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Abstract: In this work, we employed the Laplace transform of right-sided distributions in conjunction
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1. Introduction

In the framework of generalized functions, Kanwal [1] classified solution types of
homogeneous linear ordinary differential equations (ODEs) of the form

m

∑
n=0

an(t)y(n)(t) = 0, (1)

where the coefficient an(t) is an infinitely smooth function for each n and t ∈ R. A solution
y(t) to Equation (1) can be classified by type as follows:

(i) The solution y(t) is a classical solution if it is sufficiently smooth for differentiation
to be performed in the usual sense in Equation (1) and the resulting equation is an
identity.

(ii) The solution y(t) is a weak solution if it is not sufficiently smooth, meaning that
differentiation in Equation (1) cannot be performed in the usual sense; however, it is a
regular distribution that satisfies Equation (1) in the sense of distribution.

(iii) The solution y(t) is a distributional solution if it is a singular distribution and satisfies
Equation (1) in the sense of distribution.

These are referred to as generalized solutions.
The only generalized solution in the sense of distribution for normal homogeneous

linear ODEs with infinitely smooth coefficients is the classical solution. Equation (1) with
singular coefficients might have a distributional solution. For instance, the distributional
solution of the following differential equations is the Dirac delta function, δ(t):

ty′′(t) + 2y′(t) + ty(t) = 0;

the Bessel equation
t2y′′(t) + ty′(t) + (t2 − 1)y(t) = 0;
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the confluent hypergeometric equation

ty′′(t) + (2− t)y′(t)− y(t) = 0;

and the second-order Cauchy–Euler equation

t2y′′(t) + 3ty′(t) + y(t) = 0.

This can be easily checked by using Formula (17). Furthermore, the distributional so-
lutions of some classes of Cauchy–Euler equations have been studied by many researchers;
see [2–9] for more details.

A distributional solution of an ODE is important because it provides a rigorous
interpretation of a fundamental solution of a nonhomogeneous linear ODE when the
nonhomogeneous term is the Dirac delta function. As the class of generalized functions
includes the set of regular distributions, there are many singular distributions, one of
which is the Dirac delta function. This calls into question the existence of weak solutions
and singular distributions of ODEs with singular coefficients. In particular those singular
distributions, which are linear combinations of Dirac delta functions and their derivatives.

y(t) =
m

∑
n=0

xnδ(n)(t). (2)

In 1980, Wiener [10] considered solutions to linear systems of functional differential
equations of the form in (2). He established two theorems regarding solutions in the space
of finite-order distributions and applied the theorems to some important second-order
ODEs. In 1982, Wiener [11] studied the criteria for the existence of mth order distributional
solutions, of the form in (2), to differential equations of the following forms:

n

∑
i=0

ai(t)y(n−i)(t) = 0,

n

∑
i=0

tiai(t)y(i)(t) = 0,

and

ty(n)(t) +
n

∑
i=1

ai(t)y(n−i)(t) = 0.

Cooke and Wiener [12] published the existence theorems for distributional and an-
alytic solutions of functional differential equations in 1984. Littlejohn and Kanwal [13]
investigated the distributional solutions of the hypergeometric differential equation, which
has solutions of the form in (8). Wiener and Cooke [14] showed the necessary and sufficient
conditions for the simultaneous existence of rational functions and solutions (2) to linear
ODEs in 1990.

In 1999, Kananthai [2] considered generalized solutions of the third-order Cauchy–
Euler equation of the form

t3y′′′(t) + t2y′′(t) + ty′(t) + my(t) = 0, (3)

where m represents some integers and t ∈ R. Generalized solutions of (3) are either
distributional solutions or weak solutions, depending on the values of m.

