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tance in the space. Furthermore, we show a novel fixed-point theorem for Gn-Menger-0-contractions
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1. Introduction and Preliminaries

We begin with the concept of a Gn-Menger space using distributional maps (DMs) and
triangular norms. Throughout the entire paper, weletI = [0,1],I° = (0,1), R* = [—0c0, +],
J = [0,+00) and J° = (0, +o0). Define the set of distributional maps U™ as the set of all
functions j : R* — I, denoting j, = (1), which are left continuous and nondecreasing on R
with jp = 0 and j; = 1. In addition, let 9" € U consist of all (proper) mappings j € U
for which 774 = 1, where {~j, means the left limit at the point 1. Please refer to [1-3] for
more details. Note all proper DMs are the DMs of real random variables (namely, we have
P(|g] = c0) = 0 for any random variable g).

In U™, we define “<” as follows:

J]<h & . <h
for each 7 in R (partially ordered). For example,

0, iftreR-J°,

hT = .
1-¢77, if telJ°,

for i € d*. Note that the function p¥ defined by

0, ift<u,

7TV 1 frsu,

is an element of U, and ¢? is the maximal element in this space (for more information,
see [1-3]).

Definition 1 ([1,4]). A continuous triangular norm (CTN) is a continuous binary operation * from
12 to I, such that
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(@) 9xt=1+Sand 8« (1+B) = (9+1)«Bforall 9,1, B € L;
(b) 91 =S forall b €T;
() 9+t < ¥ +Y whenever 8 < ¥ andt <Y forall 9,1, 9 ,Y €.

Some examples of {-norms are:

(1) 9 #pt = 31 (the product CTN);

(2) 9yt = min(9,1} (the minimum CTN);

(3) 9%t =max{d +1-1,0} (the Lukasiewicz CTN).

Assume that, for every 9 € I°, there exists a1 € I° (which is independent of ¢, but
depends on 9) such that the following inequality holds

¢

(I-1=*---x(1-1)>1-9, foreachle{2,3,...}. 1)
In this case, we say the CTN = has the (D) property (CTND for short).

Definition 2. Let xbea CTN, U # 0 and Cbe a mapping from U" to d*. The ordered tuple (U, , *)
is called a Gn-Menger space if the following conditions are satisfied:

Q) gt = @Y for t € J°, ifand only if uy = uy = -+ = uy and t € J°;

(C2) Cf'" is invariant under any permutation of uy, ..., u, € Uand t € J°;

(C3) gtttz > vzt for every uy, ..., uy € Uand T € J°;

(C4) C?J:Zz,m,un > Cgl,unﬂ,u-,unﬂ % C;’n+lru2r»wun fO?‘ every Uty ... Uy, Ups1 € U and T,C € Jo'

Moreover, C is called a Gn-Menger distance.

For more details about Gn-Menger space and distance, see [5-15]. Our results improve
and generalize recent results in [16-18].

Example 1. Define C : R" — J* by

0, ifteR-J°,
Cul/-n/un I
T ) exp(— max u; —uil}/1), if teJe.
Pl i;tj,i,je{l,z,...,n}{l i—ull/7)

Then, the ordered tuple (R, C, #p) is a Gn-Menger space.

Clearly, (C1) and (C2) are straightforward. For (C3), let T € J°, and since

max  {lu; —ujl}
[eq — us| < i#j,i,j€(1,2,...,1)

e~ 7

T T
we get

Uy, U7 ..., U1, U |Ll1 - u2|
CTl 1oty exp(— -

_omax{lu; —ujl}
i#],i,j€{1,2,...n}

T
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Regarding (C4), let 7, ¢ € J°, and note

