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UNIQUENESS OF THE PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

CHENKUAN L1

We study the uniqueness of solutions for certain partial integro-differential equations with the initial
conditions in a Banach space. The results derived are new and based on Babenko’s approach, convolu-
tion and Banach’s contraction principle. We also include several examples for the illustration of main
theorems.

1. Introduction

Let0 <w; <oofori=1,2,...,nand x € 2 = [0, 1] x [0, w3] x --- x [0, w,] C R". Let[f be the
partial Riemann-Liouville fractional integral of order 8 € R™ with respect to x; € [0, wi], with initial
point zero [6],

1 [ B
(Ifu)(X)=rﬂ)/o e — )P u(xr, oo o, 8, Xe s -y Xn) ds

fork=1,2,...,n.
In particular for g =0,
(I2u)(x) = u(x).

Clearly for 8;x > 0,

IPea 1P (x)

1 /xl /‘xn - -
= (ep —s)Pl o o = s )P sy, L sp) dsy - - dsy,
L(Bu) - T'(Bak) Jo o 1 1

which is regarded as the partial Riemann-Liouville fractional integral with order Bix + - - - + Buk (Bix-th
order in x;-direction fori =1, 2, ..., n); see [12].

Lett € [0, f9] with 0 <ty < co. The space L([0, 7] x 2) of Lebesgue integrable functions on [0, #5] x 2
is defined as

L([0, 1] x Q) = {u(t,x) el :/ lu(t, x)|dtdx < oo}.
[

0,70]x 2

The space C ([0, fp] x 2) of continuous functions on [0, 7g] x €2 is given by

C([0, 0] x ) ={u(t, x) : |lullc = max |u(t,x)| < oo}
te[0,10],xeQ
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Clearly,
C([0, 1o] x ) C L([0, 1] x ).

We further define the space S, ([0, #] x 2), form € N = {1, 2, ...}, of those functions on [0, 7] x
with up to m-th order continuous partial derivatives with respect to ¢ by

Sn ([0, 1] x ) = {u(t x): at—mu(t x) € C([0, o] x 2) and |lull, < oo}

28

where
m

am

! (t, x)
—u(t, x
ot

el = maX{ llu(t, X,

Obviously,
Sm ([0, 0] x 2) C C([0, 1] x ) C L([O0, tp] x £2).

Furthermore, S, ([0, #o] x €2) is a Banach space using Theorem 7.17 in [15] stated as:

Theorem. If {u,} is a sequence of differentiable functions on [a, b] such that lim,,_, 5 u, (xo) exists (and
is finite) for some xo € [a, b] and the sequence {u,} converges uniformly on [a, b], then u, converges
uniformly to a function u on [a, b, and u’(x) = lim,,_, » u),(x) for x € [a, b].

Let A (x) be continuous on 2 for k =1, 2, ..., /. In this paper, we shall consider the partial integro-
differential equation in the space S, ([0, fo] x ©2) with a given function g(¢, x)

(1 at_m”(’ x) = ZA O™ - It u(t, x) = gt x) € C (10, o] x Q).
with the initial conditions

m—1
8 m—1
by Babenko’s approach [2], which treats integral operators like variables in solving differential and
integral equations. The method itself is close to the Laplace transform method in the ordinary sense, but

it can be used in more cases [13; 14], such as dealing with integral or fractional differential equations
with distributions whose Laplace transforms do not exist in the classical sense. Clearly, it is always

) u(0,x)=0,. —u(0,x) =

necessary to show convergence of the series obtained as solutions. Recently, Li studied the generalized
Abel’s integral equations of the second kind with variable coefficients by Babenko’s technique [8; 11].

In addition, we study uniqueness of solutions for the partial integro-differential equation by Banach’s
contraction principle with condition (2)

gm— 1
3) —u(t x) — Zkk(xﬂﬁ”‘ u(e, x) = f(t, X ult,x), ... oo, X>)
where f(t, x, yo, ..., ym—1) 1s continuous on [0, o] x €2 x R™ with a Lipchitz condition.

