Existence and regularity results for a system of Λ-Hilfer fractional differential equations by the generalized Lax-Milgram theorem

Mohammad Bagher Ghaemi • Fatemeh Mottaghi • Chenkuan Li • Reza Saadati(D)

Received: 4 May 2022 / Accepted: 17 April 2023
© The Indian National Science Academy 2023

Abstract

We study the existence of weak solutions for a system and a coupled system of Λ-Hilfer fractional differential equations on compact domains using the Lax-Milgram and Minty-Browder theorems. Furthermore, we provide an illustrative example, and a regularity result to imply that the obtained solution is classical.

Keywords Λ-Hilfer fractional differential equation \cdot Lax-Milgram theorem \cdot Minty-Browder theorem \cdot Weak solution • Regularity

Mathematics Subject Classification 34A08•26A33 34B08

1 Introduction

Fractional differential equations (in short FDEs) are useful in a variety of domains, including physics, biology, and engineering, (see [1-7] and references therein). The variational approach to FDEs articulated in boundary value issues, p-Laplacian problems, critical point theory (CPT) problems, and so on is gaining popularity [8-10]. For example, Jiao and Zhou [11] used CPT to prove the existence and uniqueness of solutions for FBV equations on a variational structure. In addition, [12] applying the same theory proved the existence and uniqueness results for fractional p-Laplacian in the Caputo sense, under the Dirichlet boundary condition with mixed derivatives and integral boundary constraints. Fattahi and Alimohammady [13] studied the existing solutions for an FBV problem utilizing non-smooth CPT and variational approaches in 2017. For more results, one can see [14,15] and references therein.

Motivated by the research described above and to further investigate in the field, the main goals of our study focus on the following:

1. Applying the Lax-Milgram theorem we prove the existence and uniqueness of solutions to a class of FDEs. Moreover, we present a regularity result for the solution and demonstrate an example using our main theorem.
2. Applying the Minty- Browder theorem to extend our result to a system of coupled of FDEs.
[^0]
2 Preliminaries

We begin by recalling some fundamental definitions of Λ-Riemann-Liouville fractional integral, Λ-Hilfer fractional derivative and variational definitions and related results. We refer readers to $[14,15]$ and references therein for more details.

Definition 1 Let $\kappa \in(0,1]$ and $\theta \in[0,1]$. The Λ-fractional derivative space(in short Λ-FDS) $\mathcal{H}_{2}^{\kappa, \theta, \Lambda}:=$ $\left.\mathcal{H}_{2}^{\kappa, \theta, \Lambda}([0, \mathcal{T}], \mathbb{R})\right)$ is defined as the space $\overline{C_{0}^{\infty}([0, \mathcal{T}], \mathbb{R})}$. That is,

$$
\begin{aligned}
\mathcal{H}_{2}^{\kappa, \theta, \Lambda} & =\left\{\vartheta \in \mathcal{L}^{2}([0, \mathcal{T}], \mathbb{R}): \quad{ }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \vartheta \in \mathcal{L}^{2}([0, \mathcal{T}], \mathbb{R}) \text { and } I_{0^{+}}^{\theta(\theta-1)} \vartheta(0)=I_{0^{+}}^{\theta(\theta-1)} \vartheta(\mathcal{T})=0\right\} \\
& =\overline{\left.C_{0}^{\infty}([0, \mathcal{T}], \mathbb{R})\right)},
\end{aligned}
$$

with the norm

$$
\|\vartheta\|_{\mathcal{H}_{2}^{\kappa, \theta, \Lambda}}=\left(\|\vartheta\|_{\mathcal{L}_{2}}^{2}+\| \|_{0^{+}}^{H} \mathfrak{D}^{\kappa, \theta ; \Lambda} \vartheta \|_{\mathcal{L}_{2}}^{2}\right)^{1 / 2}
$$

The $\Lambda-\operatorname{FDS} \mathcal{H}_{2}^{\kappa, \theta, \Lambda}$ is a reflexive and separable Banach space, for $0<\kappa \leq 1$ and $0 \leq \theta \leq 1$.
The following Theorems 1 and 2, as well as Remark 1 can be found from [14,15].
Theorem 1 Let $\kappa>1 / 2$ and $\theta \in[0,1]$. If the sequence $\left\{\varrho_{n}\right\}$ converges weakly to ϱ in $\mathcal{H}_{2}^{\kappa, \theta, \Lambda}$, then $\varrho_{n} \longrightarrow \varrho$ in $C[0, \mathcal{T}]$.

