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Abstract

The objective of this paper is, for the first time, to extend the fractional
Laplacian (−�)su(x) over the space Ck(R

n) (which contains S(Rn) as a
proper subspace) for all s > 0 and s �= 1, 2, . . . , based on the normalization
in distribution theory, Pizzetti’s formula and surface integrals in Rn. We
further present two theorems showing that our extended fractional Lapla-
cian is continuous at the end points 1, 2, . . . . Two illustrative examples
are provided to demonstrate computational techniques for obtaining the
fractional Laplacian using special functions, Cauchy’s residue theorem and
integral identities. An application to defining the Riesz derivative in the
classical sense at odd numbers is also considered at the end.
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1. Introduction

During the past few decades, fractional calculus (for details, see [1], [2],
[3], [4]) has been exploring as a tool for developing more sophisticated math-
ematical models that can accurately describe complex systems. Fractional
powers of the Laplacian operator arise naturally in the study of anomalous
diffusion, where the fractional operator plays an analogous role to that of
the integer-order Laplacian for ordinary diffusion ([5], [6]). By replacing
Brownian motion of particles with Lévy flights [7], one obtains a fractional
diffusion equation (or fractional kinetic equation) in terms of the fractional
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1798 C.K. Li

Laplacian of order s ∈ (0, 1) via the Cauchy principal value integral [8],
given as

(−�)su(x) = Cn,sP.V.

∫
Rn

u(x)− u(ζ)

|x− ζ|n+2s
dζ, (1.1)

where u is a function from Rn to R, � = ∂2/∂x21 + · · · + ∂2/∂x2n, and the
constant Cn,s is given by

Cn,s =

(∫
Rn

1− cos y1
|y|n+2s

dy

)−1

= π−n/222s
Γ(n+2s

2 )

Γ(1− s)
s.

Generally speaking, two main conditions are assumed on the function u to
ensure the right-hand side integral in equation (1.1) exists:

(i) u needs to be sufficiently smooth near point x,
(ii) u must have a slow growth at infinity, for example∫

Rn

|u(x)|
1 + |x|n+2s

dx <∞.

In [9], Dipierro et al. defined the fractional Laplacian for functions which
grow more than linearly at infinity. The basic idea for this is that, if the
function grows too much at infinity, its fractional Laplacian diverges, but it
can be written as a given function plus a diverging sequence of polynomials
of a given degree.

In [10], Michelitsch et al. constructed the following formula for a certain
function u(x) and s ≥ 0:

(−�)su(x) =
Γ
(
s+

n

2

)
Γ(2s + 1)

π
n+1
2 Γ

(
s+

1

2

)

× lim
ε→0+

Re

{
i2s+1

∫
Rn

u(y)dy

(|x− y|+ iε)2s+1|x− y|n−1

}
, (1.2)

where Re{..} denotes the real part of {..}.
We would like to point out the above holds for all positive exponents

s ≥ 0, including integers (zero as well) that represent the powers of the
conventional Laplacian �. The construction of equation (1.2) is based on
the fact that the identity

−|ζ|−2s−1 sin sπ = lim
ε→0+

Re(ε− iζ)−2s−1

is true in the distributional sense [11]. For instance, it can be regarded as
the following integral for ζ0 > 0 and s > 0

lim
ε→0+

Re

∫ ζ0

0
(ε− iζ)−2s−1dζ =

sinπs

2s
ζ−2s
0 ,

which is certainly unsatisfied in the classical sense.
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1799

In particular for n = 1, we imply from equation (1.2)(
− d2

dx2

)s

u(x) = −Γ(2s+ 1) sin πs

π

∫ ∞

−∞

u(x+ y)

|y|2s+1
dy,

for s ≥ 0.
Recently, Lischke et al. [12] provided both a theoretical and numerical

overview of various contents of the fractional Laplacian of order in (0, 1),
as well as different kinds of partial differential equations involving this
operator.

We begin to introduce some basic notations which are soon-to-be used.
Let x = (x1, x2, · · · , xn) ∈ Rn. For a given n-tuple α = (α1, α2, · · · , αn) of
nonnegative integers (or called a multi-index), we define

|α| = α1 + α2 + · · · + αn, α! = α1!α2! · · ·αn!,

xα = xα1
1 xα2

2 · · · xαn
n ,

∂αu = ∂α1
1 ∂α2

2 · · · ∂αn
n u =

∂|α|u
∂xα1

1 ∂xα2
2 · · · ∂xαn

n
.

The Schwartz space S(Rn) (space of rapidly decreasing functions on Rn) is
the function space [13] defined as

S(Rn) =
{
u(x) ∈ C∞(Rn) : ‖u(x)‖α,k ≤ Cα,k(const) ∀α, k ∈ Nn

0

}
,

where N0 = {0} ∪N is the set of nonnegative integers and

‖u(x)‖α,k = sup
x∈Rn

∣∣∣xα∂ku(x)∣∣∣ .
Let |x| =

√
x21 + · · ·+ x2n. Then, clearly e

−|x|2 ∈ S(Rn).
On the other hand, the fractional Laplacian is widely considered as the

Riesz fractional derivative, which is defined for a suitably smooth function
u(x) (x ∈ Rn) by ([1], [14])

RZD
α
xu(x) =

1

dn,l(α)

∫
Rn

(�l
yu)(x)

|y|n+α
dy, 0 < α < l,

where l can be arbitrary integer bigger than α, and (�l
yu)(x) denotes the

centred difference

(�l
yu)(x) =

l∑
k=0

(−1)k
(
l

k

)
u(x+ (l/2 − k)y),

or non-centred differences

(�l
yu)(x) =

l∑
k=0

(−1)k
(
l

k

)
u(x− ky).

Auth
or'

s c
op

y



1800 C.K. Li

The dn,l(α) are normalizing constants and analytic functions with respect
to the parameter α. Cai and Li [15] showed that

(−�)su(x) =RZ D
2s
x u(x),

for u(x) ∈ S(Rn) with n > 1 and s ∈ (0, 1).
Kwaśnicki presented ten equivalent definitions for defining (−�)s over

certain function spaces [16]. For example, it can be defined:

(i) either as a Fourier multiplier given by the formula

F((−�)su)(ζ) = |ζ|2sF(u)(ζ),

where the Fourier transform F(u) of a function u is given by

F(u)(ζ) =

∫
Rn

u(x)e−ixζdx,

(ii) or by singular integral definition

(−�)su(ζ) = − lim
r→0+

22sΓ
(
n
2 + s

)
πn/2|Γ(−s)|

∫
Rn\B(x,r)

u(ζ + z)− u(ζ)

|z|n+2s
dz,

with the limit in Lebesgue spaces.

The Cauchy principal value integral for defining the fractional Laplacian
in equation (1.1) has been normalized over the space S(Rn) for 0 < s < 1,
and is given as [16, 17]:

(−�)su(x) = −1

2
Cn,s

∫
Rn

u(x+ y)− 2u(x) + u(x− y)

|y|n+2s
dy. (1.3)

As outlined in the abstract, the goal of this paper is to find a fresh
approach to normalizing and defining the fractional Laplacian (−�)s over
a new function space which contains S(Rn) as a proper subspace, for all
s > 0 and s �= 1, 2, . . . , using distributional techniques. Furthermore, we
obtain two theorems showing that the extended fractional Laplacian (−�)s

is continuous at the end points 1, 2, 3, . . . . To move forward, we start con-
structing an identity sequence Im(|x|) satisfying certain conditions, and
introduce the Schwartz space of test functions for the concept of normal-
ization of the distribution x−1−2s

+ in Section 2. Then, we further normalize
the integral on the right-hand side of equation (1.3) in Section 3, by surface
integrals on Rn as well as Pizzetti’s formula. In Section 4, we present an
interesting example computing the fractional Laplacian of a function that
is not in the Schwartz space using Green’s theorem. Moreover, we define
the generalized fractional Laplacian (−�)s on R for s > 0 and s �= 1, 2, . . .
by the normalization of the distribution |x|λ, and present one example to
demonstrate computational skills by Cauchy’s theorem, as well as an appli-
cation to extending the classical Riesz derivative to odd numbers in Section
5. Finally, we summarize the entire paper in Section 6.
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1801

2. Preliminaries

We begin by introducing an identity sequence Im(|x|) on Rn and the
Schwartz space of test functions, which will be used in the following sections.
Let τ(x) be an infinitely differentiable function on [0,+∞) satisfying the
following conditions:

(i) 0 ≤ τ(x) ≤ 1,
(ii) τ(x) = 1 if 0 ≤ x ≤ 1/2,
(iii) τ(x) = 0 if x ≥ 1.