To the best of the author’s knowledge, (1) and (3) are new in current studies. There are many research
works on fractional differential and integral equations involving Riemann—Liouville or Caputo operators
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with boundary value problems or initial conditions. For example, Bai et al. [3] considered the existence
and uniqueness for the following fractional differential equation with the initial conditions

D, u() = f(t,u(t), D, 'u@®), 1€ (,T)
w(©0)=0, DL u(0) = u,
where f € C([0, T] x R?) and Dg ,u(?) is the standard Riemann-Liouville fractional derivative with
1 < g < 2, based on fixed point theorems, and lower and upper solution method.

In [4], Eshaghi Gordji et al. proved the existence and uniqueness of the solutions of the following
nonhomogeneous nonlinear Volterra integral equation:

u(x) = f(x)—i—d)(/x F(x,t, u(t))dt), ueX=C(a,b],R")

where x,t € [a, b] with —0c0 < a < o0, f :[a, b] — R" is a mapping, F is a continuous function on
[a,b] x [a,x) x X, and ¢ : X — X is a bounded linear transformation.

Let X, [a, b] be the space of those Lebesgue measurable functions u on [a, b] for which xly(x) is
absolutely integrable:

b
Xula, bl = {u ‘la,b] = C and |ju| x, =f 2 Hux)|dx < oo}.

Then it is a Banach space. In addition, the fractional version of the Hadamard-type integral and derivative
are defined by

Iy (x) = — fx<’)ﬂ(l x)a_l O o>0.xelab)
/a-i-,uu X —m g )_C Og? u T oa>0U,x €la,n],

and

d
(Pt ) () = 1ML (), §=x—s

where n = [a] + 1 and [«] being integral part of . Very recently, Li [10] obtained uniqueness of solutions
for the nonlinear coupled system of integral equations given below:

an( I ) () + -+ ar(Z4 ) (x) +u(x) = g1(x, u(x), v(x)),
bu( FL ) @)+ b (I 0 () Fu(x) = ga(x, u(x), v(x)),

on the product space X ,[a, b] x X, [a, b], based on Babenko’s approach and Banach’s contraction prin-
ciple. Furthermore, Li [9] derived uniqueness of solutions for the following nonlinear Hadamard-type
integro-differential equation for all i € R, in the space ACyla, b]

X
D A an D+ Q0T Ut by FE A by g P = / f@ ' ()dr,
a

where
b
ACyla, b] = {u :u(x) € ACla, b] with u(a) =0 and ||ulo =/ lu'(x)|dx < oo}

is a Banach space.
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In a wide range of mathematical and engineering problems, the existence of a solution to a differential
or integral equation is equivalent to the existence of a fixed point for a suitable operator. Fixed points
are therefore of paramount importance in studying differential or integral equations arising from the real
world. There are new and interesting studies on fixed point theorems for different operators on metric
spaces as well as applications dealing with the existence of a solution for systems either of functional
equations or of nonlinear matrix equations [1; 5].

2. Main results
We begin to present our first theorem which shows the solution for (1) with condition (2) as a convergent

series in the space S, ([0, #p] x €2) by Babenko’s approach.

Theorem 1. Let B;; > 0 fori =1,2,...,nand j =1,2,...,1, and A;(x) be continuous on Q2 for
i=1,2,...,1 Then (1) with condition (2) has a unique solution

o0 .
@) u(,x)= Izm Z[tfm Z (]1 i J. . )(Al(x)[ﬂll ...]r/lgnl)fl "'()»l(x)lfu - Irl?nl)jlg(t’ x)

J=0 jitjpttji=]
in S;, ([0, o] x 2).
Proof. Clearly,
m ,51/(“_ Buk ,Blk._' Buk ym

