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THE GENERALIZED ABEL’S INTEGRAL EQUATIONS
ON R" WITH VARIABLE COEFFICIENTS
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(Communicated by H. M. Srivastava)

Abstract. The convergent and stable solutions are constructed in the space of Lebesgue inte-
grable functions for the generalized Abel’s integral equations of the second kind with variable
coefficients on R". Several applicable examples are presented, including one solving the frac-
tional partial differential equation with the initial condition.

1. Introduction

Let x = (x1,X2,---,X,) and I;* be the partial Riemann-Liouville fractional integral
of order o € R™ with respect to x;, with initial point zero [10],

1 Y _
) ‘/0 (-)Ck_t)oC 1M()C17'"7)Ck_17t,Xk+1,"'7xn)dt

I = —
(00 = 17,
where k=1,2,---,n
Assuming that @; >0 for i=1,2,---,n and Q= (0,®;) x (0, @) x --- X (0, ®,),
we consider the generalized Abel’s integral equation of the second kind with variable
coefficients on R",

u(x17x27"' 7xn)

- Zak(x17x27--- 7xn)1ixlk1é12k "'Ir?nku(xlvx2a' o 7xn) = g(X1,x2,' o 7xn)7 (l)

where o;; >0 fori=1,2,---,nand j=1,2,---,m € N, a;(x) is Lebesgue integrable
and bounded on Q for i =1,2,---,m, g(x) is a given function in L(Q) and u(x) is the
unknown function. Note that

o 104
T Ia""u(xl,xz, .

B — )t — 1) %% (1), 1y )dy - - dt
1—‘(alk ank / / XI 1 (n ") u(h 7n) n 1,
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which is regarded as the partial Riemann-Liouville fractional integral with order oy +
-+ oy (o th order in x;-direction for i = 1,2,---,n) [13, 18]. Applying Babenko’s
approach [1], we establish a convergent and stable solution (note that a solution is
said to be stable for equation (1) if Ye > 0 30 > 0, such that |ju|| < € if [|g]| <
0.) for equation (1) in the space L(Q) under certain condition on the matrix {c;}.
Following a similar procedure, we also construct a convergent and stable solution for
the generalized Abel’s integral equation

u(x)— 3 a ()% ulx) = g(x) @)
k=1

on R", which cannot be reduced to a particular case of equation (1). Clearly, equation
(1) turns to be

u(xy) —a I "u(x)) = g(xy) 3)

if n=m=1 and a;(x) = a; (constant). Equation (3) is the classical Abel’s integral
equation of the second kind, with the solution given by Hille and Tamarkin [8]

X1
) = g +ar [ (1 =0 Bayy (a1 =) ) (0)r

where

Zn

Emﬁ(z):rgz)m7 Ol7ﬁ>0

is the Mittag-Leffler function.

There have been many interesting studies on Abel’s integral equation of the second
kind, including its variants and generalizations in distribution [21, 24, 16, 15]. In 1930,
Tamarkin obtained integrable solutions of Abel’s integral equations under certain con-
ditions by several integral operators [26]. Sumner [25] studied Abel’s integral equations
using the convolutional transform. Minerbo and Levy [20] found a numerical solution
of Abel’s integral equation by orthogonal polynomials. In 1985, Hatcher [7] worked
on a nonlinear Hilbert problem of power type, solved in closed form by representing a
sectionally holomorphic function by means of an integral with power kernel, and trans-
formed the problem to one of solving a generalized Abel’s integral equation. The mul-
tidimensional Abel-type hypergeometric integral equation over a pyramidal domain in
R" and its generalizations were studied in [9, 23]. Pskhu [22] considered the following
generalized Abel’s integral equation with constant coefficients a; for k =1,2,---.n

u(x) — 3 al%u(x) = g(v),
k=1

where o > 0 and x € Q, and constructed an explicit solution based on the Wright
function

o n

(0, Biz) = Y, ———

— a>-—1,
Zyn'T(an+B)
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and convolution. Using fractional powers of linear multistep methods, Lubich [19]
found the numerical solution for the following Abel’s integral equation of the second
kind

u) =)+ ﬁ /f(x—r)“‘lf(r,u(r))dr on "

where x € [0,7] and & > 0. The case o = 1/2 is encountered in numerous problems
in physics and chemistry [3]. Li et al. [16, 15] studied Abel’s integral equations in the
generalized sense based on fractional calculus of distributions, inverse convolutional
operators and Babenko’s approach [1]. Very recently, Li and Plowman [17] established
a convergent and stable solution for the following generalized Abel’s integral equation
on R"

u(x) - <kH ak<x>1£‘k> u(x) = £(x),
=1

where every partial Riemann-Liouville fractional integral I,f‘ * has its own weight func-
tion a;(x).

