)∗ Γ(α +4.5)
Γ(4.5)

Φα+4.5 =
Γ(α +4.5)

Γ(4.5)
· Γ(2α +7)

Γ(α +7)
Φ2α+7,

· · · ,
(xα ·Φ2.5)i ∗Φ2 =

Γ(α +4.5)Γ(2α +7) · · ·Γ(iα +4.5+(i−1)2.5)
Γ(4.5)Γ(α +7) · · ·Γ((i−1)α +4.5+(i−1)2.5)

Φiα+4.5+(i−1)2.5

= Ci,α Φiα+4.5+(i−1)2.5,

where

Ci,α =

⎧⎨
⎩

1 if i = 0,
Γ(α +4.5)Γ(2α +7) · · ·Γ(iα +4.5+(i−1)2.5)
Γ(4.5)Γ(α +7) · · ·Γ((i−1)α +4.5+(i−1)2.5)

if i � 1.

Hence,

u(x) =
∞

∑
k=0

(−1)k
k

∑
i=0

(
k
i

)
Ci,α Φiα+4.5+(i−1)2.5+2(k−i)

=
∞

∑
k=0

(−1)k
k

∑
i=0

(
k
i

)
Ci,α

x(α+0.5)i+2k+1
+

Γ((α +0.5)i+2k+2)

= x+ − x2
+

2!
− Γ(α +4.5)

Γ(4.5)
xα+2.5
+

Γ(α +3.5)
+ · · · ,

which is continuous on the interval [0,∞) by Theorem 1 as β2 = 2.
Clearly, the fractional integro-differential equation with a variable coefficient

u(2)(x)+u(x)+ xmu(−0.5)(x) = x−1.5
+ , m ∈ Z+

has the solution

u(x) = 2
√

π
∞

∑
k=0

(−1)k+1
k

∑
i=0

(
k
i

)
Ci,m

x(m+0.5)i+2k+0.5
+

Γ((m+0.5)i+2k+1.5)

in the distributional space D ′(R+) , although it cannot be solved in the classical sense.

COROLLARY 1. Let ai(x) = ai for i = 0,1, · · · ,n− 1 . Then the linear fractional
integro-differential equation (3.1) with all constant coefficients has the solution

u(x) =
∞

∑
k=0

(−1)k ∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

ak0
0 · · ·akn−1

n−1

· xβn−1+k0(βn−β0)+···+kn−1(βn−βn−1)
+

Γ(βn + k0(βn −β0).+ · · ·+ kn−1(βn−βn−1))
,
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which is continuous on the interval [0,∞) if βn � 1 , and u(x) ∈ L(0,T ) for all T > 0
if 0 < βn < 1 .

Proof. It follows immediately from the proof of Theorem 1. �
We would like to mention that if 0 � βn > · · · > β0 , then equation (3.1) with

constant coefficients is an integral equation and has the solution in the form of

u(x) = a singular distribution+ a locally integrable function

in general. Indeed, we choose the minimum k such that

min
k�1

{βn−1+ k0(βn−β0)+ · · ·+ kn−1(βn−βn−1)} > −1,

and denote it as k0 . Then, we have from Corollary 1 that

u(x) =
k0−1

∑
k=0

(−1)k ∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

ak0
0 · · ·akn−1

n−1

· xβn−1+k0(βn−β0)+···+kn−1(βn−βn−1)
+

Γ(βn + k0(βn−β0).+ · · ·+ kn−1(βn −βn−1))

+
∞

∑
k=k0

(−1)k ∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

ak0
0 · · ·akn−1

n−1

· xβn−1+k0(βn−β0)+···+kn−1(βn−βn−1)
+

Γ(βn + k0(βn−β0).+ · · ·+ kn−1(βn −βn−1))
.

The first part is a distribution as the minimum power is less than or equal to −1, and
the second is a locally integrable function.

To end off this section, we would like to point out that we need the conditions
ai(x) ∈C∞[0,∞) for i = 0,1, · · · ,n−1, in order to solve the general fractional integro-
differential equation

u(βn)(x)+an−1(x)u(βn−1)(x)+ · · ·+a1(x)u(β1)(x)+a0(x)u(β0)(x) = g(x),

where g(x) ∈ D ′(R+) , as we deal with the distributional products ai(x)u(βi)(x) , ac-
cording to Section 2.