We construct the sequence Im(|x|) for m = 1, 2, . . . as:

Im(|x|) =
⎧⎨
⎩

1 if |x| ≤ m,

τ

(
m2m

1 + 2m1+m
|x|2 − m2m+2

1 + 2m1+m

)
if |x| > m.

Clearly, Im(|x|) is infinitely differentiable with respect to x1, x2, · · · , xn and
|x|, and Im(|x|) = 0 if |x| ≥ m+m−m, as

m2m

1 + 2m1+m
(m+m−m)2 − m2m+2

1 + 2m1+m
= 1.

Furthermore,
0 ≤ Im(|x|) ≤ 1.

Let D(Rn) be the Schwartz space [11] of infinitely differentiable functions
(or so-called the Schwartz space of test functions) with compact support in
Rn, and D′(Rn) be the space of distributions (linearly continuous function-
als) defined on D(Rn). In addition, we shall define a sequence φ1(x), φ2(x),
· · · , φm(x), . . . which converges to zero inD(Rn) if all these functions vanish
outside a certain fixed and bounded interval in Rn, and converge uniformly
to zero (in the usual sense) together with their derivatives of any order.
We further define D′(R+) as the subspace of D′(R) (n = 1) with support
contained in R+. Let f ∈ D′(Rn). It is conventional to write (f, φ) for the
value of f acting on a test function φ ∈ D(Rn). The functional δ defined
as

(δ, φ) = φ(0),

is a linear and continuous functional on D(Rn). Hence, δ ∈ D′(Rn).
Let f ∈ D′(Rn) and k = (k1, k2, · · · , kn) be an n-tuple of nonnegative

integers. Then the distributional derivative
∂|k|

∂xk11 · · · ∂xknn
f on D(Rn) is

defined as:(
∂|k|

∂xk11 · · · ∂xknn
f, φ

)
= (−1)|k|

(
f,

∂|k|

∂xk11 · · · ∂xknn
φ

)
, ki ≥ 0

for φ ∈ D(Rn). In particular for n = 1,
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1802 C.K. Li

(δ(m)(x), φ(x)) = (−1)mφ(m)(0),
where m is a nonnegative integer.

The distribution xλ+ on D(R) is normalized in [11] as:

(xλ+, φ(x)) =

∫ ∞

0
xλ

×
[
φ(x)− φ(0) − xφ′(0)− · · · − xm−1

(m− 1)!
φ(m−1)(0)

]
dx, (2.1)

where −m − 1 < λ < −m (m ∈ Z+ = N) and φ ∈ D(R). Note that the
integral ∫ ∞

0
xλφ(x)

is undefined in the classical sense for −m− 1 < λ < −m with m = 1, 2,
. . ..

The distributions P.V.x−2m (or x−2m in short) for m = 1, 2, . . . and
P.V.x−2m−1 (or x−2m−1) for m = 0, 1, . . . are given in [11] as:

(x−2m, φ) =

∫ ∞

0
x−2m{φ(x) + φ(−x)

−2

[
φ(0) +

x2

2!
φ′′(0) + · · ·+ x2m−2

(2m− 2)!
φ(2m−2)(0)

]
}dx, (2.2)

(x−2m−1, φ) =

∫ ∞

0
x−2m−1{φ(x)− φ(−x)

−2

[
xφ′(0) +

x3

3!
φ(3)(0) + · · ·+ x2m−1

(2m− 1)!
φ(2m−1)(0)

]
}dx.

In particular,

(x−2, φ) =

∫ ∞

0

φ(x) + φ(−x)− 2φ(0)

x2
dx, and

(x−1, φ) =

∫ ∞

0

φ(x)− φ(−x)
x

dx.

Let Sφ(r) be the mean value of φ(x) ∈ D(Rn) on the sphere of radius r
given by

Sφ(r) =
1

Ωn

∫
Ω
φ(rσ)dσ, (2.3)

where Ωn = 2π
n
2 /Γ(n2 ) is the area of the unit sphere Ω. We can write out

the Taylor’s series for Sφ(r) [18] in the space of analytic functions, namely

Sφ(r) = φ(0) +
1

2!
S′′
φ(0)r

2 + · · ·+ 1

(2k)!
S
(2k)
φ (0)r2k + · · ·

=
∞∑
k=0

�kφ(0)r2k

2k k!n(n+ 2) · · · (n+ 2k − 2)
,
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1803

which is the well-known Pizzetti’s formula [19]. It plays an important role
in the work of Li, Aguirre and Fisher ([20], [21], [22], [23]) for defining
distributional products on Rn.

Remark 2.1. Pizzetti’s formula is not a convergent series for all φ ∈
D(Rn) from the counterexample below.

φ(x) =

{
exp{− 1

r2(1−r2)
} if 0 < r < 1,

0 otherwise.

Clearly, φ(x) ∈ D(Rn) and Sφ(r) �= 0 for 0 < r < 1, but the series in the
formula is identically equal to zero. Obviously, Sφ(r) → 0 as r → 0.

Clearly, we have from equation (2.3) and Pizzetti’s formula that

d2k

dr2k

∫
Ω
φ(rσ)dσ

∣∣∣∣
r=0

=
Ωn(2k)!�kφ(0)

2k k!n(n+ 2) · · · (n+ 2k − 2)
, (2.4)

for k = 1, 2, . . . . Evidently for k = 0,∫
Ω
φ(rσ)dσ

∣∣∣∣
r=0

= Ωnφ(0).

It follows from [27] that Φλ =
xλ−1
+

Γ(λ)
is an entire function of λ on the complex

plane, and
xλ−1
+

Γ(λ)

∣∣∣∣∣
λ=−m

= δ(m)(x), for m = 0, 1, . . . . (2.5)

For the distribution Φλ =
xλ−1
+

Γ(λ)
, the (distributional) derivative formula is

simpler than that for xλ+. In fact,

d

dx
Φλ =

d

dx

xλ−1
+

Γ(λ)
=

(λ− 1)xλ−2
+

Γ(λ)
=

xλ−2
+

Γ(λ− 1)
= Φλ−1. (2.6)

Let λ and μ be arbitrary complex numbers. Then we have from [27]

Φλ ∗ Φμ = Φλ+μ. (2.7)

Let λ be an arbitrary complex number and g(x) be the distribution
concentrated on x ≥ 0. We define the primitive of order λ of g as a
convolution in the distributional sense:

gλ(x) = g(x) ∗ x
λ−1
+

Γ(λ)
= g(x) ∗ Φλ. (2.8)

Clearly, the convolution on the right-hand side of equation (2.8) is well
defined, as supports of g and Φλ are bounded on the same side.
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1804 C.K. Li

Thus, equation (2.8) with various λ will not only give the fractional
derivatives but also the fractional integrals of g(x) ∈ D′(R+) when λ �∈ Z.
It also reduces to integer-order derivatives or integrals when λ ∈ Z. We
define the convolution

g−λ = g(x) ∗ Φ−λ,

as the fractional derivative of the distribution g(x) with order λ, writing it
as

g−λ =
dλ

dxλ
g,

for Reλ ≥ 0. Similarly,
dλ

dxλ
g is interpreted as the fractional integral if

Reλ < 0.
Replacing λ by −λ in equation (2.7), we get

dλ

dxλ

(
xμ−1
+

Γ(μ)

)
=

xμ−λ−1
+

Γ(μ− λ)
.