In 2015, Nonlaopon et al. [3] studied generalized solutions of certain nth-order differ-
ential equations with polynomial coefficients of the form

ty(n)(t) + my(n−1)(t) + ty′(t) + ty(t) = 0, (4)

where m and n are any integers with n ≥ 2 and t ∈ R.
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In 2019, Jhanthanam et al. [8] examined the generalized solution of the third-order
Cauchy–Euler equation in the space of right-sided distributions via the Laplace transform
of the form

t3y′′′(t) + at2y′′(t) + bty′(t) + cy(t) = 0, (5)

where a, b, and c ∈ Z and t ∈ R. The authors studied the type of solution in the space of
right-sided distributions, and they found that it depended on the values of a, b, and c.

In 2020, Waiyaworn et al. [15] studied the distributional solutions of linear ODEs of
the forms

t2y′′(t) + 2ty′(t)− [t2 + ν(ν + 1)]y(t) = 0 (6)

and
t2y′′(t) + 3ty′(t)− (t2 + ν2 − 1)y(t) = 0, (7)

where ν ∈ N ∪ {0} and t ∈ R, by using the Laplace transform and power series solution
techniques, depending on the values of ν.

The infinite order distributional solution to various differential equations with singular
coefficients of the form

y(t) =
∞

∑
n=0

xnδ(n)(t) (8)

has also been explored by many investigators; for additional information, see [12,16–20].
Kanwal [1] provided a short introduction to these ideas as well.

Motivated by the preceding work, we proposed distributional solutions of the follow-
ing ODEs:

t2y′′(t) + ty′(t)− [t2 + (ν + 1)2]y(t) = 0 (9)

and
t2y′′(t) + 2(1− γ)ty′(t)− [t2 + 2γ + ν(ν + 2γ + 1)]y(t) = 0, (10)

where ν ∈ N∪ {0} and γ, t ∈ R. We used the Laplace transform of right-sided distributions
together with the power series method to search for the distributional solutions. We found
that our new solutions were finite linear combinations of the Dirac delta function and its
derivatives, depending on the values of ν and γ.

The remainder of the paper is divided into three parts. We provide related definitions
and the lemmas required to derive our major results in Section 2. We prove our main results
with supporting examples in Section 3. Finally, we summarize the entire work in Section 4.

2. Preliminaries

In this section, we introduce the fundamental definitions, lemmas, and useful examples
that were required for this work.

Definition 1. The space D of test functions consists of all real-valued functions ϕ(t), defined on
R, having the following properties:

(i) ϕ(t) is infinitely smooth;
(ii) ϕ(t) has a compact support where the support of ϕ(t) is the closure of the set of all numbers t

such that ϕ(t) 6= 0.

Definition 2. A distribution T is a continuous linear functional on the space D. The space of all
such distributions is denoted by D′.

For every T ∈ D′ and ϕ(t) ∈ D, the value where T acts on ϕ(t) is denoted by 〈T, ϕ(t)〉.
Note that 〈T, ϕ(t)〉 ∈ R. Distributions are classified into two groups: regular distributions
and singular distributions. A regular distribution is a distribution generated by a locally
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integrable function. That is, if f (t) is a locally integrable function, then a regular distribution
Tf generated by f (t) is given by

〈Tf , ϕ(t)〉 =
∫ ∞

−∞
f (t)ϕ(t) dt for any ϕ(t) ∈ D.

It is customary to use the same symbol, f (t), for the corresponding distribution, Tf . A
singular distribution is a distribution that is not a regular distribution.

Example 1.

(i) The Heaviside function

H(t) =

{
1, if t > 0;
0, if t ≤ 0.

is a regular distribution because it is locally integrable and

〈H(t), ϕ(t)〉 =
∫ ∞

0
ϕ(t) dt for any ϕ(t) ∈ D.

(ii) The Dirac delta function δ(t) is a distribution defined by

〈δ(t), ϕ(t)〉 = ϕ(0) for any ϕ(t) ∈ D.

It is well-known that this can not be generated by any locally integrable function. Thus, it is a
singular distribution. Note that its support is {0}.