Clclmlnﬂf-ufunﬂ *p Cf[lnﬂ,uz,.--,lln
_omax Al —ul)
|u1 - un+1| i#j,i,j€(2,...n,n+1}
= exp|l———].exp| —
p . p .
~ max {lu; — ujl}
[u1 — Uyl i#,1,j€(2,...nn+1)
< expl-—————— |- exp| -
¢+t c+r1
[y —tpy1l +  max  {ju;—ul}
i#],i,j€{2,...nn+1}
= exp|-
¢+
max {lui —ujl}
i#1,i,j€(1,2,...m,n+1}
< exp|-
¢+t
o omax  {lui—ul}
i#j,i,j€{1,2,...,n}
< exp|-
ct+r
U1,U2,...,Un
T+C

We would like to point out that the above example also holds for CTN #;. In the following,
we show every Gn-Menger space induces a Menger metric space in the sense of Schweizer

and Sklar.

Example 2. Let (U, (,*) bea

forevery u,v € Uand 7 € J°.
check that 77 is a Menger met

(I) LettelJ®°and

so we have

and

Gn-Menger space. Define the distributional function 1 on U? as
Tﬁ,v — C;t,v,...,v " Cg,u,...,ul

Then, (U, 1,*) is a Menger metric space. In fact, it is easy to
ric (for more references, see [1,9,19]).

0o __ u,0
p’[ - 77”:’
— Cz,v,-u,v % Cg,lﬁ-u,ul
ot =
0 _ »ou,.u
P) = C’l” reeelh

Using (C1), we get u = v. Obviously, the converse is also true.

u,0
T

(II) From (C2), we have n

=" forevery u,v € Uand 7 € J°.

(IIl) Letu,v,w € Uand 1,¢ € J°. From ((4), we have

u,v
T]T+€

U0 7Oy U
*
T+¢ CT+§
U, 7 W,0,...,0 V)W 7 W, Myery U
> & S (S

V,W,...,W
c

[CLTz,w,.,.,w " C;U,u,...,u] " [Cz;u,v,..,,v " C

u,w w,v
N *nc".

]

It now follows that (U, 7, *) is a Menger metric space from (I), (II) and (III).
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Definition 3. Let (U, C,*) be a Gn-Menger space. Assume p € 1°, T € J° and uy € U. We define
the open ball with center ug and radius p as

0 ={uel: T " >1-pand (W™ > 1 p).

Definition 4. Let (U, ,*) be a Gn-Menger space.

(1) A sequence {uy} in U is said to be convergent to u in U if, for every A € 1°, there exists a
positive integer N such that {7 > 1 — A for every t € J° whenever k > N.

(2) A sequence {uy} in U is called a Cauchy sequence if, for every A € 1°, there exists a
positive integer N such that Czkl S SN | for every T € J° whenever ky, ..., k, > N.

(3) A Gn-Menger space (U, C, +) is said to be complete, if and only if every Cauchy sequence

in U is convergent to a point in U.
Lemma 1. Let (U, C,*) be a Gn-Menger space. Then, C is continuous on U".
Proof. For a fixed n, we let (u1,...,u,) € U" and 7 € J°. Let {(u1x, ..., tnx)} be a sequence

in U" converging to (uy,...,u,). Consider a fixed number « € J° such that a < Using
(C4) we derive

P
n+1°

Cul,kr--vun,k > CMLk,ul,m,ul - Culruz,kw--run,k

T a T—a
_ CMLk,ll],m,lh *Cuhuz/k,n-run,k
- a @y -3
st1—35a
U U1, U1 U e U2, U2 U1, Uz, U3 koo U
> C ¥ * C ) * C y y
= @ g -3a
_ Cu1,k,u1,---,ul * Cuz/k,llzf---,llz % Culfuzfus/k,---,un,k
- g a a4
2 2+T 2&
Ui k,U1,.-, U1 U je,U2ene U2 Uz j,U3,..., U3 Uy, Uz, U3, Uy feyeeesUn ko
2 Ca * CQ * a * C 4
2 2 T 20(
U1k, U1,ee U1 U e U2,ee U2 Uz j, U3, U3
z G &y *Cy
Up je,Un oo Un Uy, U, U3, Ug,..., Uy
*"'*Cg *C_nﬂ ’
-5
and
UL ,eee,Up UL, UL fgeees Uk U1k, U2, Up
CT = Ca * Crfa
_ Cul,m,k,m,m,k *Cw,k,uz,m,un
- o a _3
sti—sa
Ug,U ke U1k U U feyee U2 U kU2 je U3 Un
> G +Cy "
2 T2
UL U feyerefUh U U feyeef U U kU j UB e U
—_ Calr ks U1k *Cazr 2,k U2k "'C 7‘1,k, z,k4, 30l
a ¢ _4
s+T—3a
Ug,U ke U1k U U oo U2 U3,U3 fy--- U3k U e U2 f U3 e U4 U
> G, *Cy *Cy *C
2 2 —%a
2

