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Abstract: The goal of this paper is to construct an integral representation for the generalized Riesz
derivative RZD2s

x u(x) for k < s < k + 1 with k = 0, 1, · · · , which is proved to be a one-to-one and
linearly continuous mapping from the normed space Wk+1(R) to the Banach space C(R). In addition,
we show that RZD2s

x u(x) is continuous at the end points and well defined for s = 1
2 + k. Furthermore,

we extend the generalized Riesz derivative RZD2s
x u(x) to the space Ck(Rn), where k is an n-tuple

of nonnegative integers, based on the normalization of distribution and surface integrals over the
unit sphere. Finally, several examples are presented to demonstrate computations for obtaining the
generalized Riesz derivatives.
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1. Introduction

During the past few decades, fractional calculus [1–4] has been an emergent tool which uses
fractional differential and integral equations to develop more sophisticated mathematical models that
can accurately describe complex systems. Fractional powers of the Laplacian operator arise naturally in
the study of partial differential equations related to anomalous diffusion, where the fractional operator
plays a similar role to that of the integer-order Laplacian for ordinary diffusion [5,6]. By replacing
Brownian motion of particles with Lévy flights [7], one obtains a fractional diffusion equation in terms
of the fractional Laplacian operator [8] of order s ∈ (0, 1) via the Cauchy principal value (P.V. for short)
integral [9], given as

(−4)su(x) = Cn,sP.V.
∫

Rn

u(x)− u(ζ)
|x− ζ|n+2s dζ, (1)

where4 = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n, and the constant Cn,s is given by

Cn,s =

(∫
Rn

1− cos y1

|y|n+2s dy
)−1

= π−n/222s Γ( n+2s
2 )

Γ(1− s)
s. (2)

Let x = (x1, x2, · · · , xn) ∈ Rn. For a given n-tuple α = (α1, α2, · · · , αn) of nonnegative integers
(or called a multi-index), we define

|α| = α1 + α2 + · · ·+ αn, α! = α1!α2! · · · αn!

xα = xα1
1 xα2

2 · · · x
αn
n ,

∂αu = ∂α1
1 ∂α2

2 · · · ∂
αn
n u =

∂|α|u
∂xα1

1 ∂xα2
2 · · · ∂xαn

n
.

The Schwartz space S(Rn) (space of rapidly decreasing functions on Rn) is the function space [10]
defined as

S(Rn) =
{

u(x) ∈ C∞(Rn) : ‖u(x)‖α,k ≤ Cα,k(const) ∀α, k ∈ Nn
0
}

,
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where N0 = {0} ∪ N is the set of nonnegative integers and

‖u(x)‖α,k = sup
x∈Rn

∣∣∣xα∂ku(x)
∣∣∣ .

Let r2 = x2
1 + x2

2 + · · ·+ x2
n. The function space Ck(Rn) is defined in Reference [11] as follows.

Ck(Rn) =
{

u(x) is bounded and ∂2ku(x) is continuous on Rn :

∃Mk(const) > 0, such that
∣∣∣∂2ku(x)

∣∣∣ ≤ Mk
r2 as r → ∞

}
where k = (k1, k2, · · · , kn) is an n-tuple of nonnegative integers.

Applying the normalization in distribution theory, Pizzetti’s formula, and surface integrals
on Rn, Li [11] very recently extended the fractional Laplacian (−4)su(x) over the space Ck(Rn)

(which contains S(Rn) as a proper subspace) for all s > 0 and s 6= 1, 2, · · · , and obtained
Theorem 1 below.

Theorem 1. Let i = 0, 1, · · · and i < s < i + 1. Then the generalized fractional Laplacian (−4)s is
normalized over the space Ck(Rn) as

(−4)su(x) = −1
2

Cn,s

∫ ∞

0
r−1−2s ·[

S(r)− r2Ωn4u(x)
n

− · · · − 2r2iΩn4iu(x)
2i i! n(n + 2) · · · (n + 2i− 2)

]
dr, (3)

where Ωn = 2πn/2/Γ( n
2 ) is the area of the unit sphere Ω ⊂ Rn, k = (k1, k2, · · · , kn) with k1 + · · ·+ kn =

i + 1, and
S(r) =

∫
Ω
[u(x + rσ)− 2u(x) + u(x− rσ)]dσ.

In particular for n = 1, we have the following.

Theorem 2. Let k < s < k + 1 and k = 0, 1, 2, · · · . Then the fractional Laplacian operator (−4)s is
normalized over Ck+1(R) as

(−4)su(x) = −C1,s

∫ ∞

0
y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy, (4)

where
S(y) = u(x + y)− 2u(x) + u(x− y).

Definition 1. For a sufficiently nice function u(x) defined on R the left- and right- sided Riemann-Liouville
derivatives of order α, with m− 1 < α < m ∈ N, given by

RLDα
−∞,xu(x) =

1
Γ(m− α)

dm

dxm

∫ x

−∞

u(t)
(t− x)α−m+1 dt,

and

RLDα
x,∞u(x) =

(−1)m

Γ(m− α)

dm

dxm

∫ ∞

x

u(t)
(t− x)α−m+1 dt

respectively.
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From integration by parts we have

lim
α→m−

RLDα
−∞,xu(x) = u(m)(x), and

lim
α→(m−1)+

RLDα
−∞,xu(x) = u(m−1)(x).

Definition 2. The α-order Riesz derivative of a function u(x) (x ∈ R) is defined as

RZDα
xu(x) = −Ψα

(
RLDα

−∞,x +RL Dα
x,∞
)

u(x)

where
Ψα =

1

2 cos
απ

2
for α 6= 1, 3, · · · .

In general, the following definition regarding the Riesz derivative on Rn can be given.

Definition 3. The Riesz fractional derivative is defined for suitably smooth function u(x) (x ∈ Rn) in arbitrary
dimensions by [1,12]

RZDα
xu(x) =

1
dn,l(α)

∫
Rn

(4l
yu)(x)
|y|n+α

dy, 0 < α < l

where l is an arbitrary integer bigger than α, and (4l
yu)(x) denotes either the centred difference

(4l
yu)(x) =

l

∑
k=0

(−1)k
(

l
k

)
u(x + (l/2− k)y),

or non-centred differences

(4l
yu)(x) =

l

∑
k=0

(−1)k
(

l
k

)
u(x− ky).