Definition 3. The kth-order derivative of a distribution T, denoted by T(k), is defined by〈
T(k), ϕ(t)

〉
= (−1)k

〈
T, ϕ(k)(t)

〉
for all ϕ(t) ∈ D.

A simple illustration is the first order derivative of the Dirac delta function, δ′(t),
which is defined by 〈δ′(t), ϕ(t)〉 = −〈δ(t), ϕ′(t)〉 = −ϕ′(0), whereas the kth-order of the
Dirac delta function, δ(k)(t), is

〈
δ(k)(t), ϕ(t)

〉
= (−1)k

〈
δ(t), ϕ(k)(t)

〉
= (−1)k ϕ(k)(0).

Example 2. In the sense of distribution, H′(t) = δ(t) because for any ϕ(t) ∈ D, we have

〈H′(t), ϕ(t)〉 = −〈H(t), ϕ′(t)〉 = ϕ(0) = 〈δ, ϕ(t)〉.

Definition 4. Let α(t) be an infinitely differentiable function. We define the product of α(t) with
any distribution T in D′ by 〈α(t)T, ϕ(t)〉 = 〈T, α(t)ϕ(t)〉, for all ϕ(t) ∈ D. We should note that
α(t)ϕ(t) ∈ D if ϕ(t) ∈ D.

Definition 5. Let y(t) be a singular distribution that satisfies the equation

n

∑
m=0

am(t)y(n)(t) = f (t) (11)

in the sense of distribution, where am(t) is an infinitely differentiable function for each m =
0, 1, . . . , n and f (t) is an arbitrary known distribution. Function y(t) is called a distributional
solution of Equation (11).

Definition 6. Let M ∈ R and f (t) be a locally integrable function satisfying the following conditions:

(i) f (t) = 0 for all t < M;
(ii) There exists a real number, c, such that e−ct f (t) is absolutely integrable over R.
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The Laplace transform of f (t) is defined by

F(s) = L{ f (t)} =
∫ ∞

M
f (t)e−stdt, (12)

where s is a complex variable.

It is well known that if f (t) is continuous then F(s) is an analytic function on the
half-plane <(s) > σa, where σa is an abscissa of absolute convergence for L{ f (t)}.

Recall that the Laplace transform, G(s), of a locally integrable function, g(t), satisfies
the conditions of Definition 6, that is,

G(s) = L{g(t)} =
∫ ∞

M
g(t)e−stdt, (13)

where <(s) > σa. Then, G(s) can be written in the form G(s) =
〈

g(t), e−st〉.
Definition 7. The space S of test functions of rapid decay consists of all complex-valued functions,
ϕ(t), defined on R, that have the following properties:

(i) ϕ(t) is infinitely smooth;
(ii) ϕ(t), together with their derivatives of all orders, decrease to zero faster than every power of

|t|, i.e., they satisfy the inequality

|tpφ(k)(t)| < Cpk,

where Cpk is a constant that depends on non-negative integers p, k, and ϕ(t);
(iii) ϕ(t) satisfies

‖ϕ‖p,k = sup
t∈R
|tp ϕ(k)(t)| < +∞,

where ‖ · ‖p,k is a collection of seminorms.

Definition 8. A distribution of slow growth, or a tempered distribution T, is a continuous
and linear functional over the space S. That is, the complex number, denoted by 〈T, ϕ(t)〉, that T
assigns to each test function of rapid decay, ϕ(t), has the following properties:

(i) For every ϕ1, ϕ2 ∈ S and constants c1, c2,

〈T, c1 ϕ1(t) + c2 ϕ2(t)〉 = c1〈T, ϕ1(t)〉+ c2〈T, ϕ2(t)〉;

(ii) For every null sequence {ϕm(t)} ⊂ S,

lim
m→∞

〈T, ϕm(t)〉 = 0.

The set of all tempered distributions is denoted by S
′
.

Definition 9. Let f (t) be a distribution satisfying the following properties:

(i) f (t) is a right-sided distribution, that is, f (t) ∈ D′R;
(ii) There exists a real number, c, such that e−ct f (t) is a tempered distribution.