In particular for μ = 0, we have

δ(λ)(x) =
x−λ−1
+

Γ(−λ) , (2.9)

which will be used in the following sections.
The following formula will be utilized in Section 4, which can be found

on page 292 in [24].
Let φ(x) and ψ(x) be infinitely differentiable functions. Then for k =

0, 1, 2, . . . ,

�k(φψ) =
∑

m+i+l=k

2i
(
m+ l

m

)(
k

m+ l

)
∇i�mφ · ∇i�lψ, (2.10)

where

∇iφ · ∇iψ =

⎧⎪⎨
⎪⎩

φψ if i = 0,
n∑

j=1

∂i

∂xij
φ
∂i

∂xij
ψ if i > 0.

3. The generalized fractional Laplacian on C∞(Rn) (n > 1)

It is well known that (see page 53 in [11])

Γ(λ) =

∫ ∞

0
xλ−1

⎡
⎣e−x −

k∑
j=0

(−1)j
xj

j!

⎤
⎦ dx,

where −k − 1 < λ < −k (k ∈ Z+).
Let s > 0, s �= 1, 2, . . . , and C∞(Rn) (n > 1) be the space of infinitely

differentiable functions on Rn, which clearly contains S(Rn) as a proper
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1805

subspace. Based on equation (1.3), we define the generalized fractional
Laplacian (−�)su(x) over the space C∞(Rn) as:

(−�)su(x) = −1

2
Cn,s

× lim
m→∞

∫
Rn

[u(x+ y)− 2u(x) + u(x− y)]Im(|y|)
|y|n+2s

dy, (3.1)

if the limit exists, and where

Cn,s = π−n/222s
Γ(n+2s

2 )

Γ(1− s)
s

is well defined for s > 0, s �= 1, 2, · · · . In particular, equation (3.1) becomes
equation (1.3) for any function u(x) ∈ S(Rn), as the integral∫

Rn

[u(x+ y)− 2u(x) + u(x− y)]Im(|y|)
|y|n+2s

dy,

uniformly converges with respect to m and

lim
m→∞ Im(|y|) = 1.

Indeed, for any smooth function u, a second order of Taylor’s expansion
derives

|[u(x + y)− 2u(x) + u(x− y)]Im(|y|)|
|y|n+2s

≤
∥∥D2u

∥∥
L∞

|y|n+2s−2
, 0 < s < 1,

which is integrable near zero by noting that 0 ≤ Im(|y|) ≤ 1.
Using the spherical coordinates below

y1 = r cos θ1,

y2 = r sin θ1 cos θ2,

y3 = r sin θ1 sin θ2 cos θ3,

· · ·
yn−1 = r sin θ1 · · · sin θn−2 cos θn−1,

yn = r sin θ1 · · · sin θn−2 sin θn−1,

where the angles θ1, θ2, · · · , θn−2 range over [0, π] and θn−1 ranges over
[0, 2π], equation (3.1) turns out to be

(−�)su(x) = −1

2
Cn,s lim

m→∞

∫ m+m−m

0

rn−1Sm(r)

rn+2s
dr

= −1

2
Cn,s lim

m→∞

∫ m+m−m

0

Sm(r)

r1+2s
dr, (3.2)

where
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1806 C.K. Li

Sm(r) =

∫
Ω
Im(r)[u(x+ rσ)− 2u(x) + u(x− rσ)]dσ

= Im(r)

∫
Ω
[u(x+ rσ)− 2u(x) + u(x− rσ)]dσ = Im(r)S(r),

and dσ is the hypersurface area element on the unit sphere Ω given by

dσ = sinn−2 θ1 sin
n−3 θ2 · · · sin θn−2dθ1dθ2 · · · dθn−1.

Clearly, Sm(r) is an infinitely differentiable function of r with compact
support [0,m +m−m] and

Sm(0) = 0.

Furthermore for i = 1, 2, . . . ,

d2i

dr2i
Sm(r)

∣∣∣∣
r=0

= Im(0)
d2i

dr2i
S(r)

∣∣∣∣
r=0

=
d2i

dr2i
S(r)

∣∣∣∣
r=0

,

since
dj

drj
Im(r)

∣∣∣∣
r=0

= 0,

for all j = 1, 2, . . . , by the construction of Im(r). Obviously, the integral

S(r) =

∫
Ω
[u(x+ rσ)− 2u(x) + u(x− rσ)]dσ

is an even function with respect to r. Therefore,

d2i+1

dr2i+1
Sm(r)

∣∣∣∣
r=0

= 0,

for i = 0, 1, . . . .
From equation (2.4), we get for i = 1, 2, . . . ,

d2i

dr2i
S(r)

∣∣∣∣
r=0

=
Ωn(2i)!�i[u(x+ rσ)− 2u(x) + u(x− rσ)]

∣∣
r=0

2i i!n(n+ 2) · · · (n+ 2i− 2)

=
2Ωn(2i)!�iu(x)

2i i!n(n+ 2) · · · (n + 2i− 2)
,

since we can still consider the function

u(x+ rσ)− 2u(x) + u(x− rσ),

has compact support |r| ≤ m+m−m due to the factor Im(r). In particular,

d2

dr2
Sm(r)

∣∣∣∣
r=0

=
2Ωn�u(x)

n
and

d4

dr4
Sm(r)

∣∣∣∣
r=0

=
3!Ωn�2u(x)

n(n+ 2)
.

Auth
or'

s c
op

y



ON THE GENERALIZED FRACTIONAL LAPLACIAN 1807

Applying equation (2.1) for k−1
2 < s < k

2 (k ∈ Z+), equation (3.2) becomes

(−�)su(x) = −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

×
[
Sm(r)− rS′

m(0) − · · · − rk−1

(k − 1)!
S(k−1)
m (0)

]
dr

= −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

×
[
Sm(r)− r2

2!
S′′
m(0)− · · · − rk−1

(k − 1)!
S(k−1)
m (0)

]
dr,

using that S′
m(0) = 0.

Then for k = 2i+ 1 and i = 0, 1, . . . ,

(−�)su(x) = −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

×
[
Sm(r)− r2

2!
S′′
m(0) − · · · − r2i

(2i)!
S(2i)
m (0)

]
dr, (3.3)

as well as

(−�)su(x) = −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

×
[
Sm(r)− r2

2!
S′′
m(0) − · · · − r2i−2

(2i− 2)!
S(2i−2)
m (0)

]
dr, (3.4)

for k = 2i and i = 1, 2, . . . .
We are going to introduce a new function space Ck(R

n), on which we
can define the fractional Laplacian (−�)s. Let k = (k1, k2, · · · , kn) be an
n-tuple of nonnegative integers, and

Ck(R
n) =

{
u(x) is bounded and ∂2ku(x) ∈ C(Rn) :

∃Mk(const) > 0, such that
∣∣∣∂2ku(x)∣∣∣ ≤ Mk

|x|2 as |x| → ∞
}
.

Clearly,

D(Rn) ⊂ S(Rn) ⊂ Ck(R
n) ⊂ C(Rn),

for any tuple k ∈ Nn
0 , and ∂

2ku(x) is a bounded function on Rn. We also
must add that equation (3.1) turns out to be equation (1.3) for any function
u(x) ∈ Ck(R

n) and the proof is identical to the previous case for the space
S(Rn).