4. The initial value problems

In this section, we are going to apply Babenko’s approach to re-study equa-
tion (1.1) under the Riemann-Liouville derivatives (non-sequential law holds) with the
initial conditions (1.2), which is mentioned in the introduction. Our approach will sim-
plify the work due to Kim and O in [13]. Let us start with several soon-to-be used
definitions.
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DEFINITION 4.1. The fractional integral (or, the Riemann- Liouville) Iα
0,x (or Iα

for short) of fractional order α ∈ R+ of function f (x) is defined by

(Iα f )(x) = (Φα ∗ f )(x) =
1

Γ(α)

∫ x

0
(x− t)α−1 f (t)dt.

Note that this definition is in the classical sense.

DEFINITION 4.2. The Riemann-Liouville derivative of fractional order α ∈ R+

of function f (x) is defined as

Dα
0,x f (x) =

dm

dxm Im−α f (x) =
1

Γ(m−α)
dm

dxm

∫ x

0
(x− t)m−α−1 f (t)dt,

where m−1 � α � m ∈ Z+ .

Note that from [25]

IαDα
0,x f (x) = f (x)−

m

∑
k=1

Dα−k
0,x f (0)

xα−k

Γ(α − k+1)
. (4.1)

THEOREM 2. Equation (1.1) with the initial conditions (1.2) has the solution

u(x) =
xβn−1

Γ(βn)
+

∞

∑
k=0

(−1)k+1Iβn

(
n−1

∑
i=0

ai(x)Iβn−βi

)k n−1

∑
i=0

ai(x) · xβn−βi−1

Γ(βn −βi)
. (4.2)

Proof. Clearly, the equivalent integral representation of equation (1.1) with the
initial conditions (1.2) is

u(x) =
xβn−1

Γ(βn)
− Iβnan−1(x)D

βn−1
0,x u(x)−·· ·− Iβna0(x)D

β0
0,xu(x) (4.3)

by equation (4.1).
Equation (4.3) can be converted into(

1+ Iβnan−1(x)D
βn−1
0,x + · · ·+ Iβna0(x)D

β0
0,x

)
·u(x) =

xβn−1

Γ(βn)
,

which implies by Babenko’s approach,

u(x) =
1

1+ Iβnan−1(x)D
βn−1
0,x + · · ·+ Iβna0(x)D

β0
0,x

· xβn−1

Γ(βn)

=
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

Iβnai(x)D
βi
0,x

)k

· xβn−1

Γ(βn)

=
xβn−1

Γ(βn)
+

∞

∑
k=0

(−1)k+1

(
n−1

∑
i=0

Iβnai(x)D
βi
0,x

)k

·
n−1

∑
i=0

Iβnai(x)D
βi
0,x ·

xβn−1

Γ(βn)
.
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Clearly,

n−1

∑
i=0

Iβnai(x)D
βi
0,x ·

xβn−1

Γ(βn)
= Iβn

n−1

∑
i=0

ai(x) · xβn−βi−1

Γ(βn−βi)
, and

(
n−1

∑
i=0

Iβnai(x)D
βi
0,x

)k

Iβn = Iβn

(
n−1

∑
i=0

ai(x)D
βi
0,x · Iβn

)k

= Iβn

(
n−1

∑
i=0

ai(x)Iβn−βi

)k

by using
Dβi

0,x · Iβn = Iβn−βi .

Therefore,

u(x) =
xβn−1

Γ(βn)
+

∞

∑
k=0

(−1)k+1Iβn

(
n−1

∑
i=0

ai(x)Iβn−βi

)k n−1

∑
i=0

ai(x) · xβn−βi−1

Γ(βn−βi)
.

This completes the proof of Theorem 2. �

REMARK 1. Let

Lα
loc(0,∞) = { f (x) ∈ L(0,T ) | Dα

0,x f ∈ L(0,T ),∀T > 0}.
Kim and O [13] derived equation (4.2) by successive approximations (recursive tech-
nique) and showed that equation (1.1) with the initial conditions (1.2) has a unique solu-
tion u(x) in the space Lβn

loc(0,∞) by assuming ai(x) ∈C[0,∞) for all i = 0,1, · · · ,n−1.
But their method is more complicated than ours.

