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Abstract

The goal of this paper is to derive the fractional Green’s function for the first time in the distri-
butional space for the fractional-order integro-differential equation with constant coefficients.
Our new technique is based on Babenko’s approach, without using any integral transforms
such as the Laplace transform along with Mittag-Leffler function. The results obtained are
not only much simpler, but also more generalized than the classical ones as they deal with
distributions which are undefined in the ordinary sense in general. Furthermore, several inter-
esting applications to solving the fractional differential and integral equations, as well as in the
wave reaction-diffusion equation are provided, some of which cannot be achieved by integral
transforms or numerical analysis.
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1 Introduction

A Green’s function u(t, x), of a linear differential operator L = L(x) acting on functions (or distri-
butions) over a subset of Rn, at a point t, is any solution of

Lu(t, x) = δ(t− x)

where δ(x) is the Dirac delta function. In particular, when t = 0 we have

Lu(0, x) = δ(0− x) = δ(x).

Green’s function derived from Laplace transform is in the study of the following n-th order linear
differential equations on the interval I = [0,∞)

u(n)(x) + an−1u
(n−1)(x) + · · ·+ a0u(x) = g(x) (1)

with the initial conditions
u(k)(0) = 0, for 0 ≤ k ≤ n− 1.

Let L−1 denote the Laplace inverse transform. Then the solution of equation (1) is given in [1] by

u(x) = (H ∗ g)(x) =

∫ x

0

H(x− ζ)g(ζ)dζ,

where

H(x) = L−1

{
1

sn + an−1sn−1 + · · ·+ a0

}
(x)
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is the one-sided Green’s function satisfying the fundamental differential equation

u(n)(x) + an−1u
(n−1)(x) + · · ·+ a0u(x) = δ(x).

On the other hand, fractional calculus [2, 3, 4, 5, 6, 7, 8] that deals with operations of integration
and differentiation of non-integer order is a generalization of classical calculus. The notion of
fractional operators has been introduced almost simultaneously with the development of the classical
theories. Fractional modeling is to use fractional differential and integral equations to describe
numerous physical problems [9, 10] in the fields of chemistry, biology, electronics, noncommutative
quantum field theories [11], and quantum mechanics [12]. Integral transforms, such as Laplace,
Fourier, Hankel, and Mellin transforms, are vital tools of seeking solutions for linear and fractional
ordinary or partial differential equations, especially with constant coefficients, by solving algebraic
equations and inverse operations.

It is well known that Green’s function plays an important role in solving fractional differential
and integral equations which appear in mathematical and physical fields, particularly for the so
called wave reaction-diffusion equation and its special cases [13]. Using Laplace transform, the
Mittag-Leffler and Green’s functions, Gorenflo et al. [14] studied the fractional relaxation-oscillation
equation

dα

dtα
u+ ωαu(t;α) = 0, 0 < α ≤ 2,

where ω is a positive constant with the dimensions T−1 as a frequency, and the field variable u(t;α)
is assumed to be a causal function of time, as well as the fractional diffusion-wave equation

∂2β

∂t2β
u = D

∂2

∂x2
u, x ∈ R, 0 < β ≤ 1,

where D denotes a positive constant with the dimensions L2T−2β , and the field variable u(x, t;β)
is assumed to be a causal function of time with u(∓, t;β) = 0. Very recently, Fernandez et al.[15]
investigated several different models of fractional calculus, based on the Prabhakar fractional in-
tegral transform, involving generalized multi-parameters Mittag-Leffler functions. They derived a
new series expression for this transform, in terms of the classical Riemann-Lioville fractional in-
tegrals. Srivastava et al. [16] introduced and studied a fractional integral operator containing a
certain generalized multi-index Mittag-Leffler function in its kernel. The authors are particularly
interested in their Theorem 2 which states the fractional integral operator is bounded on L(a, b).
This property may be useful in seeking for solution of an integral equation involving such operators.

Ma studied Green’s function associated the higher-order fractional boundary value problem [17]

−Dν
0+u(x) = a(x)f(x, u(x)), 0 < x < 1,

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0, Dα
0+u(x)|x=1 = 0,

where ν and α are two given constants satisfying n − 1 < ν ≤ n with n ≥ 3, 0 ≤ α ≤ n − 2, and
established the existence of positive solutions of the equation.

As far as we know, there are several existing methods of finding Green’s function in the classical
sense for the fractional differential equation. The common and popular approach is based on the
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inverse of Laplace transform, and Mittag-Leffler function along with its derivatives. To demon-
strate the ides in detail, we solve the following four-term fractional differential equation to avoid
complicated operations of an n-term equation

a3u
(β3)(x) + a2u

(β2)(x) + a1u
(β1)(x) + a0u(x) = δ(x) (2)

where β3 > β2 > β1, and the derivatives are sequential. Applying the Laplace transform to both
sides of the above equation, we arrive at

ũ(s) =
1

a3sβ3 + a2sβ2 + a1sβ1 + a0

=
1

a3s
β3 + a2s

β2

1

1 +
a1s

β1 + a0

a3sβ3 + a2sβ2

=
a−1

3 s−β2

sβ3−β2 + a2/a3

1

1 +
a1s

β1−β2/a3 + a0s
−β2/a3

sβ3−β2 + a2/a3

=

∞∑
m=0

(−1)m
a−1

3 s−β2

sβ3−β2 + a2/a3

(
a1s

β1−β2/a3 + a0s
−β2/a3

sβ3−β2 + a2/a3

)m
=

∞∑
m=0

(−1)m
a−1

3 s−β2

(sβ3−β2 + a2/a3)
m+1

m∑
k=0

(
m

k

)
ak1a

m−k
0

am3
skβ1−mβ2

=
1

a3

∞∑
m=0

(−1)m
(
a0

a3

)m m∑
k=0

(
m

k

)(
a1

a0

)k
skβ1−mβ2−β2

(sβ3−β2 + a2/a3)
m+1 .