Remark 1 For all $\mathfrak{w} \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}$ we have $\|\mathfrak{w}\|_{\infty} \leq \frac{(\Lambda(\mathcal{T})-\Lambda(0))^{\kappa-1 / 2}}{\Gamma(\kappa)(2 \kappa-1)^{1 / 2}}\|\mathfrak{w}\|_{\mathcal{H}_{2}^{\kappa, \theta, \Lambda}}$.
We recall the generalizations of the Lax-Milgram theorem [14,15] and Browder-Minty theorem [16], which will play an important role in presenting existence results of our FDEs and coupled system of FDEs respectively below.

The Generalization of the Lax-Milgram Theorem
Theorem 2 Let \mathcal{H} be a Hilbert space, $\mathcal{B}\left(\omega_{1}, \omega_{2}\right): \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ be a continuous coercive bilinear form, and $\mathcal{F}: \mathcal{H} \rightarrow \mathcal{H}^{*}$ satisfy:
(K1) For some positive constant C we have $\|\mathcal{F}(\omega)\|_{\mathcal{H}} \leq C$ for all $\omega \in N_{1}(0)$, where $N_{1}(0)$ stands for unit ball in \mathcal{H}.
(K2) If $\left\{\omega_{n}\right\}$ is a sequence in \mathcal{H} so that $\omega_{n} \rightharpoonup \omega$ weakly in \mathcal{H}, then the sequence $\left\{\mathcal{F}\left(\omega_{n}\right)\right\}$ has a subsequence $\left\{\mathcal{F}\left(\omega_{n_{k}}\right)\right\}$ such that $\mathcal{F}\left(\omega_{n_{k}}\right) \rightharpoonup \mathcal{F}(\omega)$ weakly in \mathcal{H}.

Then for some constant $C_{\mathcal{H}}>0$, there exists an element $\tilde{\omega} \in \mathcal{H}$ such that $\mathcal{B}(\tilde{\omega}, \omega)=\lambda \prec \mathcal{F}(\tilde{\omega}), \omega \succ$, for all $\omega \in \mathcal{H}$ and $|\lambda| \leq 1$.

The Browder-Minty Theorem

Theorem 3 ([16]) Assume that Ξ is a separable, reflexive Banach space, and $\mathfrak{A}: \Xi \longrightarrow \Xi^{*}$ is a monotone and continuous mapping on finite dimensional subspace, and assume that \mathfrak{A} is coercive in the sense that

$$
\frac{\prec \mathfrak{A} \varphi, \varphi \succ}{\|\varphi\|_{\Xi}} \longrightarrow \infty \quad \text { as } \quad\|\varphi\|_{\Xi} \longrightarrow \infty
$$

Then for all $\mathfrak{F} \in \Xi^{*}$, there exists $\varphi \in \Xi$ such that $\mathfrak{A} \varphi=\mathfrak{F}$.

3 Existence results

We first prove that there exists at least a weak solution for the following FDE, then we state some conditions so that the weak solution can be classical. Let $\kappa \in(1 / 2,1), \theta \in[0,1]$. Assume ${ }^{H} \mathfrak{D}_{T^{-}}^{\kappa, \theta ; \Lambda}($.$) and { }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda}($.$) are the$ Λ-Hilfer fractional derivatives left-sided and right-sided of order κ and type θ, and consider

$$
\left\{\begin{array}{l}
H_{\mathfrak{D}^{-}}^{\kappa, \theta ; \Lambda}\left({ }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \mathfrak{w}(\eta)\right)-\mathcal{A}(\mathfrak{w}(\eta))=\lambda\left[\mathfrak{g}(\eta, \mathfrak{w}(\eta))+\int_{0}^{\eta} \mathfrak{h}(s, \mathfrak{w}(s)) d s\right], \tag{1}\\
I_{0^{+}}^{\theta(\theta-1) ; \Lambda} \mathfrak{w}(0)=I_{0^{+}}^{\theta(\theta-1) ; \Lambda} \mathfrak{w}\left(\mathcal{T}^{-}\right)=0,
\end{array}\right.
$$