In particular, if ai(x) = ai = const for all i = 0,1, · · · ,n− 1, then for x > 0 and
β0 � 0,

u(x) =
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

IβnaiD
βi
0,x

)k

· xβn−1

Γ(βn)

=
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

aiI
βn−βi

)k

· xβn−1

Γ(βn)

=
∞

∑
k=0

(−1)k ∑
k0+k1+···+kn−1=k

k!
k0!k1! · · ·kn−1!

ak0
0 · · ·akn−1

n−1

· xβn−1+k0(βn−β0)+···+kn−1(βn−βn−1)

Γ(βn + k0(βn−β0).+ · · ·+ kn−1(βn−βn−1))
,

which is in the classical sense, and clearly does not deal with the distributional equation
like

anu
(βn)(x)+an−1u

(βn−1)(x)+ · · ·+a1u
(β1)(x)+a0u

(β0)(x) = x−1.1
+ .

We are going to present the following example by Theorem 2.
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EXAMPLE 2. The fractional differential equation

D2
0,xu(x)+ xD1.5

0,xu(x)+u(x) = 0,

with the initial conditions
D0,xu(0) = 1, u(0) = 0

has the solution

u(x)

= x+
∞

∑
k=0

(−1)k+1
k

∑
i=0

(
k
i

)(
Ai

x1.5i+2(k−i)+3

Γ(1.5i+2(k− i)+4)
+Bi

x1.5i+2(k−i)+2.5

Γ(1.5i+2(k− i)+3.5)

)
,

in the space L2
loc(0,∞) , where coefficients Ai and Bi are defined below.

By Theorem 2,

u(x) = x+
∞

∑
k=0

(−1)k+1I2
(
I2 + xI0.5

)k
(

x+ x
x−0.5

Γ(0.5)

)

= x+
∞

∑
k=0

(−1)k+1I2
k

∑
i=0

(
k
i

)
I2(k−i)

(
xI0.5

)i
(

x+
x0.5

Γ(0.5)

)
.

Note that

(
xI0.5

)
x =

(
xI0.5

) x
Γ(2)

= x
x1.5

Γ(2.5)
=

x2.5

Γ(2.5)
=

Γ(3.5)
Γ(2.5)

x2.5

Γ(3.5)
,

(
xI0.5

) Γ(3.5)
Γ(2.5)

x2.5

Γ(3.5)
=

Γ(3.5)Γ(5)
Γ(2.5)Γ(4)

x4

Γ(5)
,

· · · ,(
xI0.5

)i
x =

Γ(3.5)Γ(5) · · ·Γ(1.5i+2)
Γ(2.5)Γ(4) · · ·Γ(1.5i+1)

· x1.5i+1

Γ(1.5i+2)
= Ai

x1.5i+1

Γ(1.5i+2)
,

where

Ai =

⎧⎨
⎩

1 if i = 0,
Γ(3.5)Γ(5) · · ·Γ(1.5i+2)
Γ(2.5)Γ(4) · · ·Γ(1.5i+1)

if i � 1.

On the other hand,

(
xI0.5

) x0.5

Γ(0.5)
=

Γ(1.5)
Γ(0.5)

x2

Γ(2)
=

Γ(1.5)Γ(3)
Γ(0.5)Γ(2)

x2

Γ(3)
,

(
xI0.5

) Γ(1.5)Γ(3)
Γ(0.5)Γ(2)

x2

Γ(3)
=

Γ(1.5)Γ(3)Γ(4.5)
Γ(0.5)Γ(2))Γ(3.5)

x3.5

Γ(4.5)
,

· · · ,(
xI0.5

)i x0.5

Γ(0.5)
=

Γ(1.5)Γ(3) · · ·Γ(1.5(i+1))
Γ(0.5)Γ(2) · · ·Γ(1.5i+0.5)

x1.5i+0.5

Γ(1.5(i+1))
= Bi

x1.5i+0.5

Γ(1.5(i+1))
,
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where

Bi =
Γ(1.5)Γ(3) · · ·Γ(1.5(i+1))
Γ(0.5)Γ(2) · · ·Γ(1.5i+0.5)

.

Therefore,

u(x)

= x+
∞

∑
k=0

(−1)k+1
k

∑
i=0

(
k
i

)
I2(k−i)+2

(
Ai

x1.5i+1

Γ(1.5i+2)
+Bi

x1.5i+0.5

Γ(1.5(i+1))

)

x+
∞

∑
k=0

(−1)k+1
k

∑
i=0

(
k
i

)
·
(

Ai
x1.5i+2(k−i)+3

Γ(1.5i+2(k− i)+4)
+Bi

x1.5i+2(k−i)+2.5

Γ(1.5i+2(k− i)+3.5)

)
.

We would like to mention that we can follow the previous procedure to study
equation (1.1) with different types of the initial conditions, such as

Dβn− j
0,x u(0) =

{
1 if j = n0,
0 if j = 2,3, · · · ,n0−1,

where n0−1 < βn � n0 ∈ Z+ , or

Dβn− j
0,x u(0) =

{
1 if j = 1,2,
0 if j = 3, · · · ,n0.