The dn,l(α) are normalizing constants which are independent of the choice of l > α, and are analytic
functions with respect to the parameter α by

dn,l(α) =
2−απ1+n/2

Γ
(

1 +
α

2

)
Γ
(

n + α

2

) Al(α)

sin
(πα

2

) ,

and

Al(α) =


l

∑
k=0

(−1)k−1
(

l
k

)
kα, in the case of non-centred difference,

2

l
2

∑
k=0

(−1)k−1
(

l
k

)(
l
2
− k
)α

, in the case of centred difference,

for an even number l > α.

It is well known that the Riesz derivative plays an important role in anomalous diffusion [13–15]
and space of fractional quantum mechanics. For example, the Riesz derivative satisfies the fractional
diffusion equation, which has lots of physical applications [13]:

∂PL(x, t; α)

∂t
− σα RZDα

x PL(x, t; α) = 0,
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where PL(x, t; α) is the α-stable Lévy distribution and α, 0 < α ≤ 2, is called the Lévy index. There are
also many studies, including numerical analysis [16–19], scientific computing and Fourier transform
methods [20,21], on differential equations involving the Riesz derivative with applications in several
fields, including mathematical physics and engineering.

It is widely considered that the Riesz derivative is equivalent to the fractional Laplacian in
arbitrary dimensions [22–24]. Cai and Li [25] showed that for s ∈ (0, 1)

−(−4)su(x) = RZD2s
x u(x), u(x) ∈ S(R) and s 6= 1/2,

(−4)su(x) = RZD2s
x u(x), u(x) ∈ S(Rn) with n > 1.

Furthermore, on page 205 and 206 in the same reference they stated

(i) for the case with α = 3, 5, · · · , the Riesz derivative of the given function u(x) (x ∈ R) can be
defined in the form

RZDα
xu(x) =

2α−1αΓ
(

1+α
2

)
π

1
2 Γ(1− α

2 )

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y1+α

dy,

which is suitable for positive values of α 6= 2, 4, 6, · · · .
(ii) For k = 1, 2, · · · . Then,

lim
α→4k+1

RZDα
xu(x) =

24k(4k + 1)Γ(2k + 1)

π1/2Γ
(

1−4k
2

) ∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y4k+2 dy,

and for k = 0, 1, 2, · · · ,

lim
α→4k+3

RZDα
xu(x) =

24k+2(4k + 3)Γ(2k + 2)

π1/2Γ
(
− 1+4k

2

) ∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y4k+4 dy.

We would like to reconsider cases (i) and (ii) in this paper as the integrals on the right-hand side
do not exist even for a sufficiently good function u(x) ∈ S(R). Indeed, by Taylor’s expansion

u(x + y)− 2u(x) + u(x− y) =
u′′(x + θy) + u′′(x− θy)

2!
y2 ∼ u′′(x)y2 as y→ 0+

where θ ∈ (0, 1). This clearly makes all the integrals on the right-hand side divergent near the origin.
As outlined in the abstract, we establish an integral representation for the generalized Riesz

derivative RZD2s
x u(x) for k < s < k + 1 with k = 0, 1, · · · , as a linearly continuous mapping from the

normed space Wk+1(R) to the Banach space C(R). Then we study the generalized Riesz derivative in
arbitrary dimensions and further show that RZD2s

x u(x) is continuous at the end points based on the
normalization of distribution and the surface integrals. In particular, the derivative RZD2s

x u(x) is well
defined for all s = k + 1

2 , which extends Definition 2.

2. The Generalized Riesz Derivative on R

Let C(R) be the space of continuous functions on R given as

C(R) = {u(x) : u(x) is continuous on R and ‖u‖∞ < ∞}

where
‖u‖∞ = sup

x∈R
|u(x)|.
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Clearly, C(R) is a Banach space. The following space will play an important role in defining the
generalized Riesz derivative on R.

Let k = 1, 2, · · · . We define the normed space Wk(R) as

Wk(R) =
{

u(x) : u(2k)(x) is continuous on R and ‖u‖k < ∞
}

where

‖u‖k = max

{
sup
x∈R
|xu(x)|, sup

x∈R
|xu′(x)|, sup

x∈R

∣∣∣(x2 + 1)u(2k)(x)
∣∣∣} .

Clearly, u(x) =
x

x2 + 1
∈Wk(R) but u(x) =

x
x2 + 1

/∈ S(R), and

S(R) ⊂Wk(R) ⊂ Ck(R) ⊂ C(R)

for all k = 1, 2, · · · .
We are ready to prove the following theorem which establishes an initial equivalence between the

Riesz derivative and the fractional Laplacian on the space W1(R).

Theorem 3. Let u ∈W1(R). Then both RZD2s
x u(x) and (−4)su(x) exist and

RZD2s
x u(x) = −(−4)su(x) = C1,s

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y1+2s dy

for 0 < s < 1.

Proof of Theorem 3. Making the variable change z = x − ζ, we derive from Equation (1) that
(for n = 1)

(−4)su(x) = C1,sP.V.
∫

R

u(x)− u(x− z)
|z|1+2s dz.

Setting w = −z on the right-hand side of the above equality, we come to

P.V.
∫

R

u(x)− u(x− z)
|z|1+2s dz = P.V.

∫
R

u(x)− u(x + w)

|w|1+2s dw.

Therefore,

2P.V.
∫

R

u(x)− u(x− z)
|z|1+2s dz

= P.V.
∫

R

u(x)− u(x− z)
|z|1+2s dz + P.V.

∫
R

u(x)− u(x + w)

|w|1+2s dw

= −P.V.
∫

R

u(x + y)− 2u(x) + u(x− y)
|y|1+2s dy

after relabeling y = z and y = w. This implies that

(−4)su(x) = −C1,s

2
P.V.

∫
R

u(x + y)− 2u(x) + u(x− y)
|y|1+2s dy.