2. The main results

THEOREM 1. Assume o;; >0 fori=1,2,---,n and j=1,2,---,m, and the ma-
trix
o1 02 - O
Ot 02 =+ Olnm

has a row whose elements are all positive. Then the generalized Abel’s integral equation
of the second kind with variable coefficients on R" for a given function g € L(Q),

m
u(x) — Z ak(x)lfz”‘lgz" c Iy (x) = g(x), x€QCRY,
k=1

has the following convergent and stable solution in L(€)

m J
ulx) =3y (2 ak(x)lf“klz?‘”---l,?‘"k> g(x), 4
k=1

where ai(x) is Lebesgue integrable and bounded on Q for k =1,2,--- m.

Proof. Clearly,
m -1 oo J
u(x) _ (1 _ Zak(x)lfflklgzk .. .]r?fnk> g(x) — Z < ak(x)lfflklgzk,..]gnk> g(x)
k=1 j=0 \k=1

= i Z ( J! ) (al(x)lf‘lllgm ...I;lxnl)jl

TREIEREE
J=0 it = 12 e

I M=

(am (x)If‘lmIng . Ir(lxnm)fm g(x) .
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Since ay(x) is bounded on Q for k = 1,2,---,m, there exists M > 0 such that

sup |ag(x)| < M.
xeQ

Let || f]| be the usual norm of f € L(Q), given by

171 = [ Ureide= [ 1o, ) ldaidi - d, <o

Then, we have from [2] for i =1,2,---,n and j=1,2,---,m

O
17 ]| = 11 1l < 1 1]

where -
()
D gy = .
U T(o))
This implies for ¢;; > 0 that
ai—1
o (i) 4
1] < [ @i, :/;d dxy -+ dx,
i || 7061]H Q F(OCU) X14x2 X
o o
:(D"'(Dl‘, %wi ) gxn_l i
! IF(OC,'J'—FI) +l " F(OC,'J‘—FI)

where
A =max{®;, @, -, 0,} >0.

In particular for ¢;; =0,
1] <A

Therefore,

-]' ~' m m nm Jm
(it o) (@O g a5t )
St jm=] et ’

. o1 j1++0mjm
:Mj Z ( ]! )An_l wl . e
it b= NJTLRE ! Flourji+++ 4 oumjm +1)
wanljl+"'+ann1.fm
n

1—‘(Ocnljl +-t (Xnmjm + 1)
]| wf‘llleF"'Jralmjm
JiHjttjm=j <]l ']2' o ]m') 1—‘(alljl +-+ almjm + 1)

Oy1j1++Cum jm

Wp
r(anljl +- anmjm + 1)

An—l

2 .
< A T

Without loss of generality, we assume that all elements in the first row of the matrix are
positive and set
o =min{oy, 012, <+, Olimy > 0,
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then

T(ogiji+-+ imjm+ 1)
1—‘(Ociljl +"'+aimjm+ 1)

>T(aj+1), and
>1/2

for i =2,---,n. On the other hand, we let
S = max {wa”}

fori=1,2,---,nand j=1,2,---,m. Then,

wfmJlJr A+ mim --a),?”lj1+"'+a"”’j"’ < (S")j.
Using the identity

i .
Z ( 1 N j !) =m’,
Jrtittim=j Jitiats gm!

we derive that
(MmS™)

n—nAn—1 \
()| <272 g HE Ko

by the Mittag-Leffler function. Furthermore, the solution

o m j
03 ( 3 o -z;w«) o)

Jj=0

is stable from the above inequality. This completes the proof of Theorem 1. [
Note that we can follow a similar approach to construct a convergent and stable
solution in L(Q) for the generalized Abel’s integral equation of the second kind

i (are()IT*) (anr ()12 - (@ ()18 Yu(x) = g(x), x€ QCR",

where every partial Riemann-Liouville fractional integral Il-a * has its own weight func-
tion aj(x).