v

Uy, Ut stk U U kyeee s U2 Uz, U3y U3k
Ca +Cy +Cy

e Clgn”n,kv--run,k Cul/kﬁkzu&kru4/k1~--r”n,k'
2 T ] a

We can do this for any n. Letting k — oo in the above, we imply by the continuity property

of a CTN that

. u e U
lim CTl,kr MUk > Clllrl;llirluwu% /un, (2)
k—oo -
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and

Cul ,,,,, Uy > hm C”lkyﬁ%k”?&k”é}k un,k. (3)

From (2) and (3), we get by letting « tend to zero that

fim g g, @

for every 7 > 0, which shows the continuity of C. O

2. Fixed-Point Theorem
Lemma 2. Consider the Gn-Menger space (U, C, +) in which = isa CTND. Define Eg ¢ : U" — J by

Eoc(u, .., uy) = inf{r € J° : " > 19},

foreach § € 1° and uy, ..., u,, € U. Then, we have the following:
(1) Letuy,.., uy,wi,.., w, €U. Foreveryte J°, there exists § € J° such that

‘—‘1C ul/ / Z‘—'SC Z’l]/Z’U]/u)]/ °’ ]) + C(wli /wn);

(II) The sequence {uy} is convergent with respect to the Gn-Menger metric C, if and only if
Eo,c(u, g, ..., ux) — 0. Moreover, the sequence {uy} is a Cauchy sequence with respect to the
Gn-Menger metric C, if and only if it is a Cauchy sequence in Eg ;

(III) Let uy,,u,, ..., ux, € U, wherek, ...k, € N. For everyt € J° there exists 9 € J° such that
forn >3,

n-2

S (Ui, Uy - -, U J2o,c (U Uy oo Uk ) + oz Uk, ks -, Uk, );
1:1

(IV) A sequence {uy} in the Gn-Menger space U is Cauchy, if and only if, for every € € J°, there
exists a positive integer N such that for every € > 0,

E},C(ukl, Ukyy vy ukz) <€, )
forall ki, k, > N.

Proof. (I). For every t € I°, we can find a 9 € I° such that

n+1

(1= 9)%-x(1-9)>1-1

due to the (D) property. Using (C4), we infer

C”l/---/”n

0

i1 Boc (1w wjse i) +Bo g (Wi 0n) +(n+1) @

> uy,w,...,w1 % Uz, W2,...,Wz % Up Wy yeee)Wp wW1,W2,...,Wy

- Zo,c(Ur,w01,..w01)F@  TEyr(U2,w2,...,02) F@ 3,0 (U, Wy ®Wp)F@ By g (w1,W02,..0p ) +@

> (1-9)%--x(1-9)
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for each w € J°. Hence,

=

E}rg(ul, ey Mn> < Es/c(uj, Wi, Wi, ..., w]’) + Eslg(wl, ey Zl)n) + (Tl + 1)0).
Letting w tend to 0, we get
Ehc(ub..., un) < Es/g(u]‘,w]‘,w]‘,...,w]‘) + Es,c(wl,...,wn).