M) I o Pk =g o 1P% P,

and
!
u(t, x) = > eGP 1P, x) = 1" g (¢, x)
k=1

by applying the integral operator /" to both sides of (1) and the initial conditions. By Babenko’s ap-
proach,

! -1
u(t, x) = <1 - Z)»k(x)ltmllﬁlk o TPy, x)) I"g(t, x)

k=1

00 1 j
= Z(Z MEVAN IR Uf“) I"g(t, x)
j=0 “k=1

S .
=Z Z (]1 sz )()\. (X)I’nlﬂ” -..Ir/?nl)jl ()"l(x)ltmligl[I,’f}”l)ﬂltmg(l, X)

e Ji
J=0 jit+j++ji=

=" Z Itjm Z <J1 JZ’J‘ )()»1 (x)[ﬂ” . Ir/zs"l)jl ... ()Ll(x)llﬁll . If”’)j’g(t, x).

e Ji
Jitjptetji=

Obviously, u(t, x) satisfies the initial conditions due to the integral operator /" and the uniqueness
immediately follows from the fact that the linear homogeneous integral equation

a—u(t x) — Zxk(x)lﬁ‘k o IPu(t, x) =
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with condition (2) has only zero solution. It remains to show that u (¢, x) is in the space S, ([0, 7] x 2)
and is a solution of (1).
Since Ar(x), fork=1,2,...,1, is continuous on €2, therefore it is bounded and there exists M > 0
such that
max|ig(x)| < M.
xeQ

Let A = max{fg, wy, ..., ®,} > 0. Then the norm of the integral operator Iiﬁi" fori =1,2,...,n and
r=1,2,...,1 on the space C([0, fg] x €2) is

ﬂir _ /3ir
14;" lc = max [1;"u]

lullc=<1
= max ! (x; —s)ﬂ"’_lu(t X1 Xi—1, S, Xs+1 Xy)ds
- 1 ’ 9y I—1>» £ ) LR ) n
lulle<t| T (Bir)
1 i
< / (x; — s)ﬂ"’_l ds
L'(Bir) Jo
_ xiﬁir
F(ﬂir + 1)
)\‘,Btr
- F(,Bzr 1’
Similarly for j =0, 1, ...,
imem jm+m
7 lc < YEPaYh
(jm + m)!
Therefore,
G S P AR SRR TR
Jitpttji= ¢
im—+m .
e LD D ORI L el S 12
jm+m)! ) O ONJ1s J25
Jite =]
Using
> (Gloi)=t
]1,]2,---’J1
Jitti=]
||I/311]1+ +/311Jl” )"ﬂlljl+...+ﬁll]] Skﬁ'1]1+ +,31111

“IBuj+---+Bup+1) —

Bt i tBut i
But j1+++Bu i < Sy Buijit+Buii
I, lc < A

“TBun+--+Bui+ 1)

by noting that for y > 0,
ry+1)=>3



468

CHENKUAN LI

in [16], we arrive at

where

Hence,

where

P () eeor! e gy ot gy
Sttt ji=j

JisJ2seoos ]

C

< (3)" (s M

S = max{kﬂif} > 0.

o0

(e, e < (3)" A" gt 0l Y
j=0
=(3)"2"lgt. 0)lc Y

j=0
= (3)" V"¢ (t, O)llc Emmi1 (W S"IM) < 00,

(A" S"IM)
(jm +m)!

(A" S" M)/
C(jm+m+1)

o0 n
Z

EO[ = ’ ’ 09 ’

e jz::or(aj-i-ﬁ) ®f>0zeC

is the Mittag—Leffler function.

Evidently,

jm+m

(jm+m)!’