Assume that
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1808 C.K. Li

φ(x) =
1

|x|2 + 1
, x ∈ Rn.

Then φ(x) ∈ Ck(R
n) for all k ∈ Nn

0 , but φ(x) �∈ S(Rn). Note that the
condition ∣∣∣∂2ku(x)∣∣∣ ≤ Mk

|x|2 as |x| → ∞,

is equivalent to

sup
x∈Rn

|x|2
∣∣∣∂2ku(x)∣∣∣ <∞,

for every tuple k ∈ Nn
0 .

We are ready to present the following main theorem.

Theorem 3.1. Let i = 0, 1, . . . and i < s < i+1. Then the generalized
fractional Laplacian (−�)s is defined over the space Ck(R

n) as:

(−�)su(x) = −1

2
Cn,s

∫ ∞

0
r−1−2s

×
[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n+ 2i− 2)

]
dr,

where k = (k1, k2, . . . , kn) and k1 + · · · + kn = i + 1. Note that for i = 0,
we define

r2Ωn�u(x)
n

+ · · · + 2r2iΩn�iu(x)

2i i!n(n + 2) · · · (n+ 2i− 2)
= 0.

P r o o f. Let i < s < i + 1 for i = 0, 1, · · · . Using Taylor’s expansion,
we derive for u(x) ∈ Ck(R

n) that

u(x+ rσ)− 2u(x) + u(x− rσ)

=
∑
|α|=2

2∂αu(x)

α!
(rσ)α + · · ·+

∑
|α|=2i

2∂αu(x)

α!
(rσ)α

+
∑

|α|=2i+2

∂α[u(x+ θrσ) + u(x− θrσ)]

α!
(rσ)α

= r2
∑
|α|=2

2∂αu(x)

α!
σα + · · ·+ r2i

∑
|α|=2i

2∂αu(x)

α!
σα

+r2i+2
∑

|α|=2i+2

∂α[u(x+ θrσ) + u(x− θrσ)]

α!
σα,

where θ ∈ (0, 1) and rσ ∈ Rn. It follows from Pizzetti’s formula that
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1809

S(r) =

∫
Ω
[u(x+ rσ)− 2u(x) + u(x− rσ)]dσ

= r2
∑
|α|=2

2∂αu(x)

α!

∫
Ω
σαdσ + · · ·+ r2i

∑
|α|=2i

2∂αu(x)

α!

∫
Ω
σαdσ

+ r2i+2
∑

|α|=2i+2

1

α!

∫
Ω
∂α[u(x+ θrσ) + u(x− θrσ)]σαdσ

=
r2Ωn�u(x)

n
+ · · ·+ 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n+ 2i− 2)

+ r2i+2
∑

|α|=2i+2

1

α!

∫
Ω
∂α[u(x+ θrσ) + u(x− θrσ)]σαdσ.

Since k1 + · · · + kn = i + 1 and u(x) ∈ Ck(R
n), there exists a constant

Mk > 0 such that for a fixed x ∈ Rn

|∂αu(x+ θrσ)| ≤ Mk

|x+ θrσ|2 ∼ Mk

r2
, and

|∂αu(x− θrσ)| ≤ Mk

|x− θrσ|2 ∼ Mk

r2
,

as r → ∞. Thus,∣∣∣∣r−1−2s

[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n+ 2i− 2)

]∣∣∣∣
≤ 2Mkr

−1−2s+2i
∑

|α|=2i+2

1

α!

∫
Ω
|σα|dσ, when r → ∞,

which is integrable with respect to r at infinity, as −1− 2s+ 2i < −1. On
the other hand,

r−1−2s

[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n+ 2i− 2)

]

= r−1−2s+2i+2
∑

|α|=2i+2

1

α!

∫
Ω
∂α[u(x+ θrσ) + u(x− θrσ)]σαdσ

∼ r−1−2s+2i+2
∑

|α|=2i+2

2∂αu(x)

α!

∫
Ω
σαdσ, as r → 0+.

Hence,

r−1−2s

[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n + 2i− 2)

]
,
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1810 C.K. Li

is integrable near the origin as −1 − 2s + 2i + 2 > −1. In summary, the
integral

∫ ∞

0
r−1−2s

[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n + 2) · · · (n+ 2i− 2)

]
dr,

exists and converges for i < s < i+ 1. Clearly,

lim
m→∞

∫ ∞

m+m−m

r−1−2s

×
[
Sm(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n+ 2i− 2)

]
dr = 0,

since −1− 2s+ 2i < −1 and Sm(r) = 0 for r ≥ m+m−m.

Then it follows from equation (3.3) that the generalized fractional Lapla-
cian can be normalized for i < s < i+ 0.5 and i = 0, 1, . . . as:

(−�)su(x) = −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

×
[
Sm(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n + 2) · · · (n+ 2i− 2)

]
dr

= −1

2
Cn,s lim

m→∞

∫ ∞

0
r−1−2s

×
[
Sm(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n + 2) · · · (n+ 2i− 2)

]
dr

= −1

2
Cn,s

∫ ∞

0
r−1−2s

×
[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n + 2i− 2)

]
dr,

since

lim
m→∞

∫ ∞

0
r−1−2s[Sm(y)−S(y)]dy = lim

m→∞

∫ ∞

m
r−1−2s[Sm(y)−S(y)]dy = 0,

by noting that Sm(y) and S(y) are bounded functions.

Additionally, if i+0.5 < s < i+1 for i = 0, 1, . . . , then the generalized
fractional Laplacian is normalized by equation (3.4) as
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1811

(−�)su(x) = −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

×
[
Sm(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n + 2i− 2)

]
dr

= −1

2
Cn,s

∫ ∞

0
r−1−2s

×
[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n · · · (n+ 2i− 2)

]
dr. (3.5)

If s = i+ 0.5 for i = 0, 1, . . . , then −1− 2s = −2i− 2. Equation (3.5) still
holds by applying equation (2.2) to equation (3.2) and the fact that Sm(r)
is an even function with respect to r. �

Remark 3.1. As previously mentioned in Remark 2.1, Pizzetti’s for-
mula is not a convergent series for φ ∈ D(Rn). However, we can derive
a new Taylor’s expansion for Sφ(r) with an explicit integral remainder.
Clearly,

φ(rσ) = φ(0) +
∑
|α|=1

∂αφ(0)

α!
(rσ)α + · · ·+

∑
|α|=2i

∂αφ(0)

α!
(rσ)α

+
∑

|α|=2i+1

∂αφ(0)

α!
(rσ)α +

∑
|α|=2i+2

∂αφ(θrσ)

α!
(rσ)α ,

where θ ∈ (0, 1), and

r2i+1
∑

|α|=2i+1

∂αφ(0)

α!

∫
Ω
σαdσ = 0,

for i = 0, 1, . . . , due to the fact that each odd number of factors of the σj,
where σ = (σ1, . . . , σj , . . . , σn), in the integrand fails to contribute to the
integral. Hence,

Sφ(r) = φ(0) + r2
∑
|α|=2

∂αφ(0)

α!

1

Ωn

∫
Ω
σαdσ + · · ·

+ r2i
∑
|α|=2i

∂αφ(0)

α!

1

Ωn

∫
Ω
σαdσ

+ r2i+2
∑

|α|=2i+2

1

α!

1

Ωn

∫
Ω
∂αφ(θrσ)σαdσ.

Let α = 2j. Then,
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1812 C.K. Li

Sφ(r) = φ(0) + r2
∑
|j|=1

∂2jφ(0)

(2j)!