Using the formula [4] ∫ ∞
0

e−xsxαm+β−1E
(m)
α,β (±axα)dx =

m!sα−β

(sα ∓ a)m+1
(3)

where Re s > |a|1/α, and term-by-term the Laplace inverse, we deduce that

u(x) =
1

a3

∞∑
m=0

(−1)m

m!

(
a0

a3

)m m∑
k=0

(
m

k

)(
a1

a0

)k
xβ3(m+1)−β1k−1

×E(m)
β3−β2, β3+β2m−β1k

(−a2x
β3−β2/a3)

where where Eα, β(z) is the Mittag-Leffler function of two parameters given by

Eα, β(x) =

∞∑
n=0

xn

Γ(αn+ β)
, (α > 0, β > 0)

and

E
(m)
α, β(x) =

dm

dxm
Eα, β(x) =

∞∑
j=0

(j +m)!xj

j! Γ(αj + αm+ β)
, m = 0, 1, 2, · · · . (4)



22 Chenkuan Li, Changpin Li

Therefore,

u(x) =
1

a3

∞∑
m=0

(−1)m

m!

(
a0

a3

)m m∑
k=0

(
m

k

)(
a1

a0

)k
xβ3(m+1)−β1k−1

×
∞∑
j=0

(j +m)! (−1)j
(
a2

a3

)j
xj (β3−β2)

j! Γ((j +m+ 1)β3 − jβ2 − β1k)

which is the solution of equation (2).

In 2014, Kim and O [18] provided an explicit Greens function for the fractional differential
equation (under Riemann-Liouville derivatives) in the classical sense, with continuous variable
coefficients and the initial conditions. Their approach is based on representation of solution of the
corresponding integral equation and the method of successive approximations (recursive technique).
Pak et al. [19] recently studied solutions of the following linear nonhomogeneous Caputo fractional
differential equation with continuous variable coefficients and g(x)

CD
βn

0,xu(x) + an−1(x)CD
βn−1

0,x u(x) + · · ·+ a0(x)CD
β0

0,xu(x) = g(x),

with all zero initial conditions

Dju(0+) = 0, j = 0, 1, · · · , n0, n0 − 1 < βn ≤ n0 ∈ Z+.

Srivastava et al. [20, 21, 22] investigated various classes of the Mittag-Leffler type functions which
are associated with several families of generalized Riemann-Liouville and other related fractional
derivative operators, and presented solutions of many different classes of fractional differential
equations with constant or variable coefficients and some general Volterra-type differential equations
in the space of Lebesgue integrable functions. For example, the following general class of differential
equations of the Volterra-type involving the generalized fractional derivative operators [22]

(Dα,µ
0+ u)(x) +

a

Γ(ν)

∫ x

0

(x− t)ν−1u(t)dt = g(x), 0 < α < 1; 0 ≤ µ ≤ 1; Re(ν) > 0

with the initial condition (
I

(1−µ)(1−α)
0+ u

)
(0+) = c

has the solution in L(0,∞)

u(x) = cxα−µ(α−1)−1Eα+ν,α−µ(α−1)(−axα+ν) + (E1
α+ν,α,−α;0+g)(x),

where c is a constant and E1
α+ν,α,−α;0+ is the Prabhaker fractional integral operator.

The aim of this paper is to imply Green’s function with a new and simpler method in distribution,
without using any integral transforms along with Mittag-Leffler functions. The obtained Green’s
function can further solve the fractional integro-differential equation

anu
(βn)(x) + an−1u

(βn−1)(x) + · · ·+ a1u
(β1)(x) + a0u

(β0)(x) = g(x)
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with singular generalized functions on the right-hand side which do not have Laplace transforms,
and it reduces to the classical Green’s function when g(x) has the well-defined Laplace transform.
Some applicable examples of solving fractional differential and integral equations, as well as in
the wave reaction-diffusion equation are presented by utilizing our derived results. We start with
fundamental concepts of distribution theory.

2 Fractional calculus of distribution

In order to study the fractional Green’s function in the generalized sense, we briefly introduce the
following basic concepts with several interesting examples of solving Abel’s integral equations in
distribution. Let D(R) be the Schwartz space (testing function space) [23] of infinitely differentiable
functions with compact support in R, and D′(R) the (dual) space of distributions defined on D(R).
A sequence ϕ1, ϕ2, · · · , ϕn, · · · goes to zero in D(R) if and only if these functions vanish outside
a certain fixed and bounded set, and converge to zero uniformly together with their derivatives of
any order. Clearly, D(R) is not empty since it contains the following function

ϕ(x, a) =

{
e
− a2

a2−x2 if |x| < a,
0 otherwise

where a > 0. Evidently any locally integrable function f(x) on R is a (regular) distribution in
D′(R) as

(f(x), ϕ(x)) =

∫ ∞
−∞

f(x)ϕ(x)dx

is well defined. Hence, f is linear and continuous on D(R). In particular, the unit step function
θ(x) defined as

θ(x) =

{
1 if x > 0,
0 if x < 0.

is a member of D′(R). Furthermore, the functional δ(x− x0) on D(R) given by

(δ(x− x0), ϕ(x)) = ϕ(x0)

is linear and continuous on D(R), according to the topological structure of the Schwartz testing
function space.

Let f ∈ D′(R). The distributional derivative f ′ (or df/dx), is defined as

(f ′, ϕ) = −(f, ϕ′)

for ϕ ∈ D(R). Therefore,

(δ(n)(x− x0), ϕ(x)) = (−1)n(δ(x− x0), ϕ(n)(x)) = (−1)nϕ(n)(x0).

Let

g(x) = x
1/2
+ =

{ √
x if x > 0,

0 otherwise.
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As an example, we will find the distributional derivative of g (note that this function is not differ-
entiable at x = 0 in the classical sense). Indeed, using integration by parts we derive

(g′(x), ϕ(x)) = −(g(x), ϕ′(x)) = −
∫ ∞

0

√
xϕ′(x)dx =

1

2

∫ ∞
−∞

x
−1/2
+ ϕ(x)dx,

which infers that

g′(x) =
x
−1/2
+

2
.