The Laplace transform of a right-sided distribution f (t) satisfying (ii) is defined by

F(s) = L{ f (t)} =
〈

e−ct f (t), X(t)e−(s−c)t
〉

, (14)

where X(t) is an infinitely differentiable function with a support bounded on the left, which equals
1 over a neighbourhood of the support of f (t).
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For <(s) > c, the function X(t)e−(s−c)t is a testing function in the space S and e−ct f (t)
is in the space S′. Then, the Laplace transform (14) can be reduced to

F(s) = L{ f (t)} =
〈

f (t), e−st〉. (15)

Now, F(s) is a function of s defined over the right half-plane <(s) > c. Zemanian [21]
proved that F(s) is an analytic function in the region of convergence <(s) > σ1, where σ1 is
the abscissa of convergence and e−ct f (t) ∈ S′ for some real number c > σ1.

Lemma 1. Let f (t) be a Laplace-transformable distribution in D′R. If k is a positive integer then
the following hold:

(i) L{(tk−1H(t))/(k− 1)!} = 1/sk, <(s) > 0;
(ii) L{δ(t)} = 1, −∞ < <(s) < ∞;

(iii) L
{

δ(k)(t)
}
= sk, −∞ < <(s) < ∞;

(iv) L
{

tk f (t)
}
= (−1)kF(k)(s), <(s) > σ1;

(v) L
{

f (k)(t)
}
= skF(s), <(s) > σ1.

Lemma 2. If α(t) is infinitely differentiable then

α(t)δ(m)(t) =
m

∑
k=0

(−1)m−k
(

m
k

)
α(m−k)(0)δ(k)(t). (16)

Applying Lemma 2 (see the proof in [1]) to any monomial α(t) = tn with the observa-
tion that

(tn)(m−k)
∣∣∣
t=0

=

{
0, if m− k 6= n;
n!, if m− k = n.

yields a useful formula:

tnδ(m)(t) =


0, if m < n;

(−1)n m!
(m− n)!

δ(m−n)(t), if m ≥ n.
(17)

3. Main Results

In this section, we make use of the Laplace transform and the power series method to
find distributional solutions of ODEs (9) and (10), as shown in the following Theorems 1 and 2.

Theorem 1. Consider the modified Bessel equation

t2y′′(t) + ty′(t)− [t2 + (ν + 1)2]y(t) = 0, (18)

where ν ∈ N∪ {0} and t ∈ R. The distributional solution of Equation (18) is given by

y(t) = Uν(D)δ(t), (19)

while

Uν(D) =
bν/2c

∑
k=0

(−1)k 2ν−2k(ν− k)!
k!(ν− 2k)!

Dν−2k (20)

is the Chebyshev polynomial, in D, of the second kind, and D = d/dt is the distributional
derivative operator.
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Proof. Let us denote Y(s) = L{y(t)}. Appealing to (iv) and (v) of Lemma 1, the Laplace
transformation of Equation (18) yields

(1− s2)Y′′(s)− 3sY′(s) + ν(ν + 2)Y(s) = 0. (21)

We assume a solution of Equation (21) takes the form of Y(s) = ∑∞
n=0 ansn and calculate

the derivatives

Y′(s) =
∞

∑
n=1

nansn−1 and Y′′(s) =
∞

∑
n=2

n(n− 1)ansn−2.

Substituting these forms into Equation (21) gives us

[2(1)a2 + ν(ν + 2)a0] + [3(2)a3 − (3(1)− ν(ν + 2))a1]s

+
∞

∑
n=2

[(n + 2)(n + 1)an+2 − n(n− 1)an − 3nan + ν(ν + 2)an]sn = 0.