Note that the above integral is well defined for u(x) ∈ W1(R). Indeed, a second order Taylor
expansion infers

|u(x + y)− 2u(x) + u(x− y)|
|y|1+2s ≤

supy∈R |u′′(y)|
|y|2s−1 .
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Hence, it is absolutely integrable near the origin. Furthermore, u(x) ∈W1(R) implies that there
exists a constant C > 0 such that ∣∣∣(y2 + 1)u′′(y)

∣∣∣ ≤ C as |y| → ∞.

This indicates that the integral is absolutely integrable at infinity. In summary,

(−4)su(x) = −C1,s

2

∫
R

u(x + y)− 2u(x) + u(x− y)
|y|1+2s dy

= −C1,s

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y1+2s dy,

as
u(x + y)− 2u(x) + u(x− y)

|y|1+2s

is an even function with respect to y.
Assume 0 < s < 1/2. Integration by parts yields

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y1+2s dy

= − 1
2s

u(x + y)− 2u(x) + u(x− y)
y2s

∣∣∣∣∞
y=0

+
1
2s

∫ ∞

0

u′(x + y)− u′(x− y)
y2s dy

=
1
2s

d
dx

∫ ∞

0

u(x + y)
y2s dy− 1

2s
d

dx

∫ ∞

0

u(x− y)
y2s dy

by applying the facts that all four integrals

∫ ∞

0

u(x + y)
y2s dy,

∫ ∞

0

u′(x + y)
y2s dy∫ ∞

0

u(x− y)
y2s dy, and

∫ ∞

0

u′(x− y)
y2s dy

are uniformly convergent with respect to x using the conditions

sup
x∈R
|xu(x)| and sup

x∈R
|xu′(x)|

are bounded. Since

d
dx

∫ ∞

0

u(x + y)
y2s dy = −Γ(1− 2s) RLD2s

x,∞u(x), and

d
dx

∫ ∞

0

u(x− y)
y2s dy = Γ(1− 2s) RLD2s

−∞,xu(x)

we come to

(−4)su(x) =
C1,sΓ(1− 2s)

2s

(
RLD2s

x,∞u(x) + RLD2s
−∞,xu(x)

)
.

From the formula [26]

C−1
1,s =

∫ ∞

−∞

1− cos y
|y|1+2s dy =

1
s

Γ(1− 2s) cos(πs),

we have
(−4)su(x) = Ψ2s

(
RLD2s

−∞,x +RL D2s
x,∞

)
u(x) = −RZD2s

x u(x).
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Finally we assume 1/2 < s < 1. Applying

d2

dx2

∫ ∞

0

u(x + y)
y2s−1 dy = Γ(2− 2s) RLD2s

x,∞u(x) and

d2

dx2

∫ ∞

0

u(x− y)
y2s−1 dy = Γ(2− 2s) RLD2s

−∞,xu(x),

we deduce that

(−4)su(x) =
−C1,s

2s(2s− 1)

∫ ∞

0

u′′(x + y) + u′′(x− y)
y2s−1 dy

=
−C1,s

2s(2s− 1)

[
d2

dx2

∫ ∞

0

u(x + y)
y2s−1 dy +

d2

dx2

∫ ∞

0

u(x− y)
y2s−1 dy

]
=

−C1,s

2s(2s− 1)
Γ(2− 2s)

[
RLD2s

−∞,x +RL D2s
x,∞

]
u(x)

=
C1,s

2s
Γ(1− 2s)

[
RLD2s

−∞,x +RL D2s
x,∞

]
u(x) = − RZD2s

x u(x).

In particular for s = 1/2, we have

RZD1
xu(x) = −(−4)1/2u(x) = C1,1/2

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y2 dy

=
1
π

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y2 dy,

which is well defined and extends Definition 2 to the value α = 1.

Remark 1.

(a) Using the formula

Γ(z)Γ
(

z +
1
2

)
=
√

π21−2zΓ(2z)

for 2z 6= 0,−1,−2, · · · , we have for u ∈W1(R) that

RZD2s
x u(x) = −(−4)su(x) = Γ(1 + 2s)

sin πs
π

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y1+2s dy

for 0 < s < 1. This expression has symbolically appeared in several existing literatures, such as References
[13,21,24], for a suitable smooth function u(x).

(b) Cai and Li presented Theorem 3 in Reference [25] under the conditions that u(x) ∈ S(R) which is a proper
subspace of W1(R), and s ∈ (0, 1) with s 6= 1/2.

In order to study the generalized Riesz derivative, we briefly introduce the following basic
concepts in distribution and the normalization of xλ

+. Let D(R) be the Schwartz space [27] of infinitely
differentiable functions (or so-called the Schwartz space of testing functions) with compact support
in R, and D′(R) be the space of distributions (linearly continuous functionals) defined on D(R).
Furthermore, we shall define a sequence φ1(x), φ2(x), · · · , φm(x), · · · which converges to zero in
D(R) if all these functions vanish outside a certain fixed and bounded smooth set in Rn and converge
uniformly to zero (in the usual sense) together with their derivatives of any order. We further assume
that D′(R+) is the subspace of D′(R) with support contained in R+. The functional δ is defined as

(δ, φ) = φ(0),

where φ ∈ D(R). Clearly, δ is a linear and continuous functional on D(R), and hence δ ∈ D′(R).
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Let f ∈ D′(R). Then the distributional derivative f ′ on D′(R) is defined as:

( f ′, φ) = −( f , φ′)

for φ ∈ D(R). In particular,
(δ(m)(x), φ(x)) = (−1)mφ(m)(0),

where m is a nonnegative integer.
The distribution xλ

+ on D(R) is normalized in Reference [27] as:

(xλ
+, φ(x)) =

∫ ∞

0
xλ

[
φ(x)− φ(0)− xφ′(0)− · · · − xm−1

(m− 1)!
φ(m−1)(0)

]
dx, (5)

where −m− 1 < λ < −m (m ∈ N) and φ ∈ D(R).
Let τ(x) be an infinitely differentiable function on [0,+∞) ⊂ R satisfying the following conditions:

(i) 0 ≤ τ(x) ≤ 1,
(ii) τ(x) = 1 if 0 ≤ x ≤ 1/2,
(iii) τ(x) = 0 if x ≥ 1.