where the boundary conditions are given by the Λ-Riemann-Liouville left and right sided fractional integrals. Moreover, λ is a parameter, the operator $\mathfrak{g}:[0, \mathcal{T}] \times \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous mapping, $\mathfrak{h}:[0, \mathcal{T}] \times \mathbb{R} \longrightarrow \mathbb{R}$ is an integrable function, and \mathcal{A} is a bounded linear operator.
Definition 2 A function $\mathfrak{w} \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$ is a weak solution of (1) if $\int_{0}^{\mathcal{T}}\left({ }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \mathfrak{w}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \phi(\eta)-\mathcal{A}(\mathfrak{w}(\eta)) \phi(\eta)\right) d \eta=\lambda \int_{0}^{\mathcal{T}}\left[\mathfrak{g}(\eta, \mathfrak{w}(\eta))+\mu \int_{0}^{\eta} \mathfrak{h}(s, \mathfrak{w}(s)) d s\right] \phi(\eta) d \eta$, for all $\phi \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$.

Also, a function $\mathfrak{w} \in \mathcal{C}[0, \mathcal{T}]$ is a classical solution of (1) if it satisfies Equation (1) and its boundary conditions.

Theorem 4 Assume that $\kappa \in\left(\frac{1}{2}, 1\right], \theta \in[0,1], \mathfrak{g} \in C([0, \mathcal{T}] \times \mathbb{R}, \mathbb{R})$ is a continuous mapping, $\mathfrak{h}:[0, \mathcal{T}] \times$ $\mathbb{R} \longrightarrow \mathbb{R}$ is an integrable function, and \mathcal{A} is a bounded linear operator. Also take
$\zeta:=\max \left\{\mathfrak{g}(\eta, \nu)+\int_{0}^{\eta} \mathfrak{h}(s, \nu) d s: \quad(\eta, \nu) \in[0, \mathcal{T}] \times\left[\frac{-(\Lambda(\mathcal{T})-\Lambda(0))^{\kappa-1 / 2}}{\Gamma(\kappa)(2 \kappa-1)^{1 / 2}}, \frac{(\Lambda(\mathcal{T})-\Lambda(0))^{\kappa-1 / 2}}{\Gamma(\kappa)(2 \kappa-1)^{1 / 2}}\right]\right\}$.

Then for every $|\lambda|<\frac{1}{\zeta(\Lambda(\mathcal{T})-\Lambda(0))^{1 / 2}} F D E$ (1) has at least one weak solution.
Proof To prove this theorem, we consider the following bilinear form $\mathcal{B}(\mathfrak{w}, \phi)$ and show that it satisfies the condition of the Lax-Milgram theorem:

$$
\mathcal{B}(\mathfrak{w}, \phi):=\int_{0}^{\mathcal{T}}\left({ }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \mathfrak{w}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \phi(\eta)-\mathcal{A}(\mathfrak{w}(\eta)) \phi(\eta)\right) d \eta .
$$

Using Holder's inequality and boundedness of the operator \mathcal{A} we obtain that
$|\mathcal{B}(\mathfrak{w}, \phi)| \leq\left\|\left.\right|^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \mathfrak{w}(\eta)\right\| \mathcal{L}_{2}\left\|^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \phi(\eta)\right\|_{\mathcal{L}_{2}}+\left\|\mathcal{A}\left|\|| | \mathfrak{w}\| \mathcal{L}_{2}\|\phi\|_{\mathcal{L}_{2}} \leq(1+\|\mathcal{A}\|)\|\mathfrak{w}\|_{\mathcal{H}_{2}^{\kappa, \theta, \Lambda}}\|\phi\|_{\mathcal{H}_{2}^{\kappa, \theta,},}(3)\right.\right.$ and $|\mathcal{B}(\mathfrak{w}, \mathfrak{w})| \geq\|\mathfrak{w}\|_{\mathcal{H}_{2}^{\kappa, \theta, \Lambda}}^{2}$. Therefore, \mathcal{B} is a continuous, bounded and coercive bilinear form on $\mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$.