Since sn 6= 0 for all n ≥ 0, it follows that

2a2 + ν(ν + 2)a0 = 0, (3 · 2)a3 − (3− ν(ν + 2))a1 = 0,

(n + 2)(n + 1)an+2 − [n(n− 1) + 3n− ν(ν + 2)]an = 0, n ≥ 2,
(22)

which can be grouped into a recursion formula

an+2 = − (ν− n)(ν + n + 2)
(n + 2)(n + 1)

an, n ≥ 0. (23)

Calculation of the coefficients from the recurrence relation in (23) leads to the following:

a2 = − (ν)(ν + 2)
2!

a0

a4 = (−1)2 (ν− 2)(ν)(ν + 2)(ν + 4)
4!

a0

...

a2n = (−1)n (ν− 2n + 2) · · · (ν− 2)(ν)(ν + 2)(ν + 4) · · · (ν + 2n)
(2n)!

a0.

Similarly,

a3 = − (ν− 1)(ν + 3)
3!

a1

a5 = (−1)2 (ν− 3)(ν− 1)(ν + 3)(ν + 5)
5!

a1

...

a2n+1 = (−1)n (ν− 2n + 1) · · · (ν− 3)(ν− 1)(ν + 3)(ν + 5) · · · (ν + 2n + 1)
(2n + 1)!

a1.

With a0 = 1, a1 = 0 in one case and a0 = 0, a1 = 1 in another, we obtain two linearly
independent solutions of Equation (21) as

Ye(s) = 1 +
∞

∑
n=1

(−1)n (ν− 2n + 2) · · · (ν− 2)(ν)(ν + 2)(ν + 4) · · · (ν + 2n)
(2n)!

s2n
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and

Yo(s) = s +
∞

∑
n=1

(−1)n (ν− 2n + 1) · · · (ν− 3)(ν− 1)(ν + 3)(ν + 5) · · · (ν + 2n + 1)
(2n + 1)!

s2n+1,

respectively.
Now, consider the case when ν is an even number. Writing ν = 2m for a non-negative

integer, m, we have

(ν− 2n + 2) · · · (ν− 2)ν =


0, if m = 0;

2nm!
(m− n)!

, if m ≥ n ≥ 1;

0, if n > m ≥ 1.

and

(ν + 2)(ν + 4) · · · (ν + 2n) =
2n(m + n)!

m!
.

Hence Ye(s) reduces to a finite series

Ye(s) =
m

∑
k=0

(−1)k22k(m + k)!
(m− k)!(2k)!

s2k. (24)

Next consider the case when ν is an odd number. Writing ν = 2m + 1 for a non-
negative integer, m, we have

(ν− 2n + 1) · · · (ν− 3)(ν− 1) =


0, if m = 0;

2nm!
(m− n)!

, if m ≥ n ≥ 1;

0, if n > m ≥ 1,

and

(ν + 3)(ν + 5) · · · (ν + 2n + 1) =
2n(m + n + 1)!

(m + 1)!
.

Such as in the case of an even integer, Yo(s) reduces to a finite series

Yo(s) =
1

m + 1

m

∑
k=0

(−1)k22k(m + k + 1)!
(m− k)!(2k + 1)!

s2k+1. (25)

For ν = 0, 1, 2, . . ., we have Yν(s) as follows:

Y0(s) = 1 = U0(s),

Y1(s) = s =
1
2

U1(s),

Y2(s) = 1− 4s2 = −U2(s),

Y3(s) = s− 2s3 = −1
4

U3(s),

Y4(s) = 1− 12s2 + 16s4 = U4(s),

Y5(s) = s− 16
3

s3 +
16
3

s5 =
1
6

U5(s),

Y6(s) = 1− 24s2 + 80s4 − 64s6 = −U6(s),

Y7(s) = s− 10s3 + 24s5 − 16s7 = −1
8

U7(s),
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etc. Here, Uν(s) is the Chebyshev polynomial [22], in s, of the second kind. As Equation (21)
is homogeneous and linear, the Chebyshev polynomial is also a solution. Appealing to (ii)
and (iii) of Lemma 1, the inverse Laplace transform of Uν(s) gives us the distributional
solutions of Equation (18) in the form

y(t) =
bν/2c

∑
k=0

(−1)k 2ν−2k(ν− k)!
k!(ν− 2k)!