Let r =
√

x2
1 + x2

2 + · · ·+ x2
n. We construct the sequence Im(r) for m = 1, 2, · · · as:

Im(r) =


1 if r ≤ m,

τ

(
m2m

1 + 2m1+m r2 − m2m+2

1 + 2m1+m

)
if r > m.

Clearly, Im(r) is infinitely differentiable with respect to x1, x2, · · · , xn and r, and Im(r) = 0 if
r ≥ m + m−m, as

m2m

1 + 2m1+m (m + m−m)2 − m2m+2

1 + 2m1+m = 1.

Furthermore,
0 ≤ Im(r) ≤ 1.

Applying Equation (5) and the identity sequence Im(r) for m = 1, 2, · · · , Li [11] established
Theorems 1 and 2 outlined in the introduction. Based on Theorems 2 and 3, the generalized Riesz
derivative on R is well defined, for k < s < k + 1 with k = 0, 1, 2, · · · , as

RZD2s
x u(x) = C1,s

∫ ∞

0
y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy,

where u(x) ∈Wk+1(R), and

S(y) = u(x + y)− 2u(x) + u(x− y).

The following theorem is to construct a relationship between the normed space Wk+1(R) and the
Banach space C(R) by the generalized Riesz derivative.

Theorem 4. Let k < s < k + 1 with k = 0, 1, 2, · · · . Then the generalized Riesz derivative RZD2s
x given by

RZD2s
x u(x) = C1,s

∫ ∞

0
y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy

is a one-to-one and linearly continuous mapping from Wk+1(R) to C(R).
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Proof of Theorem 4. From the above integral expression, the generalized Riesz derivative RZD2s
x is a

linear mapping on the space Wk+1(R). Let um(x) ∈ Wk+1(R) and um(x) → 0 in Wk+1(R). It follows
from Taylor’s expansion that

Sm(y) = um(x + y)− 2um(x) + um(x− y)

= u(2)
m (x)y2 + · · ·+ 2y2k

(2k)!
u(2k)

m (x) +
y2k+2

(2k + 2)!

(
u(2k+2)

m (x + θy) + u(2k+2)
m (x− θy)

)
,

where θ ∈ (0, 1). Clearly,

RZD2s
x um(x) =

C1,s

(2k + 2)!

∫ 1

0
y−1−2s+2k+2

(
u(2k+2)

m (x + θy) + u(2k+2)
m (x− θy)

)
dy

=
C1,s

(2k + 2)!

∫ ∞

1
y−1−2s+2k

(
y2u(2k+2)

m (x + θy) + y2u(2k+2)
m (x− θy)

)
dy.

Therefore, ∥∥∥RZD2s
x um(x)

∥∥∥
∞
≤ 2|C1,s|

(2k + 2)!(2k + 2− 2s)
sup
y∈R

∣∣∣u(2k+2)
m (y)

∣∣∣
+

2|C1,s|
(2k + 2)!(2s− 2k)

sup
y∈R

∣∣∣y2 u(2k+2)
m (y)

∣∣∣ ,

which converges to zero, as ‖um(x)‖k+1 → 0 implies that both supy∈R

∣∣∣u(2k+2)
m (y)

∣∣∣ and

supy∈R

∣∣∣y2 u(2k+2)
m (y)

∣∣∣ go to zero as m→ ∞.

It remains to show that RZD2s
x is one-to-one from Wk+1(R) to C(R). Assume u1(x), u2(x) ∈

Wk+1(R) such that

RZD2s
x u1(x) = RZD2s

x u2(x).

This infers that

∫ ∞

0
y−1−2s

[
S1(y)− u(2)

1 (x)y2 − · · · − 2y2k

(2k)!
u(2k)

1 (x)

]
dy

=
∫ ∞

0
y−1−2s

[
S2(y)− u(2)

2 (x)y2 − · · · − 2y2k

(2k)!
u(2k)

2 (x)

]
dy.

Using the formula [28]

lim
s→(k+1)−

y−1−2s

Γ(−2s)
= δ(2k+2)(y),

we arrive at

∫ ∞

0
δ(2k+2)(y)

[
S1(y)− u(2)

1 (x)y2 − · · · − 2y2k

(2k)!
u(2k)

1 (x)

]
dy

=
∫ ∞

0
δ(2k+2)(y)

[
S2(y)− u(2)

2 (x)y2 − · · · − 2y2k

(2k)!
u(2k)

2 (x)

]
dy.

Hence,
S(2k+2)

1 (0) = S(2k+2)
2 (0),
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by noting that

∫ ∞

0
δ(2k+2)(y)

[
S1(y)− u(2)

1 (x)y2 − · · · − 2y2k

(2k)!
u(2k)

1 (x)

]
dy = S(2k+2)

1 (0).

Evidently,
S(2k+2)

1 (0) = 2u(2k+2)
1 (x) = 2u(2k+2)

2 (x) = S(2k+2)
2 (0),

which further claims that
u1(x) = u2(x) + P2k+1(x),

where Pk+1(x) is a polynomial of degree 2k + 1 in the space Wk+1(R), which must be zero due to the
condition

sup
x∈R
|xPk+1(x)| < ∞.

Remark 2. At this moment, we are unable to describe a subspace (say Cs(R)) of C(R) such that the generalized
Riesz derivative RZD2s

x is bijective and linearly continuous mapping from Wk+1(R) to Cs(R). This further
study is of interest since we can define an inverse operation of the Riesz derivative on Cs(R) if it exists.

In addition, we have the following theorem regarding the limits at the end points for the
generalized Riesz derivative RZD2s

x u(x) over the space Wk+1(R).