1

Ωn

∫
Ω
σ2jdσ + · · ·

+ r2i
∑
|j|=i

∂2jφ(0)

(2j)!

1

Ωn

∫
Ω
σ2jdσ

+ r2i+2
∑

|j|=i+1

1

(2j)!

1

Ωn

∫
Ω
∂2jφ(θrσ)σ2jdσ.

Using the formulas from [25],

∫
Ω
σ2jdσ =

2Γ

(
1

2
+ j1

)
· · ·Γ

(
1

2
+ jn

)

Γ
(
|j|+ n

2

) ,

Γ

(
1

2
+ j1

)
=

(2j1)!
√
π

4j1j1!
,

�i =

(
∂2

∂x21
+ · · ·+ ∂2

∂x2n

)i

=
∑
|j|=i

i!

j1! · · · jn!
(
∂2

∂x21

)j1

· · ·
(
∂2

∂x2n

)jn

,

we derive that

r2i
∑
|j|=i

∂2jφ(0)

(2j)!

1

Ωn

∫
Ω
σ2jdσ

= r2i
∑
|j|=i

∂2jφ(0)

(2j1)! · · · (2jn)!
1

Ωn

2Γ

(
1

2
+ j1

)
· · ·Γ

(
1

2
+ jn

)

Γ
(
i+

n

2

)

=
2πn/2

22i i! ΩnΓ
(
i+

n

2

)�iφ(0)r2i =
Γ(n/2)

22i i! Γ
(
i+

n

2

)�iφ(0)r2i

=
�iφ(0)r2i

2i i!n(n + 2) · · · (n+ 2i− 2)
.

Therefore,

Sφ(r) =

i∑
k=0

�kφ(0)r2k

2k k!n(n+ 2) · · · (n+ 2k − 2)

+ r2i+2
∑

|j|=i+1

1

(2j)!

1

Ωn

∫
Ω
∂2jφ(θrσ)σ2jdσ,
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1813

for i = 0, 1, . . . . Note that for k = 0, we define

�kφ(0)r2k

2k k!n(n + 2) · · · (n+ 2k − 2)
= φ(0).

In addition, we have the following theorem regarding the limits at the
end points for the fractional Laplacian (−�)su(x) over the space Ck(R

n).

Theorem 3.2. Let u(x) ∈ Ck(R
n) with n > 1 and i < s < i + 1 for

i = 0, 1, . . . . Then for any x ∈ Rn (pointwise limit),

lim
s→(i+1)−

(−�)su(x) = (−1)i+1�i+1u(x), and

lim
s→i+

(−�)su(x) = (−1)i�iu(x),

where k = (k1, k2, . . . , kn) ∈ Nn
0 and k1 + k2 + · · ·+ kn = i+ 1.

P r o o f. It follows from Theorem 3.1 that

(−�)su(x) = −1

2
Cn,s

∫ ∞

0
r−1−2s

×
[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n + 2) · · · (n+ 2i− 2)

]
dr.

Using equation (2.5), we have

lim
s→(i+1)−

r−1−2s

Γ(−2s)
=

r−1−2(i+1)

Γ(−2i− 2)
= δ(2i+2)(r).

This implies that

lim
s→(i+1)−

(−�)su(x) = −1

2
π−n/2 lim

s→(i+1)−
22s

Γ(−2s)

Γ(1− s)
Γ

(
n+ 2s

2

)

× s

∫ ∞

0
δ(2i+2)(r)

×
[
S(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n+ 2i− 2)

]
dr.

Since

∂2i+2

∂r2i+2

[
r2Ωn�u(x)

n
+ · · ·+ 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n + 2i− 2)

]
= 0,

we arrive at
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1814 C.K. Li

lim
s→(i+1)−

(−�)su(x) = −1

2
π−n/222i+2 Γ

(
n+ 2 + 2i

2

)

× (i+ 1)S(2i+2)(0) lim
s→(i+1)−

Γ(−2s)

Γ(1− s)
.

Applying the formula for z /∈ Z,
Γ(1− z)Γ(z) =

π

sin(πz)
,

we deduce

lim
s→(i+1)−

Γ(−2s)

Γ(1− s)
= − lim

s→(i+1)−

Γ(s) sin(πs)

Γ(1 + 2s) sin(2πs)

= − Γ(i+ 1)

Γ(3 + 2i)
lim

s→(i+1)−

π cos(πs)

2π cos(2πs)

= − Γ(i+ 1)

Γ(3 + 2i)

(−1)i+1

2
= − i!

(2i+ 2)!

(−1)i+1

2
.

Therefore,

lim
s→(i+1)−

(−�)su(x) =
1

2
π−n/222i+2 Γ

(
n+ 2 + 2i

2

)
(i+ 1)

× i!

(2i+ 2)!

(−1)i+1

2

2Ωn(2i + 2)!�i+1u(x)

2i+1 (i+ 1)!n(n + 2) · · · (n+ 2i)
.

Noting that

Ωn =
2πn/2

Γ(n/2)
,

Γ

(
n+ 2

2
+ i

)
=

(
n+ 2

2
+ i− 1

)(n
2
+ i− 2

)
· · · n

2
Γ(n/2)

=
1

2i+1
(n+ 2i) · · · nΓ(n/2).

Thus, we finally get

lim
s→(i+1)−

(−�)su(x) = (−1)i+1�i+1u(x).

It remains to show that

lim
s→i+

(−�)su(x) = (−1)i�iu(x).
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1815

Indeed, this formula follows immediately from equation (2.9) and the fol-
lowing identities for s > i:

r−1−2s

Γ(−2s)
= δ(2s)(r),

∂2s

∂r2s

[
r2Ωn�u(x)

n
+ · · ·+ 2r2iΩn�iu(x)

2i i!n(n+ 2) · · · (n+ 2i− 2)

]
= 0,

1

2
π−n/222i Γ

(
n+ 2i

2

)
i
(i − 1)!

(2i)!

(−1)i

2

2Ωn(2i)!�iu(x)

2i i!n(n + 2) · · · (n+ 2i− 2)

= (−1)i�iu(x),

where δ(2s)(r) is the fractional (2s)-order derivative of δ(r). �

Remark 3.2. Di Nezza et al. [17] showed that the following statements
for u ∈ D(Rn)

lim
s→0+

(−�)su(x) = u(x),

lim
s→1−

(−�)su(x) = −�u(x).
Obviously they are a special case of Theorem 3.2, since D(Rn) ⊂ Ck(R

n)
for all k ∈ Nn

0 .

Moreover, the following theorem can be derived from equations (3.3),
(3.4), (3.2) and (2.2).

Theorem 3.3. Let i = 0, 1, · · · and i < s < i+1. Then the generalized
fractional Laplacian (−�)s is normalized over the space C∞(Rn) as

(−�)su(x) = −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

×
[
Sm(r)− r2Ωn�u(x)

n
− · · · − 2r2iΩn�iu(x)

2i i!n(n + 2) · · · (n+ 2i− 2)

]
dr,

if the limit exists.

4. An illustrative example

In this section, we are going to present computation for the fractional
Laplacian of a function that does not reside in the Schwartz space based
on the results obtained in the previous section.

Theorem 4.1. Let s > 1 and n > 1. Then (−�)s(r2x1) = 0 on Rn.
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1816 C.K. Li

P r o o f. Clearly, we have by equation (2.10)

�2(r2x1) =
∑

m+i+l=2

2i
(
m+ l

m

)(
2

m+ l

)
∇i�mr2 · ∇i�lx1

=

1∑
m=0

22−m

(
2

m

)
∇2−m�mr2 · ∇2−mx1

= 2

(
2

1

)
∇(2n) · ∇x1 = 0,

by noting that �r2 = 2n and �2r2 = 0. Therefore, (−�)s(r2x1) = 0 for
s = 2, 3, . . . . Similarly,

�(r2x1) = 2nx1 + 4x1.