Dν−2kδ(t)

= Uν(D)δ(t),

(26)

where Uν(D) is the Chebyshev polynomial, in D, of the second kind and D = d/dt is the
distributional derivative operator.

Example 3. For ν = 1, Equation (18) appears as

t2y′′(t) + ty′(t)− (t2 + 4)y(t) = 0, (27)

which has a solution, according to Theorem 1. According to Theorem 1, Equation (27) also has
a solution,

y(t) = 2δ′(t). (28)

For ν = 4, Equation (18) appears as

t2y′′(t) + ty′(t)− (t2 + 25)y(t) = 0, (29)

which has a solution, according to Theorem 1,

y(t) = 16δ(4)(t)− 12δ′′(t) + δ(t). (30)

With the help of formula (17), it is straight forward to check that distributions in (28) and (30)
satisfy Equations (27) and (29), respectively.

Theorem 2. Consider the equation of the form

t2y′′(t) + 2(1− γ)ty′(t)− [t2 + 2γ + ν(ν + 2γ + 1)]y(t) = 0, (31)

where ν ∈ N∪ {0} and γ, t ∈ R. The distributional solution of Equation (31) is given by

y(t) = Cγ
ν (D)δ(t), (32)

while

Cγ
ν (D) =

bν/2c

∑
k=0

(−1)k 2ν−2kΓ(ν + λ− k)
k!(ν− 2k)!Γ(λ)

Dν−2k (33)

is the Gegenbauer polynomial in terms of the distributional derivative operator, D = d/dt, Γ is the
gamma function, and

λ = γ +
1
2
> 0. (34)

Proof. Let us denote Y(s) = L{y(t)}. Appealing to (iv) and (v) of Lemma 1 the Laplace
transformation of both sides of Equation (31) yields

(1− s2)Y′′(s)− 2(1 + γ)sY′(s) + (ν2 + 2γν + ν)Y(s) = 0. (35)

We assume a solution of Equation (35) takes the form of Y(s) = ∑∞
n=0 ansn and calculate

the derivatives:
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Y′(s) =
∞

∑
n=1

nansn−1 and Y′′(s) =
∞

∑
n=2

n(n− 1)ansn−2.

Substituting these forms into Equation (35) gives us[
2(1)a2 + (ν2 + 2γν + ν)a0

]
+
{

3(2)a3 −
[
2(1 + γ)− (ν2 + 2γν + ν)

]
a1

}
s

+
∞

∑
n=2

{
(n + 2)(n + 1)an+2 −

[
n(n− 1) + 2(1 + γ)n− (ν2 + 2γν + ν)

]
an

}
sn = 0.

Since sn 6= 0 for all n ≥ 0, it follows that

2a2 + (ν2 + 2γν + ν)a0 = 0, 6a3 −
[
2(1 + γ)− (ν2 + 2γν + ν)

]
a1 = 0,

(n + 2)(n + 1)an+2 −
[
n(n− 1) + 2(1 + γ)n− (ν2 + 2γν + ν)

]
an = 0, n ≥ 2,

which can be grouped into a recursion formula

an+2 = − (ν− n)(ν + n + 1 + 2γ)

(n + 2)(n + 1)
an, n ≥ 0. (36)

Calculation of the coefficients from the recurrence relation in (36) leads to the following:

a2 =
−(ν)(ν + 1 + 2γ)

2!
a0,

a4 =
(−1)2(ν− 2)(ν)(ν + 1 + 2γ)(ν + 3 + 2γ)

4!
a0,

...

a2n =
(−1)n(ν− 2n + 2) · · · (ν− 2)(ν)(ν + 1 + 2γ)(ν + 3 + 2γ) · · · (ν + 2n− 1 + 2γ)

(2n)!
a0.