Following Gel’fand and Shilov [23], we define

(xλ+, ϕ(x)) =

∫ ∞
0

xλ
[
ϕ(x)− ϕ(0)− · · · − xn−1

(n− 1)!
ϕ(n−1)(0)

]
dx

where −n− 1 < λ < −n. This implies for n = 1 that

(x−1.5
+ , ϕ(x)) =

∫ ∞
0

x−1.5[ϕ(x)− ϕ(0)]dx.

Clearly, x1.5
+ ∈ D′(R+) (the set of all distributions concentrated on R+, which is a subspace of

D′(R)).

Assume that f and g are distributions in D′(R+). Then the convolution f ∗ g is well defined by
the equation [23]

((f ∗ g)(x), ϕ(x)) = (g(x), (f(y), ϕ(x+ y)))

for ϕ ∈ D(R). This also implies that

f ∗ g = g ∗ f and (f ∗ g)′ = g′ ∗ f = g ∗ f ′.

It follows from [23, 24, 25] that Φλ =
xλ−1

+

Γ(λ)
∈ D′(R+) is an entire analytic function of λ on the

complex plane, and

xλ−1
+

Γ(λ)

∣∣∣∣∣
λ=−n

= δ(n)(x), for n = 0, 1, 2, . . . (5)

which plays an important role in solving fractional differential equations by using the distributional
convolutions. Let λ and µ be arbitrary numbers, then the following identity

Φλ ∗ Φµ = Φλ+µ (6)

is satisfied [26].

Let λ be an arbitrary complex number and g(x) be a distribution in D′(R+). We define the
primitive of order λ of g as the distributional convolution

gλ(x) = g(x) ∗
xλ−1

+

Γ(λ)
= g(x) ∗ Φλ. (7)
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Note that this is well defined since the distributions g and Φλ are in D′(R+). We shall write the
convolution

g−λ =
dλ

dxλ
g = g(x) ∗ Φ−λ

as the fractional derivative of the distribution g of order λ if Reλ ≥ 0, and
dλ

dxλ
g is interpreted as

the fractional integral if Reλ < 0.

As an application, we are going to solve the following integral equation, which cannot be done
in the classical sense, by the fractional derivatives of distributions.

Example 2.1 Let

g(x) =

{
1 if 0 ≤ a < x < b,
0 otherwise.

Then the integral equation for m = 0, 1, 2, · · ·

g(x) =

∫ x

0

u(τ)(x− τ)m−0.5dτ

has the solution in the space D′(R+)

u(x) = (−1)m
(x− a)−m−0.5

+ − (x− b)−m−0.5
+

π
.

In fact, we have

g(x) =
Γ(m+ 0.5)

Γ(m+ 0.5)

∫ x

0

u(τ)(x− τ)m−0.5dτ = Γ(m+ 0.5)(Φm+0.5 ∗ u)(x).

This implies that

u(x) =
1

Γ(m+ 0.5)
(Φ−m−0.5 ∗ g)(x) =

1

Γ(m+ 0.5)
(θ(m+0.5)(x− a)− θ(m+0.5)(x− b))

by noting that Φ0(x) = δ(x) and g(x) = θ(x− a)− θ(x− b).

Clearly,

θ(m+0.5)(x− a) =
dm+0.5

dxm+0.5
θ(x− a) =

dm+0.5

dxm+0.5
Φ1(x− a) =

(x− a)−m−0.5
+

Γ(−m+ 0.5)
,

θ(m+0.5)(x− b) =
(x− b)−m−0.5

+

Γ(−m+ 0.5)

which derive that

u(x) = (−1)m
(x− a)−m−0.5

+ − (x− b)−m−0.5
+

π

by
Γ(m+ 0.5)Γ(−m+ 0.5) = (−1)mπ
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based on the well known formula
Γ(z)Γ(1− z) =

π

sin zπ
.

In this paper, we shall extend the techniques used by Babenko in his book [27], for solving
various types of fractional differential and integral equations in the classical sense, to distributions,
and obtain the fractional Green’s function for the first time in the distributional space D′(R+) for
the following fractional-order integro-differential equation with constant coefficients

anu
(βn)(x) + an−1u

(βn−1)(x) + · · ·+ a1u
(β1)(x) + a0u

(β0)(x) = g(x).

Our approach is much simpler than the classical one as it does not require any integral transforms
along with complicated properties of the Mittag-Leffler function. Furthermore, the Green’s function
derived is much more general since it deals with generalized functions such as non-locally integrable
function g(x) = x−1.5

+ , and goes back to the classical Green’s formula when g(x) has the well-
defined Laplace transform. We would also like to add that Babenko’s method itself is close to
the Laplace transform method in the ordinary sense, but it can be used in more cases [4] such as
solving integral or fractional differential equations with distributions whose Laplace transforms do
not exist, as indicated below.

To illustrate Babenko’s approach in detail, we consider the following Abel’s integral equation
of the second kind in the space D′(R+) for a 6= 0 and λ > −0.5

x−1.5
+ = au(x) +

∫ x

0

(x− τ)λu(τ)dτ.

We should point out at the beginning that this equation cannot be solved by the Laplace transform
since the distribution x−1.5

+ is not locally integrable. Clearly, it can be converted into

1

a
x−1.5

+ = u(x) +
1

a

∫ x

0

(x− τ)λu(τ)dτ = u(x) +
Γ(λ+ 1)

aΓ(λ+ 1)

∫ x

0

(x− τ)λu(τ)dτ

= u(x) +
Γ(λ+ 1)

a
(Φλ+1 ∗ u)(x) =

(
δ +

Γ(λ+ 1)

a
Φλ+1

)
∗ u.