Clearly, the latter case will include more terms in its solution.
In addition, we can investigate the nonhomogeneous fractional differential equa-

tion for the continuous function g(x)

Dβn
0,xu(x)+an−1(x)D

βn−1
0,x u(x)+ · · ·+a0(x)D

β0
0,xu(x) = g(x), x > 0 (4.4)

with the initial conditions (1.2) in the classical sense by Babenko’s approach. In partic-
ular, equation (4.4) with the initial conditions

Dβn− j
0,x u(0) = 0

for all j = 1,2, · · · ,n0 , has the solution

u(x) =
∞

∑
k=0

(−1)kIβn

(
n−1

∑
i=0

ai(x)Iβn−βi

)k

g(x). (4.5)

Indeed, we get

u(x)+ Iβnan−1(x)D
βn−1
0,x u(x)+ · · ·+ Iβna0(x)D

β0
0,xu(x) = Iβng(x)
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by applying Iβn to equation (4.4) and noting that Dβn− j
0,x u(0) = 0 for all j = 1,2, · · · ,n0 .

This infers that

u =
1

1+ Iβnan−1(x)D
βn−1
0,x + · · ·+ Iβna0(x)D

β0
0,x

Iβng(x)

=
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

Iβnai(x)D
βi
0,x

)k

Iβng(x)

=
∞

∑
k=0

(−1)kIβn

(
n−1

∑
i=0

ai(x)Iβn−βi

)k

g(x).

We should point out that this solution is well defined. In fact,

u(x) =
∞

∑
k=0

(−1)kIβn

(
n−1

∑
i=0

ai(x)Iβn−βi

)k

g(x)

=
∞

∑
k=0

(−1)kΦβn ∗
(

n−1

∑
i=0

ai(x) ·Φβn−βi

)k

∗ g(x)

= Φβn ∗
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

ai(x) ·Φβn−βi

)k

∗ δ (x)∗ g(x).

From the proof of Theorem 1,

w(x) =
∞

∑
k=0

(−1)k

(
n−1

∑
i=0

ai(x) ·Φβn−βi

)k

∗ x−1
+

Γ(0)
∈ L(0,T )

for all T > 0. Furthermore, it is equal zero if x < 0. Hence, the convolution Φβn ∗
w(x) ∗ g(x) is well defined in the classical sense if g(x) is continuous if x > 0 and is
zero if x < 0.

EXAMPLE 3. The non-homogeneous fractional differential equation with variable
coefficients

D1.5
0,xu(x)+ xD0.5

0,xu(x)+ x1.5u(x) =
1
2
x2, x > 0

with the initial conditions

D−0.5
0,x u(0) = D0.5

0,xu(0) = 0

has the solution

u(x) =
∞

∑
k=0

(−1)k
k

∑
i=0

(
k
i

)
CiBk−i

x2k+i+3.5

Γ(2k+ i+4.5)
,
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where Ci and Bk−i are given below.
By equation (4.5),

u(x) =
∞

∑
k=0

(−1)kI1.5
(
xI + x1.5I1.5

)k x2

2

=
∞

∑
k=0

(−1)kI1.5
k

∑
i=0

(
k
i

)
(xI)k−i

(
x1.5I1.5

)i x2

2
.

Clearly,

(
x1.5I1.5

) x2

Γ(3)
= x1.5 x3.5

Γ(4.5)
=

x5

Γ(4.5)
=

Γ(6)
Γ(4.5)

x5

Γ(6)
,

(
x1.5I1.5

) Γ(6)
Γ(4.5)

x5

Γ(6)
=

Γ(6)
Γ(4.5)

Γ(9)
Γ(7.5)

x8

Γ(9)
,

· · · ,(
x1.5I1.5

)i x2

Γ(3)
=

Γ(6) · · ·Γ(3(i+1))
Γ(4.5) · · ·Γ(3i+1.5)

x3i+2

Γ(3i+3)
= Ci

x3i+2

Γ(3i+3)
,

where

Ci =

⎧⎨
⎩

1 if i = 0,
Γ(6) · · ·Γ(3(i+1))

Γ(4.5) · · ·Γ(3i+1.5)
if i � 1.