Similarly,

a3 =
−(ν− 1)(ν + 2 + 2γ)

3!
a1,

a5 =
(−1)2(ν− 3)(ν− 1)(ν + 2 + 2γ)(ν + 4 + 2γ)

5!
a1,

...

a2n+1 =
(−1)n(ν− 2n + 1) · · · (ν− 3)(ν− 1)(ν + 2 + 2γ)(ν + 4 + 2γ) · · · (ν + 2n + 2γ)

(2n + 1)!
a1.

With a0 = 1, a1 = 0 in one case and a0 = 0, a1 = 1 in the others, we obtain two linearly
independent solutions of Equation (35) as

Ye(s) = 1 +
∞

∑
n=1

(−1)n (ν− 2n + 2) · · · (ν− 2)(ν)(ν + 1 + 2γ)(ν + 3 + 2γ) · · · (ν + 2n− 1 + 2γ)

(2n)!
s2n

and

Yo(s) = s +
∞

∑
n=1

(−1)n (ν− 2n + 1) · · · (ν− 3)(ν− 1)(ν + 2 + 2γ)(ν + 4 + 2γ) · · · (ν + 2n + 2γ)

(2n + 1)!
s2n+1,

respectively. Now consider the case when ν is an even number. Writing ν = 2m for a
non-negative integer, m, we have
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(ν− 2n + 2) · · · (ν− 2)(ν) =


0, if m = 0;

2nm!
(m− n)!

, if m ≥ n ≥ 1;

0, if n > m ≥ 1.

and

(ν + 1 + 2γ)(ν + 3 + 2γ) · · · (ν + 2n− 1 + 2γ) =
2nΓ(m + λ + n)

Γ(m + λ)
,

where λ = γ + 1/2 > 0 and Γ is the gamma function. Hence, Ye(s) reduces to a finite series

Ye(s) = 1 + m!
m

∑
n=1

(−1)n22n

(m− n)!(2n)!
Γ(m + λ + n)

Γ(m + λ)
s2n

= m!
m

∑
n=0

(−1)n22n

(m− n)!(2n)!
Γ(m + λ + n)

Γ(m + λ)
s2n

=
(−1)mm!Γ(λ)

Γ(m + λ)

m

∑
k=0

(−1)k 22m−2kΓ(2m + λ− k)
k!(2m− 2k)!Γ(λ)

s2m−2k

=
(−1)mm!Γ(λ)

Γ(m + λ)
Cγ

2m(s), (37)

where Cγ
2m(s) is the Gegenbauer polynomial of s with degree 2m.

Next, consider the case when ν is an odd number. Writing ν = 2m + 1 for a non-
negative integer, m, we have

(ν− 2n + 1) · · · (ν− 3)(ν− 1) =


0, if m = 0;

2nm!
(m− n)!

, if m ≥ n ≥ 1;

0, if n > m ≥ 1.

and

(ν + 2 + 2γ)(ν + 4 + 2γ) · · · (ν + 2n + 2γ) =
2nΓ(m + λ + n + 1)

Γ(m + λ + 1)
,

where λ = γ + 1/2 > 0.
Such as in the case of an even integer, Yo(s) reduces to a finite series

Yo(s) = s + m!
m

∑
n=1

(−1)n22n

(m− n)!(2n + 1)!
Γ(m + λ + n + 1)

Γ(m + λ + 1)
s2n+1

= m!
m

∑
n=0

(−1)n22n

(m− n)!(2n + 1)!
Γ(m + λ + n + 1)

Γ(m + λ + 1)
s2n+1

=
(−1)mm!Γ(λ)
2Γ(m + λ + 1)

m

∑
k=0

(−1)k 22m+1−2kΓ(2m + 1 + λ− k)
k!(2m + 1− 2k)!Γ(λ)

s2m+1−2k

=
(−1)mm!Γ(λ)
2Γ(m + λ + 1)