This implies that by Babenko’s approach (differential or integral operators act like ordinary vari-
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ables)

u(x) =
1

a

(
δ +

Γ(λ+ 1)

a
Φλ+1

)−1

∗ x−1.5
+

=
1

a

( ∞∑
n=0

(−1)n
Γn(λ+ 1)

an
Φnλ+1

)
∗

Γ(−0.5)x−1.5
+

Γ(−0.5)

=
−2
√
π

a

( ∞∑
n=0

(−1)n
Γn(λ+ 1)

an
Φn(λ+1)

)
∗ Φ−0.5

=
−2
√
π

a

∞∑
n=0

(−1)n
Γn(λ+ 1)

an
Φn(λ+1)−0.5

=
1

a
x−1.5

+ +
2
√
π Γ(λ+ 1)

a2
xλ−0.5

+

∞∑
n=0

(−1)n
Γn(λ+ 1)

an
x
n(λ+1)
+

Γ(n(λ+ 1) + λ+ 0.5)

=
1

a
x−1.5

+ +
2
√
π Γ(λ+ 1)

a2
xλ−0.5

+ Eλ+1, λ+0.5

(
−Γ(λ+ 1)xλ+1

+

a

)
.

We note that
1

a
x−1.5

+ is a singular distribution, while the term

2
√
π Γ(λ+ 1)

a2
xλ−0.5

+ Eλ+1, λ+0.5

(
−Γ(λ+ 1)xλ+1

+

a

)

is regular (locally integrable).

3 Three-term Green’s function in distribution

We start with the three-term fractional order differential equation in the distributional spaceD′(R+)

au(β)(x) + bu(α)(x) + cu(x) = δ(x), (8)

where a 6= 0, β > α, and b, c are not zero simultaneously. Using equation (6), equation (8) can be
converted into (

δ +
b

a
Φβ−α +

c

a
Φβ

)
∗ u(x) =

1

a
Φβ .
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Using Babenko’s approach, we obtain

u(x) =
1

a

1

δ +
b

a
Φβ−α +

c

a
Φβ

∗ Φβ

=
1

a

∞∑
j=0

(−1)j
(
b

a
Φβ−α +

c

a
Φβ

)j
∗ Φβ

=
1

a

∞∑
j=0

(−1)j
j∑
i=0

(
j

i

)(
b

a

)i
Φi(β−α)

( c
a

)j−i
∗ Φ(j−i)β ∗ Φβ

=
1

a

∞∑
j=0

j∑
i=0

(−1)j
(
j

i

)(
b

a

)i ( c
a

)j−i
Φi(β−α)+(j−i)β+β .

Using the following formula
∞∑
p=0

p∑
q=0

aq, p−q =

∞∑
j=0

∞∑
k=0

ak, j

we drive that

u(x) =
1

a

∞∑
j=0

j∑
i=0

(−1)j−i+i
(j − i+ i)!

i!(j − i)!

(
b

a

)i ( c
a

)j−i
Φi(β−α)+(j−i)β+β

=
1

a

∞∑
j=0

∞∑
k=0

(−1)j+k
(j + k)!

k! j!

(
b

a

)k ( c
a

)j
Φk(β−α)+jβ+β

=
1

a

∞∑
j=0

∞∑
k=0

(
−b
a

)k
(−1)j

( c
a

)j (j + k)!

k! j!
Φ(k+j)β+β−kα

=
1

a

∞∑
j=0

(
−b
a

)j ∞∑
k=0

(−1)k
( c
a

)k (j + k)!

k! j!
Φ(k+j)β+β−jα

=
1

a

∞∑
j=0

(
−b
a

)j ∞∑
k=0

(
−c
a

)k
(j + k)!

k! j!
Φ(k+j)β+β−jα

=
1

a
xβ−1

+

∞∑
j=0

(
−b
a

)j x(β−α)j
+

j!

∞∑
k=0

(
−c
a

)k
(j + k)!

k! Γ(kβ + β + (β − α)j)
xkβ+ . (9)

Clearly, if b = 0 then the fractional differential equation for nonzero a and c

au(β)(x) + cu(x) = δ(x) (10)

has the solution

u(x) =
1

a
xβ−1

+

∞∑
k=0

(
−c
a

)k xkβ+

Γ(kβ + β)

=
1

a
xβ−1

+ Eβ, β(−cxβ+/a)
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where β > 0.
Moreover, if β < 0 then we have (a

c
Φ−β + δ

)
∗ u =

1

c
δ(x)

from equation (10). By Babenko’s approach, we come to

u(x) =
1

c

1
a

c
Φ−β + δ

=
1

c

∞∑
k=0

(−1)k
(a
c

)k
Φ−kβ

=
1

c

∞∑
k=0

(−1)k
(a
c

)k x−kβ−1
+

Γ(−kβ)

=
1

c
δ(x) +

1

c

∞∑
k=0

(−1)k+1
(a
c

)k+1 x
−(k+1)β−1
+

Γ(−(k + 1)β)

=
1

c
δ(x)− a

c2
x−β−1

+ E−β,−β(−ax−β+ /c)

which is the solution for equation (10).
On the other hand, if c = 0 then the fractional differential equation for nonzero a and b

au(β)(x) + bu(α)(x) = δ(x), β > α (11)

has the solution

u(x) =
1

a
xβ−1

+

∞∑
j=0

(
−b
a

)j x
j(β−α)
+

Γ((β − α)j + β)

=
1

a
xβ−1

+ Eβ−α, β(−bxβ−α+ /a).

This implies that the fractional and integral equation (mixed type) for β, α > 0

au(β)(x) +
b

Γ(α)

∫ x

0

(x− τ)α−1u(τ)dτ = δ(x) (12)

where a and b are nonzero, has the solution in the space D′(R+)

u(x) =
1

a
xβ−1

+ Eβ+α, β(−bxβ+α
+ /a).

We would like to mention that the above approach to finding the fractional Green’s function is
much easier than the existing classical method, which uses the inverse Laplace transform, as well as
complex properties of the Mittag-Leffler function with its derivatives [4]. Furthermore, we derive
the Green’s function in distribution first in the space D′(R+), which is an extension of the classical
Green’s function as it deals with generalized functions rather than only ordinary functions in the
normal sense. We also note that the Laplace transform works for equations (10), (11) and (12),
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but it fails if we replace the right-hand side function δ(x) by a more singular distribution, such as
Φ−0.75 (x). Clearly, our method is workable in this case.