(I1). We have (" > 1 -1 & By (i1, ..., uy) < for every t € J°.
(III). For every t € I°, we can find a § € I° such that forn > 3,

n(n-1)

2

(1-9)%---%(1-9)>1-1

Then, we use a similar method in (I) to complete the proof.
(IV). It follows immediately from (II) and (III). O

We let © be the family of all onto and strictly increasing mappings 0 : J° — J° such
that 6(p) < p for all p € J°, and let all distributional maps be in 9. Since € 9" and (C1),
we get in a Gn-Menger space (U, , *) that

wetn — ¢, forall e J° implies C = .

Lemma 3. Consider the Gn-Menger space (U, C, ) in which * is a CTND. Assume that 0 € ©.
Then, for T € J°

inf{0F (1) € J° : ¢ > 1 - 9) < OF(inf{t € J° : (" > 1= 9)),

foreachuy,..,u, € U, S el’andk e N.

6"(1) > inf{0* (1) € J° : g > 1 9).

This implies that

which shows that
inf{0* (1) € J°: ¢ > 18} < OF(inflr € J° : T > 1-9)).
O

Lemma 4. Consider the Gn-Menger space (U, C,*) in which + is a CTND. Assume that 0 € ©
and {uy} € U such that

Ug Uk 1+ Mk+1 > Uu,Uz,..., U2
CQ"(T) = C’[

7

forall T € J°. Then, {ux} is a Cauchy sequence.
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Proof. From Lemma 3 and our assumption, we arrive at

E}/C(uk, Ukt1, - - .,uk+1) = inf Qk(’[) elJo: Cuk uk“ A 5 ] —1}
inf Qk(’f) eJ°: u1 122 ] _1}

6" (inf{r € J° : c“l ot > 1 1)
ek(‘—"l (ul/uZ/ .o u )) - 0/

IAN A

for every 1 € I°. Applying Lemma 2 (II), (III) and (IV), we conclude that {u4} is a Cauchy
sequence. 0O

We are now ready to present a fixed-point (FP) theorem, with a controller 0 € ®, in a
complete Gn-Menger space (U, C, *) in which * is a CTND. We say a mapping Q) : U — U is
a Gn-Menger-0-contraction if

C?(al),m,ﬂ(an) > A1, Oy (6)
for every p € J°.

Theorem 1. Consider the complete Gn-Menger space (U, C,+) in which + is a CTND. Let the
Gn-Menger-0-contraction () satisfy (6) in which 6 € ©. Then, Q) has a unique fixed point in L.

Proof. From Lemma 4 and inequality (6), we have that, for each @ € U, the sequence
{Q"(a)}7] is Cauchy and klim OF(a) = 6 € U since U is complete. Applying the
— 400

following inequality

I
2
2
2
S

\%

I
2
&
=

v
Y
=

forall ay, ...,y € U and p € J°, we conclude the continuity of (2 and so we get

6= lim Q" (a) = lim Q(Q"(a)) = Q( lim Q"(a)) = Q(5).

n—-—4oo n—-4o0 n—+o0
In addition, inequality (6) also infers the uniqueness. O

3. Application to the Gn-Menger-fractal space

In [20], Hutchinson considered fractal theory, which was further investigated and
generalized by Barnsley [21], Bisht [22], Imdad [23], and Ri [24]. The basic concept of fractal
theory is that the iterated function system (IFS) serves as the main generator of fractals. This
consists of a finite set of Gn-Menger-6-contractions {()y, (), ..., QO,} with (m > 2), defined
in a complete Gn-Menger space (U, , *), satisfying inequality (6). For such an IFS, there is
always a unique nonempty compact subset I' of the complete Gn-Menger space (U, C, *),

such that T’ = U 0;(T), wherein T is a fractal set called the attractor of the respective IFS.

Now, we denote H (U) as the set of all nonempty compact subsets of the Gn-Menger
space (U, C, *).