Let 1 < s < 2. By Theorem 3.3 (note that r2x1 is not a bounded function),
we get

(−�)s(r2x1) = −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

[
Sm(r)− r2Ωn�(r2x1)

n

]
dr

= −1

2
Cn,s lim

m→∞

∫ m+m−m

0
r−1−2s

[
Sm(r)− 2x1r

2Ωn − 4x1r
2Ωn

n

]
dr

= −1

2
Cn,s lim

m→∞

∫ m

0
r−1−2s

[
Sm(r)− 2x1r

2Ωn − 4x1r
2Ωn

n

]
dr

−1

2
Cn,s lim

m→∞

∫ m+m−m

m
r−1−2s

[
Sm(r)− 2x1r

2Ωn − 4x1r
2Ωn

n

]
dr=T1 + T2.

As for T1, we note that Im(r) = 1 and

Sm(r) = S(r) =

∫
Ω
[u(x+ rσ)− 2u(x) + u(x− rσ)]dσ.

Applying the spherical coordinates in the previous section, we get

u(x+ rσ)− 2u(x) + u(x− rσ)

=
[
(x1 + r cos θ1)

2 + (x2 + r sin θ1 cos θ2)
2 + · · · + (xn + r sin θ1 · · · sin θn−1)

2
]

(x1 + r cos θ1)− 2(x21 + · · ·+ x2n)x1

+
[
(x1 − r cos θ1)

2 + (x2 − r sin θ1 cos θ2)
2 + · · · + (xn − r sin θ1 · · · sin θn−1)

2
]

(x1 − r cos θ1)

= 2x1r
2 + 4x1r

2 cos2 θ1 + 4x2r
2 cos θ1 sin θ1 cos θ2 + · · ·

+ 4xnr
2 cos θ1 sin θ1 · · · sin θn−1

= 2x1r
2 + 4x1r

2y21 + 4x2r
2y1y2 + · · ·+ 4xnr

2y1yn.

Thus,
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1817

S(r) = 2x1r
2Ωn + 4x1r

2

∫
Ω
y21dσ + 4r2

n∑
j=2

xj

∫
Ω
y1yjdσ.

Note that∫
Ω
y1yjdσ = 0, and

∫
Ω
y21dσ = Volume of the unit ball on Rn =

πn/2

Γ(1 + n/2)
=

Ωn

n
.

The first comes from the integral cancellation over the unit sphere due to
single factor of the y1 or yj. The second follows from the special case of
Green’s theorem [26]

2

∫
Ω
y21dσ =

∫
Ω

∂y21
∂n

dσ =

∫
unit ball

�2y21dy = 2
πn/2

Γ(1 + n/2)
.

So,

S(r) = 2x1r
2Ωn +

4x1r
2Ωn

n
.

This infers that

T1 = 0.

Regarding T2, we deduce that

T2 = −1

2
Cn,s lim

m→∞

∫ m+m−m

m
r−1−2s

× t

[
2x1r

2ΩnIm(r) +
4x1r

2Ωn

n
Im(r)− 2x1r

2Ωn − 4x1r
2Ωn

n

]
dr

= Cn,sx1Ωn

(
1 +

2

n

)
lim

m→∞

∫ m+m−m

m
r1−2s [1− Im(r)] dr = 0.

�

Remark 4.1. Clearly,

lim
s→1+

(−�)s(r2x1) = 0 �= (−�)(r2x1) = −2nx1 − 4x1,

and r2x1 /∈ Ck(R
n), where k = (k1, k2, · · · , kn) ∈ Nn

0 and k1+k2+· · ·+kn =
2. Hence, (−�)s(r2x1) = 0 can not be continuously extended to the values
of s ≤ 1.
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1818 C.K. Li

5. The generalized fractional Laplacian on C∞(R)

In this section, we define the generalized fractional Laplacian (−�)s

over the space Ck(R) for s > 0 and s �= 1, 2, · · · by the normalization of
the distribution |x|λ, and present one example showing that

(−�)s arctan x = sgn(x)
Γ(2s) sin

(
πs− 2s arctan 1

|x|
)

(x2 + 1)s
,

for 0 < s < 1. Note that the function arctan x is not in the Schwartz space
either.

Clearly, we have for n = 1 that

Im(|x|) =
⎧⎨
⎩

1 if |x| ≤ m,

τ

(
m2m

1 + 2m1+m
x2 − m2m+2

1 + 2m1+m

)
if |x| > m,

and Im(|x|) is even and infinitely differentiable with respect to x ∈ R with
compact support [−m−m−m, m+mm].

The distribution |x|λ is given as [11]

(|x|λ, φ) =
∫ ∞

0
xλ

×
{
φ(x) + φ(−x)− 2

[
φ(0) + · · ·+ x2k−2

(2k − 2)!
φ(2k−2)(0)

]}
dx, (5.1)

where φ ∈ D(R) and −2k − 1 < λ < −2k + 1 for k = 1, 2, · · · . Obviously,
equation (2.2) is a special case of equation (5.1) for λ = −2k.

Let s > 0, s �= 1, 2, · · · , and C∞(R) be the space of infinitely differen-
tiable functions on R, which contains S(R) as a proper subspace. Based on
equation (1.3), we define the generalized fractional Laplacian (−�)su(x)
over the space C∞(R) as:

(−�)su(x)

= −1

2
C1,s lim

m→∞

∫ m+m−m

−m−m−m

[u(x+ y)− 2u(x) + u(x− y)]Im(|y|)
|y|1+2s

dy

= −C1,s lim
m→∞

∫ m+m−m

0

[u(x+ y)− 2u(x) + u(x− y)]Im(y)

y1+2s
dy,(5.2)

if the limit exists.
For any fixed x ∈ R, the function

Sm(y) = [u(x+ y)− 2u(x) + u(x− y)]Im(y) = S(y)Im(|y|),
is even and infinitely differentiable with respect to y since u ∈ C∞(R), and
has compact support.
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1819

In particular, equation (5.2) becomes equation (1.3) for any function
u(x) ∈ S(R) as the integral∫ m+m−m

0

[u(x+ y)− 2u(x) + u(x− y)]Im(y)

y1+2s
dy,

uniformly converges with respect to m and

lim
m→∞ Im(y) = 1.

In fact, for any smooth function u, a second order of Taylor’s expansion
derives

|[u(x+ y)− 2u(x) + u(x− y)]Im(y)|
y1+2s

≤
∥∥u(2)∥∥

L∞

y2s−1
, 0 < s < 1,

which is integrable near zero, by noting that 0 ≤ Im(y) ≤ 1. From u ∈
S(R), we deduce that

|y2u(2)(y)| ≤ C (const), as |y| → ∞.

This ensures
|[u(x+ y)− 2u(x) + u(x− y)]Im(y)|

y1+2s
,

is integrable at infinity.
Clearly,

di

dyi
Sm(y)

∣∣∣∣
y=0

=

{
0 if i = 0, 1, 3, . . . ,

2u(2j)(x), if i = 2j and j = 1, 2, . . . ,

by noting that Im(0) = 1 and I
(j)
m (0) = 0.

Evidently for n = 1, Ck(R
n) turns out to be

Ck(R) =
{
u(x) is bounded and u(2k)(x) ∈ C(R) :

∃Mk(const) > 0, such that
∣∣∣u(2k)(x)∣∣∣ ≤ Mk

x2
as |x| → ∞

}
,

and

D(R) ⊂ S(R) ⊂ Ck(R) ⊂ C(R),

for all k = 0, 1 · · · . We claim that u(2k)(x) is bounded for every k as

lim
|x|→∞

|u(2k)(x)| = 0.