For example, the fractional differential equation

au(2)(x) + bu(α)(x) = Φ−0.75(x), α < 2

has the solution

u(x) =
1

a

∞∑
j=0

(
−b
a

)j x
j(2−α)+1
+

Γ(j(2− α) + 2)
∗ Φ−0.75(x)

=
1

a
x0.25

+ E2−α, 1.25(−bx2−α
+ /a).

We shall show that the double series in equation (9) is convergent in the next section, which
deals with the general Green’s function.

Theorem 3.1 Assume that b and c are not zero simultaneously. Then the fractional differ-
ential and integral equation

au(2)(x) + bu(α)(x) + cu(x) = δ(x), (a 6= 0),

where α ≤ 1 and α 6= 0, has the convergent solution

u(x) =
x+

a

∞∑
j=0

(
−b
a

)j x(2−α)j
+

j!

∞∑
k=0

(
−c
a

)k
(j + k)!

k! Γ(2k + (2− α)j + 2)
x2k

+ (13)

in the distributional space D′(R+).

Proof. By equation (9), we have equation (13) for β = 2 and 0 6= α ≤ 1. We can directly
show that this double series is convergent. Note that∣∣∣∣ (j + k)!

Γ(2k + 2 + (2− α)j)

∣∣∣∣ =

∣∣∣∣ Γ(j + k + 1)

Γ(2k + 2 + (2− α)j)

∣∣∣∣ ≤ 1

since 2− α ≥ 1.

Furthermore, both

∞∑
j=0

(
−b
a

)j
j!

x
(2−α)j
+ , and

∞∑
k=0

(
−c
a

)k
k!

x2k
+

absolutely converge by the ratio test. Therefore,

u(x) =
x+

a

∞∑
j=0

(
−b
a

)j x(2−α)j
+

j!

∞∑
k=0

(
−c
a

)k
(j + k)!

k! Γ(2k + (2− α)j + 2)
x2k

+

is convergent. This completes the proof of Theorem 3.1. �
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From the proof of Theorem 3.1, we can see that if β − α ≥ 1 and α > 0 then the fractional
differential equation

au(β)(x) + bu(α)(x) + cu(x) = δ(x)

has the convergent solution

u(x) =
1

a
xβ−1

+

∞∑
j=0

(
−b
a

)j x(β−α)j
+

j!

∞∑
k=0

(
−c
a

)k
(j + k)!

k! Γ(kβ + β + (β − α)j)
xkβ+ .

This result contains Caputo’s work of β = 2 and 0 < α < 1 as a special case [28].

In particular, the fractional differential equation for 0 < α ≤ 1

u(2)(x)− u(α)(x)− u(x) = x−1.5
+

can only be solved in the distributional sense. Indeed,

x−1.5
+ = −2

√
π

x−1.5
+

Γ(−0.5)
= −2

√
πΦ−0.5.

Hence the solution

u(x) = −2
√
π

∞∑
j=0

∞∑
k=0

(j + k)!

k! j!
Φ2(k+j)+1.5−jα(x)

= −2
√
π x0.5

+

∞∑
j=0

1

j!
x

(2−α)j
+

∞∑
k=0

(j + k)!

k! Γ(2k + (2− α)j + 1.5)
x2k

+

is absolutely convergent by Theorem 3.1.

Using the formula

Γ(n+ 0.5) =
(2n)!

4nn!

√
π,

we can infer the solution for the differential equation

aD2u(x) + bDu(x) + cu(x) = x−1.5
+ ,

where a, b and c are all nonzero constants, as

u(x) = −2

a
x0.5

+

∞∑
j=0

(
−b
a

)j xj+
j!

∞∑
k=0

(
−c
a

)k
(j + k)! 42k+j+1(2k + j + 1)!

k! (4k + 2j + 2)!
x2k

+ .

In particular, we have the solution

u(x) = −2

a
x0.5

+

∞∑
j=0

(
−b
a

)j
4j+1(j + 1)!

(2j + 2)!
xj+ = −

2
√
π x0.5

+

a
E1, 1.5(−bx+/a)
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for the differential equation (a 6= 0)

aD2u(x) + bDu(x) = x−1.5
+ ,

which is not doable in the classical sense.

By equation (9), we have the following theorem for β = 2 and α = 1.5.

Theorem 3.2 The fractional differential equation

au(2)(x) + bu(1.5)(x) + cu(x) = δ(x)

has the convergent solution in the space D′(R+)

u(x) =
1

a
x+

∞∑
j=0

(
−b
a

)j x0.5j
+

j!

∞∑
k=0

(
−c
a

)k
(j + k)!

k! Γ(2k + 2 + 0.5j)
x2k

+ . (14)

Moreover, if β ≥ 2 then the fractional differential equation

au(β)(x) + bu(1.5)(x) + cu(x) = δ(x)

has the convergent solution

u(x) =
1

a
xβ−1

+

∞∑
j=0

(
−b
a

)j x(β−1.5)j
+

j!

∞∑
k=0

(
−c
a

)k
(j + k)!

k! Γ(kβ + β + (β − 1.5)j)
xkβ+ .

This result contains Bagley and Torvik’s work of β = 2 and α = 1.5 as a special case [29], which is
in the classical sense.