PG ARD DU DI (RS AU A A NO L A O KOS

m
ot

and

m u(t, x) =

J=0 jitjt+-tji=]j

o0

3 / fi . gy Bu . by
th Z <j1,]'2,...,j1)(k1(x)11“"'Irlzsl)]l"'()‘l(x)llu"'Ifl)j'g(t,x),

J=0 ji+jt+ji=j

0
H S| = ()2 gl )l Epn (A1 S"IM) < 00,
C

8m
Hat_m““’x) < (3)"lg(t, 2)llc Ema (A" S"IM) < o0
C
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Thus, u(z, x) € S, ([0, o] x €2) and the series in (4) is absolutely and uniformly convergent. Finally, we
substitute u (¢, x) in (4) into the left-hand side of (1),

[e¢)

j i
j’n ] /3 n j ﬁ n ] /3 n
ZI’ Z (j1,j2,...,j1>()”1(x)11“'"If’)J""(kl(x)ll ”...Ifz)ng(,’x)_(;Ak(x)Il “‘...]r/?k)

J=0 jitjttji=]

Jl’]277]l

i+t tii=i

[e.¢] .
A D (A )(M(x)lf‘ﬂ--l,f"l)f' e (O I 1Py g (1,0)
j=0

=ga0+Y 1" Y () @I e G 1 )

— " o \J1J2sen i
=l jtjpt-ti=j

1
_(Z/\k(X)Ifglk"'If"k)

k=1

oo .

m i+ J B 01 J B 0 J

x (1, g(t,x>+_211,”” _’"+Z+' (Gl )@t g1 '>f'g<t,x>).
J= Jitet =]

Clearly,

o0 .
. J B 0 / B i Ji
Zlf]m Z (jl’jZ,..-,jl)()‘l(x)Illl P @I TP g (2, x)

J=1 jitjpt+-+j=j

l
N <Z SOLENE If"k)’;"ga, x)
k=1
o

m/ .] /5 n j /3 n ]
3 _<j1,j2,...,j,>(*1<X>11“---1/?‘>"---<Az<x)11”'--Iff)”g(r,x)-
2 jitpteti=i

+
j=

Therefore,

o0

. !
' J B 01 J B ) J B B
Sy (jl,jz,...,jz>()”(x)ll“'"Irllg e Gy () I u.,,If,)J,g(t’x)_(k;kk(x)ll lk._'lfk)

J=1 jit+jttii=j

o0 .

mj—+m ‘] ,3 n j ﬂ n. ]

X(’fmg(”x”Zl[’J "2 () O A GO 1))
j= Skt gi=]

00 . )
_ mj J B 1) J B 0l Ji B ),
S IAED D PRy ATV O R Y C BT

J=2 jitjptti=] k=1

o0 .
X(Z Y .(jl,jz,...,ﬁ)(“x)’l“""f1)”“'(“(")11”""'f’)ﬂg(t’x))
Jj=1 Jitetji=j
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o0 . 1
=3 (G ) et e 11 g 1) (2;“@)11’3“*-15“)

J15J2se
Jj=3 jittji=j

(Zl’"’*’”z (il Yoo ety oy 1 g, x))
Jiteti=J

by noting that

2
72" < ) ) A 1,311 I,Bnl Jro.( 1511 Iﬂn/ Jig(t
; E it (A1(x) )t (A (x) )/ g(t,x)

jitt =2
l
1
=<Z)"k(x)li31k"’lfnk> <It2m Z (Jl j2 J )()\,1()6)1/311 Ilsnl)]l ()\[(X)Iﬁll Iﬂn[)]l)g(t ]C).
k=1 Jie =1 0T

Repeating this pattern, we show that u (¢, x) is a solution of (1). This completes the proof of Theorem 1.
O

The following is an example for demonstrating the use of Theorem 1.

Example 2. The partial integro-differential equation

2 1252
—x1 191, —x3° 1t (¢ y= 172
azt(t X1, x2) —x 177t (t, X1, x2) — X, X1 X2) = —)
with the initial conditions
0

u(0, x1, x2) = Eu(O, x1,x2) =0

has a unique solution in the space S> ([0, f9] x €2)
oo t2j . x1.5j1+2 x3j2+2

3 J 1 2
l” s =1 _ . . AB )
ult x1,x2) §(21+3)’j1§:j(1“12> MERP(15)1+3) G +2)!

where
35:5---(1.5j;+2) if j1>1,
Aj = e
1 if j1 =0,

and
B. — PGB+ 2/ (T@45)--- TG+ 1.5) if p>1,
271 if j,=0.