Further, equation (5.2) becomes equation (1.3) for any function u(x) ∈
Ck(R) and the proof is identical to the above.

Applying equation (5.1), we have the following theorem.
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1820 C.K. Li

Theorem 5.1. Let k−1 < s < k and k = 1, 2, · · · . Then the fractional
Laplacian (−�)s is defined over Ck(R) as:

(−�)su(x) = −C1,s

∫ ∞

0
y−1−2s

×
[
S(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy. (5.3)

Note that if k = 1, we define

u(2)(x)y2 + · · · + 2y2k−2

(2k − 2)!
u(2k−2)(x) = 0.

P r o o f. Let u(x) ∈ Ck(R). It follows from Taylor’s expansion that

S(y) = u(x+ y)− 2u(x) + u(x− y) = u(2)(x)y2 + · · ·

+
2y2k−2

(2k − 2)!
u(2k−2)(x) +

y2k

(2k)!
(u(2k)(x+ θy) + u(2k)(x− θy)),

where θ ∈ (0, 1). Clearly, there exists a constant Mk > 0 such that for a
fixed x ∈ R ∣∣∣u(2k)(x+ θy)

∣∣∣ ≤ Mk

(x+ θy)2
∼Mky

−2, and

∣∣∣u(2k)(x− θy)
∣∣∣ ≤ Mk

(x− θy)2
∼Mky

−2,

when |y| → ∞. Therefore, the integral∫ ∞

0
y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy,

is well defined and converges by noting that

y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]

∼ 2y−1−2s+2k

(2k)!
u(2k)(x) as y → 0+,

and −1− 2s+ 2k > −1, as well as

y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]

∼ 2Mk

(2k)!
y−1−2s+2k−2 as y → ∞,

and −1− 2s+ 2k − 2 < −1.
Furthermore,
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1821

lim
m→∞

∫ ∞

m+m−m

y−1−2s

[
Sm(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy

= lim
m→∞

∫ ∞

m+m−m

y−1−2s

[
−u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy = 0.

From equations (5.1) and (5.2), we further derive that

(−�)su(x) = −C1,s lim
m→∞

∫ m+m−m

0
y−1−2s

×
[
Sm(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy

= −C1,s lim
m→∞

∫ ∞

0
y−1−2s

[
Sm(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy

= −C1,s lim
m→∞

∫ ∞

0
y−1−2s

[
S(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy,

as

lim
m→∞

∫ ∞

0
y−1−2s [Sm(y)− S(y)] dy

= lim
m→∞

∫ ∞

m
y−1−2s [Sm(y)− S(y)] dy = 0,

by noting that Sm(y) and S(y) are bounded functions due to the fact u(x) ∈
Ck(R). �

Similarly, we have the following theorem regarding the limits at the end
points for the fractional Laplacian (−�)su(x) over the space Ck(R).

Theorem 5.2. Let k− 1 < s < k and k = 1, 2, · · · . Then in pointwise
convergence,

lim
s→k−

(−�)su(x) = (−1)ku(2k)(x), and

lim
s→(k−1)+

(−�)su(x) = (−1)k−1u(2k−2)(x),

for u(x) ∈ Ck(R).

P r o o f. It follows from Theorem 5.1 that

(−�)su(x) = −C1,s

∫ ∞

0
y−1−2s

×
[
S(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy,
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1822 C.K. Li

for k − 1 < s < k and k = 1, 2, . . . . Thus, we deduce that

lim
s→k−

(−�)su(x) = − lim
s→k−

C1,sΓ(−2s)

∫ ∞

0
δ(2k)(y)

×
[
S(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy

= − lim
s→k−

C1,sΓ(−2s)S(2k)(0) = −2 lim
s→k−

C1,sΓ(−2s)u(2k)(x)

= −π−1/222k+1 k u(2k)(x)Γ

(
k +

1

2

)
lim

s→k−

Γ(−2s)

Γ(1− s)

= π−1/222k+1 k u(2k)(x)Γ

(
k +

1

2

)
(k − 1)!

(2k)!

(−1)k

2
,

by applying∫ ∞

0
δ(2k)(y)

[
S(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy = S(2k)(0).

Using the formula

Γ

(
k +

1

2

)
=

(2k)!

22kk!

√
π,

we finally reach

lim
s→k−

(−�)su(x) = (−1)ku(2k)(x).

It remains to prove that

lim
s→(k−1)+

(−�)su(x) = (−1)k−1u(2k−2)(x).

This immediately follows from the following identities for s > k − 1:

y−1−2s
+

Γ(−2s)
= δ(2s)(y),

∂2s

∂y2s

[
u(2)(x)y2 + · · ·+ 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy = 0,

Γ

(
k − 1

2

)
=

(2k − 2)!

22k−2(k − 1)!

√
π,

π−1/222k−1 (k − 1)u(2k−2)(x)Γ

(
k − 1

2

)
(k − 2)!

(2k − 2)!

(−1)k−1

2

= (−1)k−1u(2k−2)(x).

�

Similarly, the following theorem can be obtained from equations (5.1)
and (5.2).
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1823

Theorem 5.3. Let k−1 < s < k and k = 1, 2, · · · . Then the fractional
Laplacian (−�)s is defined over the space C∞(R) as:

(−�)su(x) = −C1,s lim
m→∞

∫ m+m−m

0
y−1−2s

×
[
Sm(y)− u(2)(x)y2 − · · · − 2y2k−2

(2k − 2)!
u(2k−2)(x)

]
dy,

if the limit exists.

Evidently, Theorem 5.3 turns out to be Theorem 5.1 if u(x) ∈ Ck(R).

To end off this section, we present the following example using Theorem
5.1 and Cauchy’s residue theorem.

Example 5.1. Let 0 < s < 1. Then,

(−�)s arctan x = sgn(x)
Γ(2s) sin

(
πs− 2s arctan 1

|x|
)

(x2 + 1)s
,

where sgn (x) is the sign function. In particular,

(−�)
1
2 arctan x =

x

x2 + 1
.

P r o o f. Clearly, u(x) = arctan x ∈ C1(R) (but not in S(R)) since it
is bounded and

∣∣∣(arctan x)(2)∣∣∣ = ∣∣∣∣ −2x

(1 + x2)2

∣∣∣∣ = 2|x|
(1 + x2)(1 + x2)

≤ 1

1 + x2
≤ 1

x2
,

for x �= 0. By Theorem 5.1 for 0 < s < 1 and integration by parts,

(−�)s arctan x

= −C1,s

∫ ∞

0

arctan(x+ y)− 2 arctan x+ arctan(x− y)

y1+2s
dy

=
C1,s

2s

arctan(x+ y)− 2 arctan x+ arctan(x− y)

y2s

∣∣∣∣
∞

y=0

−C1,s

2s

∫ ∞

0
y−2s

[
1

1 + (x+ y)2
− 1

1 + (x− y)2

]
dy

=
2xC1,s

s

∫ ∞

0

y1−2s

(1 + (x+ y)2)(1 + (x− y)2)
dy,
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1824 C.K. Li

by applying

lim
y→∞

arctan(x+ y)− 2 arctan x+ arctan(x− y)

y2s
= 0, and

lim
y→0+

arctan(x+ y)− 2 arctan x+ arctan(x− y)

y2s
= 0.

In particular,
(−�)s arctan x|x=0 = 0,

since the integral ∫ ∞

0

y1−2s

(1 + y2)2
dy,

is well defined and converges for 0 < s < 1.

Assuming x �= 0, we are going to use the following contour

Figure 1.

and Cauchy’s residue theorem to evaluate the integral∫ ∞

0

y1−2s

(1 + (x+ y)2)(1 + (x− y)2)
dy.