4 General Green’s function

In order to obtain Green’s function for the n-term of fractional integro-differential equation with
constant coefficients (an 6= 0 and βn > · · · > β0 with βn > 0 )

anu
(βn)(x) + an−1u

(βn−1)(x) + · · ·+ a1u
(β1)(x) + a0u

(β0)(x) = δ(x), (15)

we need the multinomial theorem which states as

(x1 + x2 + · · ·+ xm)k =
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
xk11 x

k2
2 · · ·xkmm

where the summation is taken over all sequences of nonnegative integer indices k1 through km such

as the sum of all ki is k. The coefficients

(
k

k1, k2, · · · , km

)
are known as multinomial coefficients,

and are defined by the formula(
k

k1, k2, · · · , km

)
=

k!

k1! k2! · · · km!
.
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Combinatorially, the multinomial coefficient

(
k

k1, k2, · · · , km

)
counts the number of different ways

to partition an n-element set into disjoint subsets of sizes k1, k2, · · · , km.

The substitution of xi = 1 for all i into the multinomial theorem implies that∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
= mk.

The number of terms in the multinomial theorem is(
k +m− 1

m− 1

)
which is equal to the number of monomials of degree k on the variables x1, · · · , xm.

Using equation (6), equation (15) can be converted into(
δ +

an−1

an
Φβn−βn−1

+ · · ·+ a1

an
Φβn−β1

+
a0

an
Φβn−β0

)
∗ u(x) =

1

an
Φβn

.

Using Babenko’s approach, we derive by the multinomial theorem that

u(x) =
1

an

1

δ +
an−1

an
Φβn−βn−1

+ · · ·+ a1

an
Φβn−β1

+
a0

an
Φβn−β0

∗ Φβn

=
1

an

∞∑
k=0

(−1)k
(
an−1

an
Φβn−βn−1 + · · ·+ a1

an
Φβn−β1 +

a0

an
Φβn−β0

)k
∗ Φβn

=
1

an

∞∑
k=0

(−1)k
∑

k1+k2+···+kn=k

(
k

k1, k2, · · · , kn

)(
an−1

an

)k1
Φk1βn−βn−1

∗
(
an−2

an

)k2
Φk2βn−βn−2

∗ · · · ∗
(
a1

an

)kn−1

Φ
kn−1

βn−β1
∗
(
a0

an

)kn
Φknβn−β0

∗ Φβn

=
1

an

∞∑
k=0

(−1)k

akn

∑
k1+k2+···+kn=k

(
k

k1, k2, · · · , kn

)
ak1n−1a

k2
n−2 · · · a

kn
0

×Φk1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)+βn

=
xβn−1

+

an

∞∑
k=0

(−1)k

akn

∑
k1+k2+···+kn=k

(
k

k1, k2, · · · , kn

)
ak1n−1a

k2
n−2 · · · a

kn
0

×
x
k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)

=
xβn−1

+

an

∞∑
k=0

(−1)k

akn

∑
k1+k2+···+kn=k

ak1n−1a
k2
n−2 · · · a

kn
0

k1! k2! · · · kn!

×
k! x

k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)
. (16)
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We would like to mention that one obtains Green’s function in the classical sense [4] for equation
(15) by complicated inverse operations of the Laplace transform as well as the Mittage-Leffler
functions, as

u(x) =
1

an

∞∑
k=0

(−1)k

k!

∑
k2+k3+···+kn=k

(
k

k2, k3, · · · , kn

)

×Πn
i=2

(
an−i
an

)ki
x

(βn−βn−1)k+βn+
∑n

j=2(βn−1−βn−j) kj−1

+

×E(k)
βn−βn−1, βn+

∑n
j=2(βn−1−βn−j) kj

(
−an−1

an
x
βn−βn−1

+

)
. (17)

Comparing the above classical Green’s function, our result is not only much easier to deduce but
also simpler in structure, without involving any Mittag-Leffler functions and their derivatives at
all. Furthermore, it can deal with distributions instead of only ordinary functions. Using equation
(4) we can see

E
(k)
βn−βn−1, βn+

∑n
j=2(βn−1−βn−j)kj

(
−an−1

an
xβn−βn−1

)

=

∞∑
k1=0

(k1 + k)!

(
−an−1

an
xβn−βn−1

)k1
Γ(k1(βn − βn−1) + (βn − βn−1)k + βn +

∑n
j=2(βn−1 − βn−j)kj)

.

This implies that equations (16) and (17) are equivalent. Indeed, let k2 + · · · kn = l for multi-index
k = (k1, k2, · · · , kn). Then k = |k| = k1 + l. We can change equation (16) into

u(x) =
1

an

∞∑
k=0

(−1)k

akn

∑
k1+k2+···+kn=k

ak1n−1a
k2
n−2 · · · a

kn
0

k1! k2! · · · kn!

×
k! x

k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)+βn−1
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)

=
1

an

∞∑
l=0

(−1)l

l!

∞∑
k1=0

(−1)k1
∑

k2+k3+···+kn=l

l! (k1 + l)! ak1n−1a
k2
n−2 · · · a

kn
0

ak1+l
n k1! k2! · · · kn!

×
x
k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)+βn−1
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)
.

Using the identity

k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn

= k1(βn − βn−1) + (βn − βn−1)l + βn +

n∑
j=2

(βn−1 − βn−j)kj

and changing l into k, we complete the proof.
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Our main theorem is stated as follows.

Theorem 4.1 The solution u(x) given in equation (16) is continuous on the interval [0,∞)
if βn ≥ 1, and belongs to L(0, T ) for all T > 0 if 0 < βn < 1.

Proof. Clearly,

|u(x)| ≤
xβn−1

+

|an|

∞∑
k=0

1

|an|k
∑

k1+k2+···+kn=k

|an−1|k1 |an−2|k2 · · · |a0|kn
k1! k2! · · · kn!

×
k! x

k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)

=
xβn−1

+

|an|

∞∑
k=0

∑
k1+k2+···+kn=k

k!

∣∣∣∣an−1

an

∣∣∣∣k1 ∣∣∣∣an−2

an

∣∣∣∣k2 · · · ∣∣∣∣ a0

an

∣∣∣∣kn
k1! k2! · · · kn!

×
x
k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)
.

For all x ∈ [0, T ] (where T is positive), we come to

u(x) ≤ T βn−1

|an|

∞∑
k=0

∑
k1+k2+···+kn=k

k!