Theorem 5. Let u(x) ∈Wk+1(R) and k < s < k + 1 with k = 0, 1, 2, · · · . Then,

lim
s→(k+1)−

RZD2s
x u(x) = (−1)ku(2k+2)(x), and

lim
s→k+

RZD2s
x u(x) = (−1)k+1u(2k)(x)

in the space C(R).
In particular,

lim
s→k

RZD2s
x u(x) = (−1)k+1u(2k)(x)

for all k = 1, 2, · · · .

Proof of Theorem 5. Let k < s < k + 1 with k = 0, 1, 2, · · · . Then,

lim
s→(k+1)−

∥∥∥RZD2s
x u(x)− (−1)ku(2k+2)(x)

∥∥∥
∞

= lim
s→(k+1)−

sup
x∈R

∣∣∣∣∣C1,s

∫ ∞

0
y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy

−(−1)ku(2k+2)(x)
∣∣∣ .

Using

lim
s→(k+1)−

Γ(−2s)
Γ(1− s)

= − k!
(2k + 2)!

(−1)k+1

2
, and

Γ
(

1
2
+ k + 1

)
=

(2k + 2)!
22k+2(k + 1)!

√
π,
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we derive that

lim
s→(k+1)−

C1,sΓ(−2s) = −π−1/222(k+1)(k + 1)Γ
(

1
2
+ k + 1

)
k!

(2k + 2)!
(−1)k+1

2

=
(−1)k

2
.

Furthermore, the integral

∫ ∞

0

y−1−2s

Γ(−2s)

[
S(y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy

converges uniformly with respect to s. Hence,

lim
s→(k+1)−

∫ ∞

0

y−1−2s

Γ(−2s)

[
S(y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy

=
∫ ∞

0
δ(2k+2)(y)

[
S(y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy

= S(2k+2)(0) = 2u(2k+2)(x).

In summary, we get

lim
s→(k+1)−

∥∥∥RZD2s
x u(x)− (−1)ku(2k+2)(x)

∥∥∥
∞
= 0,

which implies that
lim

s→(k+1)−
RZD2s

x u(x) = (−1)ku(2k+2)(x)

in the space C(R).
On the other hand,

lim
s→k+

∥∥∥RZD2s
x u(x)− (−1)k+1u(2k)(x)

∥∥∥
∞

= lim
s→k+

sup
x∈R

∣∣∣∣∣C1,s

∫ ∞

0
y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy

−(−1)k+1u(2k)(x)
∣∣∣ .

Using

lim
s→k+

Γ(−2s)
Γ(1− s)

= − (k− 1)!
(2k)!

(−1)k

2
, and

Γ
(

1
2
+ k
)
=

(2k)!
22kk!

√
π

we derive that

lim
s→k+

C1,sΓ(−2s) = −π−1/222kkΓ
(

1
2
+ k
)

(k− 1)!
(2k)!

(−1)k

2
=

(−1)k+1

2
.
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Thus, from

y−1−2s
+

Γ(−2s)
= δ(2s)(y),

∂2s

∂y2s

[
u(2)(x)y2 + · · ·+ 2y2k

(2k)!
u(2k)(x)

]
dy = 0 for s > k, and

lim
s→k+

∫ ∞

0
δ(2s)(y)

[
S(y)− u(2)(x)y2 + · · ·+ 2y2k

(2k)!
u(2k)(x)

]
dy

= lim
s→k+

S(2s)(0) = S(2k)(0) = 2u(2k)(x)

it follows that
lim

s→k+

∥∥∥RZD2s
x u(x)− (−1)k+1u(2k)(x)

∥∥∥
∞
= 0.

Therefore,
lim

s→k+
RZD2s

x u(x) = (−1)k+1u(2k)(x)

in the space C(R).

Remark 3.

(a) From Theorem 5, we have

lim
s→2k+1

RZD2s
x u(x) = lim

s→(2k+1)+
RZD2s

x u(x) = lim
s→(2k+1)−

RZD2s
x u(x) = u(4k+2)(x)

for all k = 0, 1, 2, · · · , and

lim
s→2k

RZD2s
x u(x) = lim

s→(2k)+
RZD2s

x u(x) = lim
s→(2k)−

RZD2s
x u(x) = −u(4k)(x)

for all k = 1, 2, · · · .
(b) Clearly for k = 0, 1, · · · ,

RZD2k+1
x u(x) =

22k+1(k + 1/2)(2k)!
(−4)kπ

∫ ∞

0
y−2−2k[

u(x + y)− 2u(x) + u(x− y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy

using the identity

Γ
(
−k +

1
2

)
=

(−4)kk!
(2k)!

√
π.

In particular,

RZD1
xu(x) =

1
π

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y2 dy, and

RZD3
xu(x) = − 6

π

∫ ∞

0
y−4

[
u(x + y)− 2u(x) + u(x− y)− u(2)(x)y2

]
dy.

To end off this section, we use the following example to demonstrate computations of the
generalized Riesz derivative.
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Theorem 6. Let s > 0 and s 6= 1, 2, · · · . Then,

RZD2s
x e−x2

= 22sπ−
1
2

Γ
(

1
2 + s

)
Γ(1− s)

se−x2
∞

∑
j=0

(2x)2j

(2j)!
Γ(j− s).

Furthermore,

lim
s→0+

RZD2s
x e−x2

= −e−x2
and lim

s→k
RZD2s

x e−x2
= (−1)k+1 d2k

dx2k e−x2
,

where k = 1, 2, · · · .

Proof of Theorem 6. We first assume 2 < s < 3. Letting u(x) = e−x2
we come to

u(2)(x) = e−x2
4x2 − 2e−x2

, and

u(4)(x) = 12e−x2 − 48x2e−x2
+ 16x4e−x2

.

By Theorem 4 (as e−x2 ∈W3(R)),

RZD2s
x e−x2

= C1,s

∫ ∞

0
y−1−2s

[
S(y)− u(2)(x)y2 − 2y4

4!
u(4)(x)

]
dy

= C1,s

∫ ∞

0
y−1−2s

{[
e−(x+y)2 − 2e−x2

+ e−(x−y)2
]
− u(2)(x)y2 − 2y4

4!
u(4)(x)

}
dy.