Let V; # 0 (j = 1,...,n — 1) be subsets of the Gn-Menger space (U, ,*), u € U and
T € J°. We define the Gn-Menger distance between u and {Vy, ..., V,,_1} as

C;I,th,an — sup (Pt 7)

'D]'EVj,jil,Z,,..,n—l
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Lemma 5. Consider the Gn-Menger space (U,C,*). Then, for every u € U, V; ¢ H(U)
(j=1,.,n—=1)and v € J°, we can find vj € V; such that

tTt,Vu-.-,VH — Z,vm,-.-,vm,o' (8)
Proof. Suppose thatu € U, V; c H(U) (j = 1,...,n—1) and 7 € J°. Since ( is continuous

from Lemma 1, the compactness of V; (j = 1, ...,n — 1) implies that we can find v € V;
such that

sup C;{,vl,..‘,vn,l — C’/Tlrvl/()/m/vn—l,[), (9)
vjer,jzl,Z,...,n—l

SO

Cu,VL-.-,V;H _ C”rvl,ﬂl-»-/vn—l,(]
T =61 .

O

Lemma 6. Consider the Gn-Menger space (U,(,+). Letu € U, V; c H(U) (j = 1,..,n-1),
O+ WCUandt,ceJ°. Then,

for every 7 € J°. From Lemma 5 again and ((4), we have

sz;,m,vnq — C;‘ﬁlCrUZn--:vnfl (11)
> Czlwu/m/wu % szurvl/w/vn—l

Cu,W,...,W % Cwmvlnnlvn%

T C *

Then, the result follows immediately from taking the supremum over v; € V;, j =
1,2,..,n—1and inequality (11). O

We now define the Gn-Menger Hausdorff-Pompeiu distance among E;, j = 1,..., 1, in

H(U) as:

Ey,..,En

(12)
p

= inf sup Cz“'"’“"

MEEL 4 € i=23,...n
#y inf sup Lot

0€E2 e j=134,..n
*)\
xy inf sup Lot

W€ o €eE) =12, n—1
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for every p € J°, which is equivalent to

Ei1,.Ep
Y (13)

. E,Es,....E

— 1nf Cal, 2,E3,+,En
a1€E,

- inf CU§2/E11E3/-~/En
wr€E,

*M

*M inf C

E1,Ez,.,En-1,an
7
an€E, P

for every p € J°.

Example 3. Consider Example 1in which U = R. Let * = %y, E1 = [e1, f1], E2 = [e2, f2] and
E; = [e3, f3]. Define the Gn-Menger Hausdorff distance as

max {le; —ejl, |fi = fil}

Eq,EpEs i,j€{1,2,3}
C = exp| —
p P p ’

for all p € J°. Then, (W(U),Y{Z, +) is a Gn-Menger space.

Clearly, the classical Hausdorff-Pompeiu distance for compact sets E; = ey, f1],
E2 = [EZ,fz] and E3 = [63,f3] is

max {le; —ejl, |fi — fil}.

i,jel1,2,3)

Now, using (12), (13), Example 1 and a similar method in ([25] Proposition 3), we have that
E1,EoE
the Gn-Menger Hausdorff distance Y 1 gz isa Gn-Menger distance.

Lemma 7. Consider the Gn-Menger space (U, C, *). Then, (H(U),Y C ,*) is a Gn-Menger space.

Proof. Clearly, (C1), (C2) and (C3) are straightforward. It only remains to prove ((4).
Suppose that E; € H(U), j = 1,..,n,u € E;,and ¢, € J°. Let® # W C U. From
Lemma 6, we have
\Ez,..Eq W, )W 7ty Eayee B
[ > (! * (e, (14)
where w, € W satisfies {/VErEr = gtubarbn [ ot aj€Ej, j=1,2,..,n, and from (C4)
we have
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El/"'/EVI
c