∣∣∣∣an−1

an

∣∣∣∣k1 ∣∣∣∣an−2

an

∣∣∣∣k2 · · · ∣∣∣∣ a0

an

∣∣∣∣kn
k1! k2! · · · kn!

× T k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)

=
T βn−1

+

|an|
E(βn−βn−1,··· ,βn−β0), βn

(∣∣∣∣an−1

an

∣∣∣∣T βn−βn−1 , · · · ,
∣∣∣∣ a0

an

∣∣∣∣T βn−β0

)
,

where

E(βn−βn−1,··· ,βn−β0), βn

(∣∣∣∣an−1

an

∣∣∣∣T βn−βn−1 , · · · ,
∣∣∣∣ a0

an

∣∣∣∣T βn−β0

)
is the value at z1 =

∣∣∣an−1

an

∣∣∣T βn−βn−1 , · · · , zn =
∣∣∣ a0an ∣∣∣T βn−β0 of the multivariate Mittag-Leffler

function E(βn−βn−1,··· ,βn−β0), βn
(z1, · · · , zn) given in [2]. This implies that the solution u(x) given

in equation (16) is absolutely and uniformly convergent on the interval [0, T ]. Since T is arbitrary,
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u(x) is continuous on [0,∞). Assume 0 < βn < 1. Then for all T > 0,

∫ T

0

|u(x)|dx ≤ 1

|an|

∞∑
k=0

∑
k1+k2+···+kn=k

k!

∣∣∣∣an−1

an

∣∣∣∣k1 ∣∣∣∣an−2

an

∣∣∣∣k2 · · · ∣∣∣∣ a0

an

∣∣∣∣kn
k1! k2! · · · kn!

×
∫ T

0

xβn−1+k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)dx

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)

=
1

|an|

∞∑
k=0

∑
k1+k2+···+kn=k

k!

∣∣∣∣an−1

an

∣∣∣∣k1 ∣∣∣∣an−2

an

∣∣∣∣k2 · · · ∣∣∣∣ a0

an

∣∣∣∣kn
k1! k2! · · · kn!

× T βn+k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)dx

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn + 1)

=
T βn

|an|
E(βn−βn−1,··· ,βn−β0), βn+1

(∣∣∣∣an−1

an

∣∣∣∣T βn−βn−1 , · · · ,
∣∣∣∣ a0

an

∣∣∣∣T βn−β0

)
,

which is a finite value. This completes the proof of Theorem 4.1. �

Using representation of the integral equation and successive approximations, Kim and O [18]
also obtained equation (16) under certain initial conditions in the classical sense, which does not
deal with the equation like

anu
(βn)(x) + an−1u

(βn−1)(x) + · · ·+ a1u
(β1)(x) + a0u

(β0)(x) = x−1.2
+ .

As an application, we can solve the following fractional differential equation

u(4.5)(x) + u(3.5)(x) + u(2.5)(x) + u(1.5)(x) + u(0.5)(x) = Φ−3.5(x)

by equation (16), but the classical result fails to do so since the Laplace transform of Φ−3.5(x) does
not exist.

Indeed,

u(x) =

∞∑
k=0

(−1)k
∑

k1+k2+k3+k4=k

(
k

k1, k2, k3, k4

)
Φk1+2k2+3k3+4k4+4.5 ∗ Φ−3.5

=

∞∑
k=0

(−1)kk!
∑

k1+k2+k3+k4=k

xk1+2k2+3k3+4k4
+

k1! k2!k3! k4! (k1 + 2k2 + 3k3 + 4k4)!

which is clearly convergent as ∣∣∣∣ k!

(k1 + 2k2 + 3k3 + 4k4)!

∣∣∣∣ ≤ 1

and ∑
k1+k2+k3+k4=k

xk1+2k2+3k3+4k4
+

k1! k2!k3! k4!
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has a finite number of terms with factorials as denominators.

We let δi,j be the Kronecker delta function defined as

δi,j =

{
1 if i = j,
0 otherwise.

Then the multinomial theorem can be restated as

(x1 + x2 + · · ·+ xm)k =

k∑
k1=0

k∑
k2=0

· · ·
k∑

km=0

δk1+k2+···+km, k

(
k

k1, k2, · · · , km

)
xk11 x

k2
2 · · ·xkmm .

Hence, the solution of equation (15) can be written as

u(x) =
xβn−1

+

an

∞∑
k=0

(−1)k

akn

k∑
k1=0

k∑
k2=0

· · ·
k∑

kn=0

δk1+k2+···+kn, k
ak1n−1a

k2
n−2 · · · a

kn
0

k1! k2! · · · kn!

×
k! x

k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)
.

We would like to mention that if 0 ≥ βn > · · · > β0, then equation (15) is an integral equation
and has the solution

u(x) =
1

an

∞∑
k=0

(−1)k

akn

k∑
k1=0

k∑
k2=0

· · ·
k∑

kn=0

δk1+k2+···+kn, k
ak1n−1a

k2
n−2 · · · a

kn
0

k1! k2! · · · kn!

×
k! x

k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)+βn−1
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)

by noting that xβn−1
+ cannot be put in the front as it is not defined when βn = −1,−2, · · · in

distribution.

The above solution can further be written into two parts: u(x) = a singular distribution + a
locally integrable function. We use the following example to illustrate this in detail.

Consider the integral equation

u(−0.5)(x) + u(−1.5)(x) + u(−2)(x) = δ(x).

Then the solution is

u(x) =

∞∑
k=0

(−1)k
∑

k1+k2=k

k!

k1! k2!

x−1.5+k1+1.5k2
+

Γ(k1 + 1.5k2 − 0.5)

=
x−1.5

+

Γ(−0.5)
+

∞∑
k=1

(−1)k
∑

k1+k2=k

k!

k1! k2!

x−1.5+k1+1.5k2
+

Γ(k1 + 1.5k2 − 0.5)
.
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Clearly,
x−1.5

+

Γ(−0.5)
= δ(0.5)(x)

is a singular distribution, while

∞∑
k=1

(−1)k
∑

k1+k2=k

k!

k1! k2!

x−1.5+k1+1.5k2
+

Γ(k1 + 1.5k2 − 0.5)

is locally integrable as the function x−0.5
+ is locally integrable.