Clearly,

[
e−(x+y)2 − 2e−x2

+ e−(x−y)2
]
− u(2)(x)y2 − 2y4

4!
u(4)(x)

=
[
e−(x+y)2 − 2e−x2

+ e−(x−y)2
]
− e−x2

4x2y2 + 2e−x2
y2

−y4e−x2
+ 4y4x2e−x2 − 4

3
y4x4e−x2

= 2e−x2
(e−y2 − 1 + y2 − 1

2
y4) + 4x2y2e−x2

(e−y2 − 1 + y2) +
4
3

x4y4e−x2
(e−y2 − 1)

+ e−x2
e−y2

∞

∑
j=3

2(2xy)2j

(2j)!

using

e2xy + e−2xy =
∞

∑
j=0

2(2xy)2j

(2j)!
= 2 + 4x2y2 +

4
3

x4y4 +
∞

∑
j=3

2(2xy)2j

(2j)!
.

Making the variable change u = y2,

∫ ∞

0
y−1−2s

(
e−y2 − 1 + y2 − 1

2
y4
)

dy =
1
2

∫ ∞

0
u−1−s

(
e−u − 1 + u− 1

2
u2
)

du.
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Using integration by parts, we get

1
2

∫ ∞

0
u−1−s

(
e−u − 1 + u− 1

2
u2
)

du

= − 1
2s

e−u − 1 + u− 1
2 u2

us

∣∣∣∣∣
∞

u=0

+
1
2s

∫ ∞

0
u−s[−e−u + 1− u]du

= − 1
2s

∫ ∞

0
u−s[e−u − 1 + u]du

=
1

2s(−s + 1)
e−u − 1 + u

us−1

∣∣∣∣∞
0
+

1
2s(−s + 1)

∫ ∞

0
u−s+1[1− e−u]du

=
1

2s(−s + 1)(−s + 2)
1− e−u

u−s+2

∣∣∣∣∞
0
+

1
2s(s− 1)(−s + 2)

∫ ∞

0
u−s+3e−udu

=
1

2s(s− 1)(−s + 2)
Γ(−s + 3)

=
Γ(2− s)
2s(s− 1)

,

by noting that

lim
u→∞

e−u − 1 + u− 1
2 u2

us = lim
u→0+

e−u − 1 + u− 1
2 u2

us = 0,

lim
u→∞

e−u − 1 + u
us−1 = lim

u→0+

e−u − 1 + u
us−1 = 0, and

lim
u→∞

1− e−u

u−s+2 = lim
u→0+

1− e−u

u−s+2 = 0

if 2 < s < 3. Similarly, we obtain

∫ ∞

0
y1−2s

(
e−y2 − 1 + y2

)
dy = −Γ(2− s)

2(s− 1)
,∫ ∞

0
y3−2s

(
e−y2 − 1

)
dy =

Γ(2− s)
2

,∫ ∞

0
y2j−1−2se−y2

dy =
Γ(j− s)

2
, for j = 3, 4, · · · .
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Hence,

RZD2s
x e−x2

= 2C1,se−x2
∫ ∞

0
y−1−2s

(
e−y2 − 1 + y2 − 1

2
y4
)

dy

+4C1,sx2e−x2
∫ ∞

0
y1−2s

(
e−y2 − 1 + y2

)
dy

+
4
3

C1,sx4e−x2
∫ ∞

0
y3−2s(e−y2 − 1)dy

+2C1,se−x2
∞

∑
j=3

(2x)2j

(2j)!

∫ ∞

0
y2j−1−2se−y2

dy

= −22sπ−
1
2 Γ
(

1
2
+ s
)

e−x2
+ 22s+1 s π−

1
2 Γ
(

1
2
+ s
)

x2e−x2

+
22s+1

3
π−

1
2 s

Γ(2− s)
Γ(1− s)

Γ
(

1
2
+ s
)

x4e−x2

+22sπ−
1
2

Γ
(

1
2 + s

)
Γ(1− s)

se−x2
∞

∑
j=3

(2x)2j

(2j)!
Γ(j− s)

= 22sπ−
1
2

Γ
(

1
2 + s

)
Γ(1− s)

se−x2
∞

∑
j=0

(2x)2j

(2j)!
Γ(j− s).

Clearly, the series

22sπ−
1
2

Γ
(

1
2 + s

)
Γ(1− s)

se−x2
∞

∑
j=0

(2x)2j

(2j)!
Γ(j− s)

can be extended to all values of s > 0 and s 6= 1, 2, · · · . For example, a similar calculation leads to

RZD2s
x e−x2

= −
22sΓ(s + 1

2 )e
−x2

√
π

+
22s+1sΓ(s + 1

2 )√
π

x2e−x2

+
22ssΓ(s + 1

2 )

Γ(1− s)
√

π
e−x2

∞

∑
j=2

(2x)2j

(2j)!
Γ(j− s)

= 22sπ−
1
2

Γ
(

1
2 + s

)
Γ(1− s)

se−x2
∞

∑
j=0

(2x)2j

(2j)!
Γ(j− s)

if 1 < s < 2. In addition,

lim
s→0+

RZD2s
x e−x2

= lim
s→0+

22sπ−
1
2

Γ
(

1
2 + s

)
Γ(1− s)

se−x2

[
Γ(−s) +

∞

∑
j=1

(2x)2j

(2j)!
Γ(j− s)

]

= lim
s→0+

22sπ−
1
2

Γ
(

1
2 + s

)
Γ(1− s)

se−x2
Γ(−s)

+ lim
s→0+

22sπ−
1
2

Γ
(

1
2 + s

)
Γ(1− s)

se−x2
∞

∑
j=1

(2x)2j

(2j)!
Γ(j− s) = −e−x2

,

by applying the formula
−sΓ(−s) = Γ(1− s).
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Clearly for j = 2, 3, · · · , k,

lim
s→k

Γ(j− s)
Γ(1− s)

= lim
s→k

(j− 1− s)(j− 2− s) · · · (1− s)Γ(1− s)
Γ(1− s)

= (−1)j−1(k− 1)(k− 2) · · · (k− j + 1).