Cγ
2m+1(s), (38)

where Cγ
2m+1(s) is the Gegenbauer polynomial of s with degree 2m + 1. As Equation (35) is

linear and homogeneous, Cγ
ν , in the forms of (37) and (38), is its solution for ν = 0, 1, 2, . . . .
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Appealing to (ii) and (iii) in Lemma 1, the inverse Laplace transform of Cγ
ν (s) gives us the

distributional solutions of Equation (31) in the form

y(t) =
bν/2c

∑
k=0

(−1)k 2ν−2kΓ(ν + λ− k)
k!(ν− 2k)!Γ(λ)

Dν−2kδ(t)

= Cγ
ν (D)δ(t),

(39)

where Cγ
ν (D) is the Gegenbauer polynomial in terms of the distributional derivative opera-

tor, D = d/dt.

To shorten our notation, from now on we shall refer to the distributional derivative
operator as D.

Remark 1.

(i) If γ = 0 then Equation (31) reduces to

t2y′′(t) + 2ty′(t)− [t2 + ν(ν + 1)]y(t) = 0, (40)

whose distribution solution, from Formula (32), is

y(t) = Pν(D)δ(t), (41)

where

Pν(D) =
1
2ν

bν/2c

∑
k=0

(−1)k (2ν− 2k)!
k!(ν− k)!(ν− 2k)!

Dν−2k

is the Legendre polynomial in D (see [3]);
(ii) If γ = −1/2 then Equation (31) reduces to

t2y′′(t) + 3ty′(t)− (t2 + ν2 − 1)y(t) = 0, (42)

whose distributional solution is

y(t) = Tν(D)δ(t), (43)

where

Tν(D) =
ν

2

bν/2c

∑
k=0

(−1)k 2ν−2k(ν− k− 1)!
k!(ν− 2k)!

Dν−2k

is the Chebyshev polynomial, in D, of the first kind (see [15]);
(iii) If γ = 1/2 then Equation (31) reduces to Equation (18),

t2y′′(t) + ty′(t)− [t2 + (ν + 1)2]y(t) = 0, (44)

whose distribution solution, from Formula (32), is

y(t) = Uν(D)δ(t), (45)

where

Uν(D) =
bν/2c

∑
k=0

(−1)k 2ν−2k(ν− k)!
k!(ν− 2k)!

Dν−2k

is the Chebyshev polynomial, in D, of the second kind, which appears in Theorem 1.

Example 4. For γ = 5 and ν = 2, Equation (31) appears as

t2y′′(t)− 8ty′(t)− (t2 + 36)y(t) = 0, (46)
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whose solution, according to Theorem 2, is

y(t) =
143

2
δ′′(t)− 11

2
δ(t). (47)

For γ = 0 and ν = 3, Equation (31) appears as

t2y′′(t) + 2ty′(t)− (t2 + 12)y(t) = 0, (48)

whose solution, according to Theorem 2, is

y(t) =
5
2

δ′′′(t)− 3
2

δ′(t). (49)

For γ = 1/2 and ν = 4, Equation (31) appears as

t2y′′(t) + ty′(t)− (t2 + 25)y(t) = 0, (50)

whose solution, according to Theorem 2, is

y(t) = 16δ(4)(t)− 12δ′′(t) + δ(t), (51)

which coincides with the solution in (30) in Example 3. With the help of Formula (17), it is
straight forward to check that distributions (47), (49), and (51) satisfy Equations (46), (48),
and (50), respectively.

4. Conclusions

Within the space of right-sided distributions, we derived the distributional solutions
of the modified Bessel equation, Equation (18), and its related equation, Equation (31), by
employing the Laplace transform and the power series method. Relying on the values of
ν and γ, we found that our distributional solutions of Equations (18) and (31) could be
perceived as the Chebyshev polynomial, in D, of the second kind and the Gegenbauer
polynomial, in D, acting on the Dirac delta functions, respectively. Evidently there are
classical solutions of both equations that are not stated here, but they can be found in
mainstream textbooks.
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