To prove
u(x) = a singular distribution + a locally integrable function

in general. Choose the minimum k such that

min
k≥1
{k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn − 1} > −1,

and denote it as k0. Then,

u(x) =
1

an

k0−1∑
k=0

(−1)k

akn

k∑
k1=0

k∑
k2=0

· · ·
k∑

kn=0

δk1+k2+···+kn, k
ak1n−1a

k2
n−2 · · · a

kn
0

k1! k2! · · · kn!

×
k! x

k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)+βn−1
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)

+
1

an

∞∑
k=k0

(−1)k

akn

k∑
k1=0

k∑
k2=0

· · ·
k∑

kn=0

δk1+k2+···+kn, k
ak1n−1a

k2
n−2 · · · a

kn
0

k1! k2! · · · kn!

×
k! x

k1(βn−βn−1)+k2(βn−βn−2)+···+kn(βn−β0)+βn−1
+

Γ(k1(βn − βn−1) + k2(βn − βn−2) + · · ·+ kn(βn − β0) + βn)
.

The first part is a distribution as the minimum power is less than or equal to −1, and the second
is locally integrable by following the proof of Theorem 4.1.

5 The applications in the wave reaction-diffusion equation

Let Φ(x, t) be the concentration of a substance distributed in space (one dimensional space) and
ϕ(x, t) be a nonlinear function, where t is the time variable and x is the space variable. Figueiredo
Camargo et al. [13] introduced the so-called generalized wave reaction-diffusion equation given as

aD2α
t Φ(x, t) + bDα

t Φ(x, t) = c −∞D
2β
x Φ(x, t)− ν2Φ(x, t) + ϕ(x, t),

where t > 0 and x ∈ R, with 0 < α ≤ 1, 0 < β ≤ 1, and a, b, c, and ν2 are real constants. We
are interested in a special case where c = 0, Φ(x, t) = Φ(t) and ϕ(x, t) = ϕ(t). Then the above
equation is converted into

aD2α
t Φ(t) + bDα

t Φ(t) = −ν2Φ(t) + ϕ(t), (18)
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with ν2 = w2, where w is the frequency of the harmonic oscillator. From our equation (9), the
corresponding Green’s function, which is the solution of

aD2α
t Φ(t) + bDα

t Φ(t) = −w2Φ(t) + δ(t),

is

Φ(t) =
1

a
t2α−1
+

∞∑
j=0

(
−b
a

)j tαj+

j!

∞∑
k=0

(
−w2

a

)k
(j + k)!

k! Γ(2kα+ 2α+ αj)
t2kα+ .

This expression is clearer than one involving the Mittag-Leffler functions, given in [13] as

Φ(t) =
1

a

∞∑
j=0

(
−b
a

)j
tαj+2α−1
+ E

(j+1)
2α,αj+2α

(
−w

2

a
t2α+

)
.

Furthermore, if ϕ(t) = t−1.5
+ , then the fractional differential equation

aD2α
t Φ(t) + bDα

t Φ(t) = −w2Φ(t) + t−1.5
+

has the solution

Φ(t) =
1

a
t2α−1
+

∞∑
j=0

(
−b
a

)j tαj+

j!

∞∑
k=0

(
−w2

a

)k
(j + k)!

k! Γ(2kα+ 2α+ αj)
t2kα+ ∗ (−2

√
πΦ−0.5)

=
−2
√
π

a

∞∑
j=0

(
−b
a

)j
1

j!

∞∑
k=0

(
−w2

a

)k
(j + k)!

k! Γ(2kα+ 2α+ αj)− 0.5
t2kα+2α+αj−1.5
+ .

We should note that this solution is well defined distributionally, but not classically as ϕ(t) = t−1.5
+

is not locally integrable.

In addition, the following fractional differential equation associated with the driven harmonic
oscillator [30] is a particular case of equation (18) with a = 1, b = 0, 1/2 < α ≤ 1 and ν2 = ω2α,

D2α
t Φ(t) = −ω2αΦ(t) + ϕ(t).

Then the corresponding Green’s function is

Φ(t) = t2α−1
+

∞∑
k=0

(−ω2α)k
t2kα+

Γ(2kα+ 2α)
= t2α−1

+ E2α, 2α(−ω2αt2α+ ).

Clearly, the fractional differential equation

D2α
t Φ(t) = −ω2αΦ(t) + t−1.5

+

has the solution

Φ(t) = −2
√
π

∞∑
k=0

(−ω2α)k
t2kα+2α−1.5
+

Γ(2kα+ 2α− 0.5)
= −2

√
πt2α−1.5

+ E2α,2α−0.5(−ω2αt2α+ )
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where t2α−1.5
+ is locally integrable and 2α− 0.5 > 0.

Finally, the fractional relaxation equation is a particular case of equation (18) with a = 0

bDα
t Φ(t) = −w2Φ(t) + δ(t).

The Corresponding Green’s function is

Φ(t) =
1

b
tα−1
+ Eα, α(−w2tα+/b)

by equation (10). The solution for the fractional differential equation

bDα
t Φ(t) = −w2Φ(t) + t−1.5

+

can be obtained easily, which is not doable in the classical sense.

6 Conclusion

Applying Babenko’s approach, we have deduced a simpler Green’s function for the n-term fractional
differential (or integral) equation

anu
(βn)(x) + an−1u

(βn−1)(x) + · · ·+ a1u
(β1)(x) + a0u

(β0)(x) = g(x)

in the distributional space D′(R+) for the first time, which is an extension of the classical result
as it deals with generalized functions. Several interesting examples of solving fractional differential
and integral equations, some which are not doable in the classical sense, were presented. Finally,
we demonstrated nice applications of our results in the wave reaction-diffusion equation.
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