Hence for k = 1, 2, · · · ,

lim
s→k

RZD2s
x e−x2

= −22kπ−
1
2 Γ
(

1
2
+ k
)

e−x2
+ 22k+1 k π−

1
2 Γ
(

1
2
+ k
)

x2e−x2

− 22kπ−
1
2 Γ
(

1
2
+ k
)

e−x2
k

∑
j=2

(2x)2j

(2j)!
(−1)jk(k− 1) · · · (k− j + 1)

= (−1)k+1 d2k

dx2k e−x2

by Theorem 5, which can be verified directly by mathematical induction.

Remark 4. From the physicists’ Hermite polynomials given by

Hn(x) = (−1)nex2 dn

dxn e−x2
,

we derive
lim
s→k

RZD2s
x e−x2

= (−1)k+1e−x2
H2k(x).

3. The Generalized Riesz Derivative on Rn with n ≥ 2

In this section, we begin to study the generalized Riesz derivative RZD2s
x u(x) for s > 0 on Rn,

and obtain its integral representation using Theorem 1 mentioned in the introduction. In particular,
we derive explicit integral expressions for RZD2k+1

x u(x) when k = 0, 1, 2, · · · .

Theorem 7. Let 0 < s < 1 and k = (k1, k2, · · · , kn) be an n-tuple of nonnegative integers with k1 + · · ·+
kn = 1. Then for u(x) ∈ Ck(Rn) (defined in the introduction),

RZD2s
x u(x) = (−4)su(x) = −1

2
Cn,s

∫ ∞

0
r−1−2sS(r)dr (6)

where S(r) is the surface integral on the unit sphere Ω ⊂ Rn, given by

S(r) =
∫

Ω
[u(x + rσ)− 2u(x) + u(x− rσ)]dσ.

Proof of Theorem 7. We let l = 2 in the case of centred difference from Definition 3 and derive that

(42
yu)(x) =

2

∑
k=0

(−1)k
(

2
k

)
u(x + (1− k)y) = u(x + y)− 2u(x) + u(x− y)

and direct computation implies that

1
dn,l(2s)

= −
22s−1sΓ

( n
2 + s

)
π

n
2 Γ(1− s)

= −Cn,s

2

by making use of the identity

Γ(1− z)Γ(z) =
π

sin πz
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for any non-integer z. Hence,

RZD2s
x u(x) = −Cn,s

2

∫
R

u(x + y)− 2u(x) + u(x− y)
|y|n+2s dy, (7)

which is well defined for u(x) ∈ Ck(Rn). Indeed, a second order Taylor expansion derives

|[u(x + y)− 2u(x) + u(x− y)]|
|y|n+2s ≤

∥∥D2u
∥∥

L∞

|y|n+2s−2 , 0 < s < 1,

which is integrable near zero. Furthermore, u(x) ∈ Ck(Rn) implies that

sup
y∈Rn
||y|2D2u(y)|

is bounded as |y| → ∞. This deduces that the integral converges at infinity.
Using the spherical coordinates below

y1 = r cos θ1

y2 = r sin θ1 cos θ2

y3 = r sin θ1 sin θ2 cos θ3

· · ·
yn−1 = r sin θ1 · · · sin θn−2 cos θn−1

yn = r sin θ1 · · · sin θn−2 sin θn−1,

where the angles θ1, θ2, · · · , θn−2 range over [0, π] and θn−1 ranges over [0, 2π]. Then Equation (7)
turns out to be

RZD2s
x u(x) = −1

2
Cn,s

∫ ∞

0

rn−1S(r)
rn+2s dr = −1

2
Cn,s

∫ ∞

0

S(r)
r1+2s dr,

where
S(r) =

∫
Ω
[u(x + rσ)− 2u(x) + u(x− rσ)]dσ.

Clearly, the integral ∫ ∞

0

S(r)
r1+2s dr =

∫ ∞

0

S(r)− S(0)
r1+2s dr

converges as S(0) = 0 and S(r) is an even function with respect to r. It follows from Theorem 1 for
0 < s < 1 that

RZD2s
x u(x) = (−4)su(x) = −1

2
Cn,s

∫ ∞

0
r−1−2sS(r)dr.

Remark 5. There is a sign difference between Definition 2 and Definition 3 for n = 1. Indeed for u ∈W1(R)
and 0 < s < 1,

RZD2s
x u(x) = −(−4)su(x) = C1,s

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y1+2s dy

from Definition 2, and

RZD2s
x u(x) = (−4)su(x) = −C1,s

∫ ∞

0

u(x + y)− 2u(x) + u(x− y)
y1+2s dy



Mathematics 2020, 8, 1089 18 of 22

by Equation (7), which is directly from Definition 3.

Let i = 0, 1, · · · and i < s < i + 1. Applying Theorem 7 and Theorem 1, we can extend the
generalized Riesz derivative RZD2s

x over the space Ck(Rn) as

RZD2s
x u(x) = (−4)su(x) = −1

2
Cn,s

∫ ∞

0
r−1−2s[

S(r)− r2Ωn4u(x)
n

− · · · − 2r2iΩn4iu(x)
2i i! n(n + 2) · · · (n + 2i− 2)

]
dr, (8)

where k = (k1, k2, · · · , kn) is an n-tuple of nonnegative integers with k1 + · · ·+ kn = i + 1.
In particular,

RZD1
xu(x) = −

Γ
(

n+1
2

)
2π

n+1
2

∫ ∞

0

S(r)
r2 dr,

RZD3
xu(x) =

3Γ
( n+3

2
)

π
n+1

2

∫ ∞

0
r−4

[
S(r)− r2Ωn4u(x)

n

]
dr,

· · ·

RZD2k+1
x u(x) = −

22k(k + 1
2 )(2k)!Γ

(
n+1

2 + k
)

π
n+1

2 (−4)kk!

∫ ∞

0
r−1−2s

[
S(r)− r2Ωn4u(x)

n
− · · · − 2r2kΩn4ku(x)

2k k! n(n + 2) · · · (n + 2k− 2)

]
dr.

The following theorem can be found in Reference [11].