Proof. Indeed by Theorem 1,

o0 .
u(t,xl,xz):ZIfHZ Z (] ]2)(X1105)J.(x25121S)nltxle

j=0 Jiti=j

00 . 2 2
2j42 J Sy X S5y~

N AR ( )(xlllos)“—l(x215121 SyRi2
&~ i 2 2 2

Jitp=j
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Let @ and B be arbitrary complex numbers. Then it follows from [7] that

d)a * CDIg = (DOhLﬁ

where
e
YT
So,
2—1 2j+3 2j+3
2j+2 Iy Iy !
I t=®5; )k —— =&y 1)k Pr(t) = bH; t) = =
: 2j+2(F) * o) 2j4+2(1) * O2(7) 2j+4(1) 213 - Qi)
since t > 0.
Let us work on the term (x172)/1x2/2. Clearly,
2 35
w105 EL = ey (@ 5 (1) % D3 (x1)) = x1 D35 (x1) = —
) ' ' r'@3.5)°
35 5
X ra.s) r4.s) x
x P — = x1(Pos* Pys) = ————
ra.s '@3.5 ra.5ro

05y 5 _TEST© - TA5j+3) 5™
7 2 T@BHIG)---T.55+2) T1.5),+3)

1.5j1+2 x1.5j1+2
=35.5-.-(15+2)—L —— —4, L
D505, =Y a5 +3)
Similarly,
. 3jo+2
sy _ _T©TGhp+3)  x"
2727 2 T r@5)---T@jhr+15TBj+3)
5L Gptl xR
- T@5 - TGj+1.5 Gj2+2)!
x;j2+2
= sz.—‘-
B +2)!
This completes the proof of Example 2. ]

Remark 3. (i) Following the proof of Theorem 1, we can easily solve the following partial integro-
differential equation with condition (2)

l

m

(£, = Y a1 x) = (1 x) € C(10. 1) x ),
k=1

where o > 0.
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(ii) Similarly, we can work on the partial integral equation without any initial conditions

!
u(t,x) — Z)»k(x)lf”‘ e If”"u(t, x) =g(t,x) € L([0, o] x )
k=1

in the space L([0, fg] x €2) using the same method.

We are ready to present the following theorem on the uniqueness of solutions for (3) by Banach’s
contraction principle.

Theorem 4. Assume f(t, x, yo, ..., Yym—1) is continuous on [0, tg] X 2 x R™ and there exist nonnegative
constants Cy, Cy, ..., C,,—1 such that

|f(Ex,Y05 -+ Ym—1) — f (&, X, 20, -+ s Zm—1)] < Colyo — 2ol + -+ + Cu—11Ym—1 — Zm—1l-
Furthermore, suppose
g =mmax{Co, ..., C—1}(3)" max{rA" Ep i1 (A" S"IM), ..., Ep (A" S"IM)} < 1.
Then (3) with condition (2) has a unique solution in S, ([0, tp] x ).

Proof. If u(t, x) € S,u([0, 19] x ), then f(t, x, u(t,x), ..., 2 u(r, x)) is continuous on [0, 1o] x 2.

Construct a mapping on the space S, ([0, f9] x 2) by

o .
ORI N ORI U A SO ARk
j=0 Jrtjattji=j

am—l
X f(t, x,u(t,x),..., Wu(t’ x)).