REMARK 1. In particular, if the dimension n =1, and o3 >0, 0 =--- = O =
0 for k=1,2,---,m, then equation (1) becomes

M=

u(xi) = Y, ap(x)I ™ u(x) = g(x), 5

k=1

where every element in the first row of the matrix in Theorem 1 is positive. Applying a
modification of the Mikusinski operational calculus and the Mittag-Leffler function of
several variables, Gorenflo and Luchko [6] obtained an explicit solution of the general-
ized Abel’s integral equation of the second kind with constant coefficients A;

= A7) (xy) = g(x1), 04>0,m>1,10>0,x>0,
=1

which is clearly a special case of equation (5).
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Using Babenko’s method, we can also derive Theorem 2 below, with the corre-
sponding matrix

0 o - 0
0 0 - ¢

that does not have a row whose elements are all positive.

THEOREM 2. Let o4 > 0 and ay(x) be Lebesgue integrable and bounded on Q
for k=1,2,---.n. Then the generalized Abel’s integral equation

2 () u(x) =g(x), x€QCR", (6)

has the following convergent and stable solution

D=3 (iakw:‘k) 50,
m=0 \k=1

where g(x) € L(Q).

Proof. Clearly,

This implies by Babenko’s method that

—1 - " m
:<1_;ak<x>zgk) g<x>=z<zak<x>1£‘k> <),
=1

It remains to show that the above is convergentin L(2). Let
n m '
n:
e (2 ot ) = Y (@@ W)
k=1 my+--+myp=m . n:
Since ay(x) is bounded on Q for k = 1,2,---,n, there exists M > 0 such that

sup |ag(x)| < M.

xeQ
Hence,
”WH < M™ 2 - Hlm1a1|| ‘Imnan”
my+--+my=m my:-
o
oy m! )1 )

Sttt D(myoy +1) T(myop + 1)
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since for i =1,2,---,n,
m; O
e
~

F(mioc,-—f— 1)

e

where
A =max{®,®, -, w0,} >0

in Theorem 1. Let

A =max{w, 0%, -, 0"} >0.

135

Then,
W[ <A”"mmam Y m! !
~X .
S MY | JRERRY /Y T(mog +1)---T(myo, + 1)
Note that
m! "
— =", and
my - tmy=m M M-
1 m
T(m1 04 + Dm0ty 4 1)+ T (my 0+ 1) > 5T (a; + 1),
where
o= min{al,OQ, e 7an}7
and since for any nonnegative numbers my,my, - - - ,m, satisfying my +mo+---+m, =

m, there exists an index 1 <i < n such that m; > m/n, and
T(mjoj+1)>1/2

for j=1,---,i—1,i+1,---,n. Therefore,

W < At AR
r <—m+ 1)
n
and
S (MAn)™

}127" n—
el <A™7"2" Mgl Y, ——
A0l (St 1)

n

by the Mittag-Leffler function. Furthermore, the solution
oo n m
u(x) =3y, (E ak(X)I;f‘k> 8(x)
k=1

m=0 =

is stable from the above inequality. This completes the proof of Theorem 2.

O
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3. Examples
Let o and 3 be arbitrary real numbers. Then it follows from [5]
Dy (I)ﬁ = q)a+ﬁ

where

EXAMPLE 1. Abel’s integral equation with variable coefficients
1
u(xy,x2) — x5 u(xy,x0) — x3°B5u(xy, xp) = Exlx%
has the following convergent and stable solution
1.5k+1 3(m k)+2

N X
’ AB,, L )
u(xy,x2) mZOkXB k k (3(m k)+2)!r(1.5k+2)

where the coefficients Ay and B,,_; are given as

a1 if k=0,
71 @25)-4---(1.5k+1) ifk > 1

and
1 if m =k,
By i=1{ T(6)--T(B3m—k+1)) |
fm> k.
4.5 T3m—k+15)

Proof. Indeed, we have from Theorem 1 that

1
(xll?s +x2 511 5) Exlx%

M

1
u(xy,xy) = Exlx% +

m=1
1 o Mo k m—k 1
=§“x5+mzlk:o<k) (nif?) (4°8%)" " 5
| o m m—k ]
=g 33 (F) (%) (1) 54
2 m=1k=0 k 2
Clearly,
25 1(3.5)
Ios) — (01D S .
( M=) N = o5 = a5 TEs)

05\ LB3:5) X T(35)T(5) xf
(xl ) T(25) T(3.5) T[(250@) 0(5)