Theorem 8. Let u(x) ∈ Ck(Rn) with n > 1 and i < s < i + 1 for i = 0, 1, · · · . Then,

lim
s→(i+1)−

(−4)su(x) = (−1)i+14i+1u(x), and

lim
s→i+

(−4)su(x) = (−1)i4iu(x)

where k = (k1, k2, · · · , kn) is an n-tuple of nonnegative integers and k1 + k2 + · · ·+ kn = i + 1.

From Theorem 8 we have

lim
s→(i+1)−

RZD2s
x u(x) = (−1)i+14i+1u(x), and

lim
s→i+

RZD2s
x u(x) = (−1)i4iu(x).

Hence,
lim
s→i

RZD2s
x u(x) = (−1)i4iu(x).

for i = 1, 2, · · · .
An an example, we are going to compute RZD1

xu(x), where u(x) = e−x2
1−x2

2 . It follows
from Reference [11] that

S(r) =
∫

Ω
[u(x + rσ)− 2u(x) + u(x− rσ)]dσ = 4πe−x2

1−x2
2

[
e−r2

∞

∑
k=0

r2k(x2
1 + x2

2)
k

(k!)2 − 1

]
.
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Then,

RZD1
xu(x) = − 1

4π

∫ ∞

0

S(r)
r2 dr

= −e−x2
1−x2

2

∫ ∞

0

1
r2

[
e−r2 − 1 + e−r2

∞

∑
k=1

r2k(x2
1 + x2

2)
k

(k!)2

]

= −e−x2
1−x2

2

∫ ∞

0

e−r2 − 1
r2 dr

−e−x2
1−x2

2

∞

∑
k=1

(x2
1 + x2

2)
k

(k!)2

∫ ∞

0
e−r2

r2k−2dr

=
√

πe−x2
1−x2

2 − 1
2

e−x2
1−x2

2

∞

∑
k=1

(x2
1 + x2

2)
k

(k!)2 Γ
(

k− 1
2

)
=
√

πe−x2
1−x2

2 −
√

π

2
e−x2

1−x2
2

∞

∑
k=1

(x2
1 + x2

2)
k

(k!)2
(2k− 2)!

4k−1(k− 1)!

using

∫ ∞

0

e−r2 − 1
r2 dr =

Γ(−1/2)
2

= −
√

π,

∫ ∞

0
e−r2

r2k−2dr =
Γ
(

k− 1
2

)
2

,

Γ
(

k− 1
2

)
=

(2k− 2)!
4k−1(k− 1)!

√
π.

Let u(x) ∈ C∞(Rn). Then u(x)Im(r) has a compact support and belongs to the space Ck(Rn) for
all n-tuple of nonnegative integers k where the identity sequence Im(r) is given in Section 2.

Let i < s < i + 1 with i = 0, 1, · · · , and set

Sm(r) = S(r)Im(r).

Applying Equation (8) we can define the generalized Riesz derivative RZD2s
x over the space

C∞(Rn) as

RZD2s
x u(x) = (−4)su(x) = −1

2
Cn,s lim

m→

∫ m+m−m

0
r−1−2s[

Sm(r)−
r2Ωn4u(x)

n
− · · · − 2r2iΩn4iu(x)

2i i! n(n + 2) · · · (n + 2i− 2)

]
dr, (9)

if the limit exists.
To complete this section, we present the following theorem.

Theorem 9. Let s > 1 and n > 1. Then RZD2s
x (x2

1x2) = 0 on Rn.

Proof of Theorem 9. We first note that the function x2
1x2 ∈ C∞(Rn), but not bounded. Clearly,

4(x2
1x2) = (∂2/∂x2

1 + · · ·+ ∂2/∂x2
n)(x2

1x2) = 2x2,

(4)2(x2
1x2) = 0.
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Assume 1 < s < 2 first. Then from Equation (9),

RZD2s
x (x2

1x2) = −1
2

Cn,s lim
m→∞

∫ m+m−m

0
r−1−2s

[
Sm(r)−

r2Ωn4u(x)
n

]
dr

= −1
2

Cn,s lim
m→∞

∫ m+m−m

0
r−1−2s

[
Sm(r)−

2x2r2Ωn

n

]
dr.

To compute Sm(r) we come to

Sm(r) = Im(r)
∫

Ω
[u(x + rσ)− 2u(x) + u(x− rσ)]dσ

and

u(x + rσ)− 2u(x) + u(x− rσ)

= (x1 + rσ1)
2(x2 + rσ2)− 2x2

1x2 + (x1 − rσ1)
2(x2 − rσ2)

= 4x1r2σ1σ2 + 2x2r2σ2
1 .

Clearly,

∫
Ω

2x2r2σ2
1 dσ = 2x2r2

∫
Ω

σ2
1 dσ = 2x2r2Vn =

2x2r2Ωn

n
,

where Vn is the volume of the unit ball in Rn. Furthermore,∫
Ω

σ1σ2dσ =
∫

Ω
σ1σ2dσ1 · · · dσn = 0

due to the integral cancellation over the unit sphere. Hence,

S(r) =
2x2r2Ωn

n
,

and

RZD2s
x (x2

1x2) = −1
2

Cn,s lim
m→∞

∫ m

0
r−1−2s

[
S(r)− 2x2r2Ωn

n

]
dr

−1
2

Cn,s lim
m→∞

∫ m+m−m

m
r−1−2s

[
Im(r)S(r)−

2x2r2Ωn

n

]
dr

=
x2Ωn

n
Cn,s lim

m→∞

∫ m+m−m

m
r1−2s[1− Im(r)]dr = 0.

It follows from
(4)2(x2

1x2) = (4)3(x2
1x2) = · · · = 0

that the result still holds for s > 2.

4. Conclusions

An integral representation is constructed for the generalized Riesz derivative RZD2s
x u(x) for

k < s < k + 1 with k = 0, 1, · · · in arbitrary dimensions by applying the normalization of distribution
and the surface integrals. We further show that RZD2s

x u(x) is continuous at the end points and well
defined for s = 1

2 + k. In addition, several examples are presented to demonstrate computations for
obtaining the generalized Riesz derivatives.
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