We first show that T is a mapping from S, ([0, 7] x 2) to itself. Indeed from the proof of Theorem 1,

m—1
IT@llc < (3)* A" Emms1 (A" S"IM) Hf(t, X (%), (X)) | <00,
C

8 nam— m on

‘anm < (3)' V" E m W S"IM) | fllc < oo,
C
o™ 5\ m gn
S T Cs(z) En 1" S"IM)| fllc < oo.
Thus,
d am
IT @)l =maxy IT@lle, | =T @ o.os | =2 T @) ¢ < oo

It remains to prove T is contractive by Banach’s contraction principle. Then for u, v € S, ([0, fo] x €2),

i

0 "
5, T =TW)| oooos 5 (Tw) =T ()

IT @) =T W) Im = maX{ IT @) =T lc.
c
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Clearly,
IT @) =Tl
< (3)"N"Epm1 W S"IM)
" ——u(t,x)) — f(t,x, v, X), . " ——(t, x))
= (2)"A" Ep 1 A" S"IM)
X max (L x u(t ), 8m_1 ——u(t, x)) — f(t,x, v, x), . " ——(t, x))‘

< (3)" " Enm1 " S"IM)
m—1

X max {Colu(t,x)—v(t,x)l+---+Cm_1 ﬁ(u(t,x)—v(t,x))‘}

te[0,t9],xeR
<(3)"V" <mmax{Co, ..., Cnoi}(3)" V" Emms1 " S"LM) [l = 0| .

Similarly,

” %(T(M) —T@)| <mmax{Co,...,Cpn1}(3)" A" EpmO"S"IM)||ltu — 0|,
c

T()| <mmax{Co,...,Cpn1}(3)" En1(\"S"IM)||lu— vl|.
C

Hence,
1T ) =T @)l <qllu—"vlm,

which implies that (3) has a unique solution in the space S, ([0, fy] x 2). This completes the proof of
Theorem 4. O

Example 5. Let (¢, x1, xp) € [O, %] X [0, %] x [0, 1]. Then the partial integro-differential equation
2

P 10.512.133

7511.33
2 1
X7 +x3+3

—u(t,x1,x2) — 5 Sln(X1X2)11 u(t, xy, x2) — u(t, xq, x2)

iM(f X1, X2)

l+( u(t, xl,X2))

=cos(t(x;+x2)) + % sinu(z, x1, x2) + + 5

with the initial conditions

0
u(0, x1, x2) = Eu(O, x1,x2) =0

has a unique solution in the space S, ([0, fp] x ).

Proof. Let

L1)=1

A =max{%, 3
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Hence,
S =max{Afir} =1

fori =1,2and r =1, 2. Obviously,

1

1 .: 1 1
5 sin(x1x2)| < 5 | <3
|2 | 2° x12+x22+3 3

and M = % The function

Y1

f(t, x, y0, y1) = cos(t(x1 + x3)) + % sin yo + %—2
l—{—yl

is continuous and satisfies the condition

| £t x, Yo, y1) — f(t, x, 20, 20| < 31y0 — 20l + L1y — 21l
Thus,
1
max{Co, C} = 5

and

max{A>Es 3(A\2S2IM), L E2,(A2SHIM), E2 1 (A2S*IM))

> 1
jzorx2]-+1)
_il
- ]
= @D
_ 1 1 1 1
= +5+m+a+§+

CHI) )]0+ ()
+ 1

Therefore,

2
g=mmax{Co, ..., Cp_1}(3)" max{A" Ey i1 A" S"IM), ..., En (X" S"IM)}<2-1(3) B=22 <.

By Theorem 4, it has a unique nonzero solution as zero is clearly not a solution. This completes the
proof of Example 5. U

3. Conclusion

Applying Babenko’s approach and Banach’s contraction principle, we have given sufficient conditions
for uniqueness of solutions for several partial integro-differential equations with the initial conditions and
variable coefficients in Banach space S,, ([0, #p] x €2). Both methods used and results derived are new.
Furthermore, these approaches can be widely applied to solving many kinds of fractional differential and
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integral equations. We also presented several examples for the illustration of our main conclusions by
gamma function, convolution as well as Mittag—Leffler functions.
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