(x 105) o= TBS()-T(1.5k+2) xj-okHl 4 x}Skrl
i " T@5) @) T(15k+ 1) T(1.5k+2) ‘T(1.5k+2)
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On the other hand,
m—k ] -
(x§~5121-5> §x§ = (xéﬁdn.s(xz) « D3 (x2)
 T(6)---T(3(m—k+1)) x;(mfk)Jrz
- T(45)---T(3(m—k)+1.5) 3(m—k)+2)!
3(m—k)+2
By, f—2
(3(m—k)+2)

EXAMPLE 2. Let ai(x;) be continuous and bounded on Q for k=1,2,---,n, and

let
o o coxn 8”1“""'4’"}1
n

g(XI,XZ;"'a 2 2 xl

n;=0 np=

0,---,0).
--np! X! ~~8x2”g( +0)

Then Abel’s integral equation
n
u(x) = Y ar(v)ltu(x) = g(x), x€QCR"
k=1

has the following convergent and stable solution

=

m!
u(x) = om!
m=0k,+-—+k,=m kil ky!
oo k xnl oo L Ny 8nl+"'+nn
ar (x )70 2L ay (1o 0T o
n12=0( 1( 1) 1 ) n1! nnzzo( n( 71) n ) nn!gx'lll"'axzng( )
in L(2).

If o € (0,1), then the partial Riemann-Liouville derivative gL DY u(x1,x2) is de-
fined as [13]

#i/ﬂ( _t)—oc (l )dl
T—a)dx Jo ! At

EXAMPLE 3. Let 4;(x2) and A2(x;) be Lebesgue integrable and bounded on Q C
R?. Then the integro-differential equation for a given function g(x1,x;) € L(Q)

RLDF u(x1,x2) =

RLDE (xt,x2) — A (02) 18 u(x1,2) — Ao () B u(xr, x0) = gy, x0) (x1,x2) € 2, (7)

with the initial condition
—1
Ry (0,x2) =0,

has the following convergent and stable solution in L(Q)
m—k
u(xy,x2) Z Z (kl )1 Il3 ) (7@()62)1{"152) I g(x1,x2),
m=0k=0
where f31, f, > 0.
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Proof. In fact, we derive that
IV RLDS u(x1,x2) = u(x1,x2)
by the initial condition. Equation (7) turns to be
u(xe,x2) — I ()15 w1, x2) — If A0 (x2) 15wy x0) = [ g (1, 32).
Clearly,
120 )PP (e, x2) = A () I P (1, ),
1% 2 () Py, x2) = A0 () 10 TPy ).

Furthermore, I{g(x;,x2) is Lebesgue integrable on Q C R2, which is a bounded do-
main. From Theorem 1, equation

u(xg,x) — Al(xg)lf‘lf'u(xl,xg) - lz(xz)lfclfzu(xl’xz) = I{'g(x1,x2)

has the following convergent and stable solution in L(€2)

=

ulxi,x) =Y, <7L1(x2)lf‘lgl +7L2(x2)lf‘152> I¥g(x1,x2)

m

(e} (Rateigrl)" sgton). O

Il
M

I M=
=
5
~

REMARK 2. In seeking solutions to fractional partial differential or integral equa-
tions, integral transforms play an important role, especially to constant coefficient equa-
tions that possess time and spatial dependence, since after applying Laplace transform
in the time variable and Fourier (Mellin or Hankel) transform in the spatial variable, we
get an algebraic equation. After solving this algebraic equation, we find original solu-
tions by means of the corresponding inverse transforms. However, it seems impossible
to obtain solutions for equations (1) and (6) by any existing integral transform as they
involve almost arbitrary variable coefficients, according to the author’s knowledge. The
operational calculus obtained from Mellin or Hankel transforms only works on certain
types of differential or integral equations with variable coefficients [4, 11, 12, 27].

4. Conclusion

We constructed convergent and stable solutions for the generalized Abel’s integral
equations with variable coefficients

N
~
Ra3

|
L

ag() L - Liku(x) = g(x),

w-
Il
-

<
—~
-
\_/
|
M=
Q
-~
—~
=
~
TR
<
—~
-
=
|
o
—~
=
N

w-
Il
-

in L(Q), and presented several illustrative examples, including one solving the frac-
tional partial differential equation with the initial condition.



[1]
[2]

[3]

[4]

[5]
[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

THE GENERALIZED ABEL’S INTEGRAL EQUATIONS ON R” 139

REFERENCES

YU. I. BABENKO, Heat and mass transfer, Khimiya, Leningrad, 1986 (in Russian).