(15)
ctt
3 ,E»,E3,...,E
= lnf aji»qu 3 n
a1€Eq ¢
az,E1,E3,....En
#yinf CC
a,€E, Saad
0 ..
E1,Es,...,Ep 1,0
* inf C
M ayeE, <tT
Way E2,E3,..., E
> inf [N O "]
a1€Eq
. Way E1,Es,... E
sy inf [C?Z,W,W,...,W " C’I ayE1,E3 n]
ar€E;
0 ..
: E1,Es e Enct,
)1 inf [CZV,W,...,W,a,, " CTl 2,0 En1 wan]
a,€E,
> [mf C?LW,W,M,W « inf CE’VZ,W,W,.“,W* cx inf CZ\/,W,...,W,ay,]
a1€E; ar€E, an€E, °
Wa, ,E2,E3,...,.Ey Was,E1,E3,....En Wa E1,E3)En
*M [CT ' *CT 2 * *CT 2 ]/
which gives
Ey,...E,
; (16)
¢+t
ELW,.., W
> [Y "]
c
Way ,E2,E3,,En Way,E1,E3,...,En Way E1,E3,.En
*M [CTI *CTZ *"'*CTZ ]
Taking the supremum over (16) for all w € W, we arrive at
E1,..En
; (17)
¢+
ELW,...W W,Es,....E
Y C M Y C "
¢ T
Ey,W,.. W W,Ej,....E
Y ¢ =Y A
¢ T

[m]

Lemma 8. Assume that (U, C,*) is a complete Gn-Menger space. Suppose that 6 € ® and Q) is a
Gn-Menger-0-contraction. Then,

for every Eq, ..., E, € H(U) and p € J°, and T : H(U) — H(U) is also a Gn-Menger-6-
contraction, where I'o(G) := Q(G) for every G € H(U).
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Proof. Consider Ej, ..., E, in H(U). Using inequality (6) and definition (12), we get

Ta(Er),-.Ta(Ex) Q). (Ex)
; = Y
o P
. Q(E1),...Q(E,
Q(a1)eUE) (a))e(E;),j=2,3,..1
. Q(Eq),..., Q(E,
o inf sup C (E1) (En)
() Q(E :
(@2)€Q(E2) (3(a)eQ(E; ), j=1,34,....n
*M
. Q(Er),. Q(Ey
*M inf Sup C ) =
p
Q(an)eQ(Ey) Q(aj)EQ(Ej),j=1,2,~~~r"_1
) Q(E1) ., Q(E,,
= inf sup Cp( 1) ()
a1€E; a;€E;,j=2,3,..n
. Q(Eq),..., Q(E
0L 1r1f sup C (E1) (En)
ax€Ep Q(aj)€Q(E)),j=1,34,...n
)1 ..
. Q(Eq),..., Q(E
a inf sup gt
ay€E, O(a))eQ(E)),j=1,2,..n—1
. (5 Pyre
> 1r1£ sup 0(p)
a1€L aj€E;,j=2,3,...,n
*M inf Sup Cal(rn)-,an
azeEZangj/jzl,f}A,...,n P
EEEE
wy inf sup oo
an€Ey, aj€E;,j=1,2,...,n-1
Eq,...E,
- 7
0(p)

foreverype J°. O

Theorem 2. Assume that (U, C,*) is a complete Gn-Menger space in which = is a CTND. Suppose
that © € © and Q) is Gn-Menger-0-contractive. Then, T'q : H(U) — H(U) has a unique
fixed point.

Proof. From Lemma 8, I'qy is Gn-Menger-6-contractive on H (U) and so by Theorem 1, I'qy
has a unique fixed point. O

Example 4. Consider the complete Gn-Menger space defined in Example 1. Suppose that
0(1) = 1, Q(u) = § and Tq[-u, u] = [-§, §]. Itis easy to show that Q) is Gn-Menger-0-
contractive. Furthermore, I'q has a unique fixed point {0}.

4. Conclusions

We defined a new version of the probabilistic Hausdorff-Pompeiu distance using the
concept of Gn-Menger space and we presented a new fixed-point theorem for Gn-Menger-
O-contractions in Gn-Menger fractal spaces. In the future, we hope to consider our results
to get more common fixed-point theorems to investigate the existence and uniqueness of
solutions for differential and integral equations.
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