Clearly,∫ R

r

y1−2s

(1 + (x+y)2)(1 + (x−y)2)dy +
∫
CR

z1−2s

(1 + (x+z)2)(1 + (x−z)2)dz

+

∫ −r

−R

y1−2s

(1 + (x+ y)2)(1 + (x− y)2)
dy

+

∫
Cr

z1−2s

(1 + (x+ z)2)(1 + (x− z)2)
dz

= 2πiRes

{
z1−2s

(1 + (x+ z)2)(1 + (x− z)2)
, x+ i

}

+ 2πiRes

{
z1−2s

(1 + (x+ z)2)(1 + (x− z)2)
, −x+ i

}
,

where 0 < r < 1/2 and R is positively large in Figure 1.
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ON THE GENERALIZED FRACTIONAL LAPLACIAN 1825

Direct computations imply that

Res

{
z1−2s

(1 + (x+ z)2)(1 + (x− z)2)
, x+ i

}
=
π(x+ i)1−2s

1 + (2x+ i)2
,

Res

{
z1−2s

(1 + (x+ z)2)(1 + (x− z)2)
, −x+ i

}
=
π(−x+ i)1−2s

1 + (2x− i)2
,

lim
R→∞

∫
CR

z1−2s

(1 + (x+ z)2)(1 + (x− z)2)
dz = 0, and

lim
r→0+

∫
Cr

z1−2s

(1 + (x+ z)2)(1 + (x− z)2)
dz = 0,

as −1 < 1− 2s < 1. Making the variable change,∫ −r

−R

y1−2s

(1 + (x+ y)2)(1 + (x− y)2)
dy

=

∫ R

r

(−1)1−2sy1−2s

(1 + (x+ y)2)(1 + (x− y)2)
dy

= eiπ(1−2s)

∫ R

r

y1−2s

(1 + (x+ y)2)(1 + (x− y)2)
dy,

as
1

(1 + (x+ y)2)(1 + (x− y)2)

is even with respect to y. Hence,∫ ∞

0

y1−2s

(1 + (x+ y)2)(1 + (x− y)2)
dy

=
π

1 + eiπ(1−2s)

[
(x+ i)1−2s

1 + (2x+ i)2
+

(−x+ i)1−2s

1 + (2x− i)2

]

=
4xπ

1 + eiπ(1−2s)

(x− i)(x+ i)1−2s + (x+ i)(−x+ i)1−2s

16x4 + 16x2
.

Assuming x > 0, we have

x+ i =
√
x2 + 1ei arctan

1
x ,

x− i =
√
x2 + 1e−i arctan 1

x ,

−x+ i =
√
x2 + 1e−i arctan 1

x
+iπ.

Thus we come to

(x− i)(x+ i)1−2s = (x2 + 1)1−se−i2s arctan 1
x ,

(x+ i)(−x+ i)1−2s = (x2 + 1)1−sei2s arctan
1
x
+iπ(1−2s).

Therefore,
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(−�)s arctan x =
C1,sπ

2s(1 + eiπ(1−2s))

e−i2s arctan 1
x + ei2s arctan

1
x
+iπ(1−2s)

(x2 + 1)s

=
C1,sπe

− iπ(1−2s)
2

2s(1 + eiπ(1−2s))e−
iπ(1−2s)

2

e−i2s arctan 1
x + ei2s arctan

1
x
+iπ(1−2s)

(x2 + 1)s
.

Obviously,

(1 + eiπ(1−2s))e−
iπ(1−2s)

2 = 2cos
(π
2
− sπ

)
= 2 sin πs,

e−
iπ(1−2s)

2 (e−i2s arctan 1
x + ei2s arctan

1
x
+iπ(1−2s))

= 2 cos

(
2s arctan

1

x
+
π(1− 2s)

2

)
.

In summary,

(−�)s arctan x =
C1,sπ cos

(
2s arctan 1

x + π(1−2s)
2

)
2s sin πs(x2 + 1)s

=
π1/222s−1Γ

(
1
2 + s

)
cos

(
2s arctan 1

x + π(1−2s)
2

)
Γ(1− s) sin πs (x2 + 1)s

=
Γ(2s) cos

(
2s arctan 1

x + π(1−2s)
2

)
(x2 + 1)s

= −Γ(2s) sin
(
2s arctan 1

x − πs
)

(x2 + 1)s
=

Γ(2s) sin
(
πs− 2s arctan 1

x

)
(x2 + 1)s

,

by the formulas

Γ(1− s)Γ(s) =
π

sinπs
, and

Γ(s)Γ(s+
1

2
) = 21−2s√πΓ(2s).

Similarly for x < 0,

(−�)s arctan x = −Γ(2s) sin
(
πs+ 2s arctan 1

x

)
(x2 + 1)s

.

In particular,

(−�)
1
2 arctan x =

x

x2 + 1
, and (5.4)

lim
s→1−

(−�)s arctan x = (−�)1 arctan x =
2x

(x2 + 1)2
,

for all x ∈ R. �
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Remark 5.1. Li et al. [28] recently studied the half-order Laplacian

operator (−�)
1
2 on the dual space of the Schwartz test functions based

on the generalized convolution and Temple’s delta sequence. They showed
that

(−�)
1
2 arctan x =

x

1 + x2
. (5.5)

Clearly, equation (5.4) coincides with equation (5.5). Furthermore, the
function with respect to s

sgn(x)
Γ(2s) sin

(
πs− 2s arctan 1

|x|
)

(x2 + 1)s
,

is well defined beyond the open interval (0, 1). This inspires us to investigate
the fractional Laplacian (−�)s arctan x for other values such as −1/2 < s <
0 by possible analytic continuation.

Let k = 1, 2, . . . . We define the normed space Wk(R) as

Wk(R) =
{
u(x) : u(2k)(x) is continuous on R and ‖u‖k <∞}

,

where

‖u‖k = max

{
sup
x∈R

|xu(x)|, sup
x∈R

|xu′(x)|, sup
x∈R

∣∣∣(x2 + 1)u(2k)(x)
∣∣∣} .

To conclude this paper, we would like to mention there is an application
of Theorem 5.1 in the reference [29], where Li and Beaudin constructed an
integral representation for the generalized Riesz derivative RZD

2s
x u(x) for

k < s < k + 1 with k = 0, 1, . . . , and obtained for u(x) ∈Wk+1(R)

RZD
2k+1
x u(x) =

22k+1(k + 1/2)(2k)!

(−4)kπ

∫ ∞

0
y−2−2k

×
[
u(x+ y)− 2u(x) + u(x− y)− u(2)(x)y2 − · · · − 2y2k

(2k)!
u(2k)(x)

]
dy,

for k = 0, 1, . . . . The above integral clearly extends the α-order Riesz
derivative in the classical sense, given as

RZD
α
xu(x) = −Ψα

(
RLD

α
−∞,x +RL D

α
x,∞

)
u(x),

where

Ψα =
1

2 cos
απ

2

, α �= 1, 3, . . . ,

to all odd numbers 1, 3, . . . , for u(x) ∈Wk+1(R).
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6. Conclusion

For the first time, we have extended the fractional Laplacian (−�)s

over the space C∞(Rn) for all s > 0 and s �= 1, 2, · · · , based on the normal-
ization in distribution theory, Pizzetti’s formula as well as surface integrals.
Additionally, we have showed that such an extension is continuous at the
end points s = 1, 2, · · · on the space Ck(R

n) � S(Rn), and further pre-
sented a couple of examples to demonstrate computations using the main
results obtained, with the help of special functions and Cauchy’s residue
theorem. Finally, an application to extending the classical Riesz derivative
to odd numbers was also mentioned.
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