J. BARROS-NETO, An introduction to the theory of distributions, Marcel Dekker, Inc. New Yorker,
1973.

H. BRUNNER, A survey of recent advances in the numerical treatment of Volterra integral and integro-
differential equations, J. Comput. Appl. Math. 8, (1982), 213-219.

R. FIGUEIREDO CAMARGO, R. CHARNET AND E. CAPELAS DE OLIVEIRA, On some fractional
Green’s functions, J. Math. Phys. 50, 043514 (2009), doi: 10.1063/1.3119484.

1. M. GEL’FAND AND G.E. SHILOV, Generalized Functions, Vol 1, Academic Press, New York, 1964.

R. GORENFLO AND Y. LUCHKO, Operational method for solving generalized Abel integral equation
of second kind, Integral Transforms Spec. Funct. 5, (1997), 47-58.

J. R. HATCHER, A nonlinear boundary problem, Proc. Am. Math. Soc. 95, (1985), 441-448.

E. HILLE AND J. D. TAMARKIN, On the theory of linear integral equations, Ann. Math. 31, (1930),
479-528.

A. A. KILBAS, R. K. RAINA, M. SAIGO AND H. M. SRIVASTAVA, Solution of multidimensional
hypergeometric integral equations of the Abel type, Dokl. Natl. Acad. Sci. Belarus 43, (1999), 23-26.
(In Russian).

A. A. KILBAS, H. M. SRIVASTAVA AND J. J. TRUJILLO, Theory and Applications of Fractional
Differential Equations, Elsevier, North-Holland, 2006.

E. L. KoH AND C. L1, The Hankel transformation of Banach-space-valued generalized functions,
Proc. Amer. Math. Soc. 119, (1993), 153-163.

C. L1, A kernel theorem from the Hankel transform in Banach spaces, Integral Transforms Spec. Funct.
16, (2005), 565-581.

C. P. L1 AND M. CAI, Theory and numerical approximations of fractional integrals and derivatives,
SIAM, Philadelphia, 2019.

C. L1 AND K. CLARKSON, Babenko’s approach to Abel’s integral equations, Mathematics, 6, (2018),
32; doi:10.3390/math6030032.

C. L1, T. HUMPHRIES AND H. PLOWMAN, Solutions to Abel’s integral equations in distributions,
Axioms 7, (2018), 66; doi:10.3390/axioms7030066.

C. L1, C. P. L1 AND K. CLARKSON, Several results of fractional differential and integral equations
in distribution, Mathematics 6, (2018), 97; doi:10.3390/math6060097.

C. L1 AND H. PLOWMAN, Solutions of the generalized Abel’s integral equations of the second kind
with variable coefficients, Axioms 8, (2019), 137; doi:10.3390/axioms8040137.

C. P. L1 AND F. ZENG, Numerical methods for fractional calculus, Chapman and Hall/CRC, Boca
Raton, 2015.

CH. LUBICH, Fractional linear multistep methods for Abel-Volterra integral equations of the second
kind, Math. Comp. 45, (1985), 463-469.

G. N. MINERBO AND M. E. LEVY, Inversion of Abel’s integral equation by means of orthogonal
polynomials, SIAM J. Numer. Anal. 6, (1969), 598-616.

1. PODLUBNY, Fractional Differential Equations, Academic Press, New Yor, 1999.

A. PSKHU, Solution of a Multidimensional Abel Integral Equation of the Second Kind with Partial
Fractional Integrals, Differentsial’'nye Uravneniya 53, (2017), 1195-1199. (in Russian).

R. K. RAINA, H. M. SRIVASTAVA, A. A. KILBAS AND M. SAIGO, Solvability of some Abel-type
integral equations involving the Gauss hypergeometric function as kernels in the spaces of summable

Sfunctions, ANZIJAM 1. 43, (2001), 291-320.

H. M. SRIVASTAVA AND R. G. BUSCHMAN, Theory and Applications of Convolution Integral Equa-
tions, Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK,
1992.

D. B. SUMNER, Abel’s integral equation as a convolution transform, Proc. Am. Math. Soc. 7, (1956),
82-86.



140 C.LI

[26] J. D. TAMARKIN, On integrable solutions of Abel’s integral equation, Ann. Math. 31, (1930), 219—
229.
[27] A.H.ZEMANIAN, Generalized integral transformations, John Wiley & Sons, Inc. 1968.

(Received December 20, 2019) Chenkuan Li
Department of Mathematics and Computer Science

Brandon University

Brandon, Manitoba, Canada R7A 6A9

e-mail: 1ic@brandonu.ca

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com