To complete our calculation, we see that

(xI)
x3i+2

Γ(3i+3)
=

Γ(3(i+1)+2)
Γ(3(i+1)+1)

x3(i+1)+1

Γ(3(i+1)+2)
= (3(i+1)+1)

x3(i+1)+1

Γ(3(i+1)+2)

(xI)(3(i+1)+1)
x3(i+1)+1

Γ(3(i+1)+2)
= (3(i+1)+1)(3(i+1)+3)

x3(i+1)+3

Γ(3(i+1)+4)
· · · ,
(xI)k−i x3i+2

Γ(3i+3)

= (3(i+1)+1)(3(i+1)+3) · · ·(2k+ i+2)
x2k+i+2

Γ(2k+ i+3)
= Bk−i

x2k+i+2

Γ(2k+ i+3)
,

where

Bk−i =
{

1 if i = k,
(3(i+1)+1)(3(i+1)+3) · · ·(2k+ i+2) if i < k.

The solution follows immediately from

I1.5 x2k+i+2

Γ(2k+ i+3)
=

x2k+i+3.5

Γ(2k+ i+4.5)
.
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DEFINITION 4.3. The Caputo derivative of fractional order α ∈ R+ of function
u(x) is defined as

CDα
0,xu(x) = Im−α dm

dxm u(x) =
1

Γ(m−α)

∫ x

0
(x− t)m−α−1u(m)(t)dt,

where m−1 < α � m ∈ Z+ .

Finally, we present solution for the following linear nonhomogeneousCaputo frac-
tional differential equation with continuous variable coefficients (which was mentioned
in the introduction),

CDβn
0,xu(x)+an−1(x)CDβn−1

0,x u(x)+ · · ·+a0(x)CDβ0
0,xu(x) = g(x), x ∈ [0,T ] (4.6)

with all zero initial conditions

Dju(0+) = 0, j = 0,1, · · · ,n0−1

by Babenko’s approach.
Clearly, integration by parts and differentiation show that

CDα
0,xu(x) = Dα

0,x

(
u(x)−

m−1

∑
j=0

x j

j!
u( j)(0)

)
,

if u(x) ∈Cm[0,∞) and m−1 < α � m ∈ Z+ . This implies that for k = 0, · · · ,n−1

CDβk
0,xu(x) = Dβk

0,xu(x)

from all zero initial conditions above, by noting that βn > βn−1 > · · · > β0 � 0 and
n0−1 < βn � n0 ∈ Z+ . Integration by parts and the initial conditions also infer that,

Iβn
CDβn

0,xu(x) = Iβn In0−βn
dn0

dxn0
u(x) = In0

dn0

dxn0
u(x) =

1
(n0 −1)!

∫ x

0
(x− t)n0−1u(n0)(t)dt

=
1

(n0−1)!
(x−t)n0−1u(n0−1)(t)

∣∣∣∣
x

t=0
+

1
(n0−2)!

∫ x

0
(x−t)n0−2u(n0−1)(t)dt

=
1

(n0−2)!

∫ x

0
(x− t)n0−2u(n0−1)(t)dt

· · · ,
=

1
0!

∫ x

0
(x− t)−1u(t)dt = δ (x)∗ u(x) = u(x).

Hence, equation (4.6) is equivalent to the integral equation

u(x)+ Iβnan−1(x)D
βn−1
0,x u(x)+ · · ·+ Iβna0(x)D

β0
0,xu(x) = Iβng(x)
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by applying Iβn to equation (4.6), which has the well-defined solution

u(x) =
∞

∑
k=0

(−1)kIβn

(
n−1

∑
i=0

ai(x)Iβn−βi

)k

g(x),

according the previous work for equation (4.5).

To end off this section, we would like to point out that solution for equation (4.6)
with all zero initial conditions has been investigated by several researchers using differ-
ent approaches, including the classical Green function, generalized Green function and
modified Green function [14, 26].

5. Conclusion

Applying Babenko’s approach, we have investigated the linear fractional in-
tegro-differential equation (1.3) with variable coefficients in the distributional space
D ′(R+) for the first time, and obtained its solution as the convergent series. Further-
more, we studied this equation with the Riemann-Liouville and Caputo derivatives and
the initial conditions by a new technique in the classical sense. Several applicable exam-
ples of solving fractional differential equations were presented using gamma functions.

Acknowledgements. The authors are grateful to Dr. M. Andrić and reviewer for
their careful reading of the paper with several productive suggestions and corrections.
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Tenreiro Machado, J.A., Baleanu, D., Eds., Springer: Dordrecht, The Netherlands, 2007, pp. 71–96.
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