Now, we set the operator $\Theta: \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}] \rightarrow\left(\mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]\right)^{*}$ as follows:

$$
\prec \Theta(\mathfrak{w}), \phi \succ=\int_{0}^{\mathcal{T}}(\mathfrak{g}(\eta, \mathfrak{w}(\eta))+\mathcal{F}(\eta, \mathfrak{w}(\eta))) \phi(\eta) d \eta,
$$

where $\mathcal{F}(\eta, \mathfrak{w}(\eta))=\int_{0}^{\eta} \mathfrak{h}(s, \mathfrak{w}(s)) d s$.
Assume that $\mathfrak{w} \in N_{1}(0) \subset \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$, so $\|\mathfrak{w}\|_{\mathcal{H}_{2}^{\kappa, \theta, \Lambda}} \leq 1$, and by Remark 1 we have $\Gamma(\kappa)(2 \kappa-$ $1)^{1 / 2}\|\mathfrak{w}\|_{\infty} \leq(\Lambda(\mathcal{T})-\Lambda(0))^{\kappa-1 / 2}$, for all $\eta \in[0, \mathcal{T}]$. So, we deduce that $\left|\mathfrak{g}(\eta, \mathfrak{w}(\eta))+\int_{0}^{\eta} \mathfrak{h}(s, \mathfrak{w}(s)) d s\right| \leq \zeta$, where ζ is defined in (2). For any arbitrary $\phi \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}$ with $\|\phi\|_{\mathcal{H}_{2}^{\kappa, \theta, \Lambda}}=1$ we have

$$
\begin{aligned}
\mid \prec \Theta(\mathfrak{w}), \phi \succ 1 & \\
& \leq \int_{0}^{\mathcal{T}}(\mathfrak{g}(\eta, \mathfrak{w}(\eta))+\mathcal{F}(\eta, \mathfrak{w}(\eta))) \phi(\eta) d \eta
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\int_{0}^{\mathcal{T}}|(\mathfrak{g}(\eta, \mathfrak{w}(\eta))+\mathcal{F}(\eta, \mathfrak{w}(\eta)))|^{2} d \eta\right)^{1 / 2}\|\phi(\eta)\|_{\mathcal{L}^{2}} \\
& \leq \mathcal{T} \sqrt{\zeta}
\end{aligned}
$$

where $\mathcal{F}(\eta, \mathfrak{w}(\eta))=\int_{0}^{\eta} \mathfrak{h}(s, \mathfrak{w}(s)) d s$. Choosing $C_{\mathcal{F}}=\mathcal{T} \sqrt{\zeta}$ we show that hypothesis (H1) in the Lax-Milgram theorem holds.

Next, we assume that $\left\{\omega_{n}\right\}$ is an arbitrary sequence in $\mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$ which is weakly convergent in the space. Using Theorem 1 we have $\omega_{n}(\eta) \rightarrow \omega(\eta)$ for all $\eta \in[0, \mathcal{T}]$. Applying continuity of $\mathfrak{g}(\eta, w(\eta))+\int_{0}^{\eta} \mathfrak{h}(s, w(s)) d s$, we come to

$$
\begin{equation*}
\mathfrak{g}\left(\eta, \omega_{n}(\eta)\right)+\int_{0}^{\eta} \mathfrak{h}\left(s, \omega_{n}(s)\right) d s \rightarrow \mathfrak{g}(\eta, \omega(\eta))+\int_{0}^{\eta} \mathfrak{h}(s, \omega(s)) d s \tag{4}
\end{equation*}
$$

whenever n tends to infinity, and for all $\eta \in[0, \mathcal{T}]$. Since $\left\{\omega_{n}\right\}$ is bounded, there exists a positive constant C_{ω} such that $\left\|\omega_{n}\right\| \leq C_{\omega}$, for every $n \in \mathbb{N}$. In addition, from Remark 1 we have $\Gamma(\kappa)(2 \kappa-1)^{1 / 2}\left\|\omega_{n}\right\|_{\infty} \leq$ $C_{\omega}(\Lambda(\mathcal{T})-\Lambda(0))^{\kappa-1 / 2}$, for all $\eta \in[0, \mathcal{T}]$. Hence we can conclude that there exists a positive constant ζ^{\prime} such that

$$
\begin{equation*}
\left|\mathfrak{g}\left(\eta, \omega_{n}(\eta)\right)+\int_{0}^{\eta} \mathfrak{h}\left(s, \omega_{n}(s)\right) d s\right| \leq \zeta^{\prime} \tag{5}
\end{equation*}
$$

for all $\eta \in[0, \mathcal{T}]$, and $n \in \mathbb{N}$. Therefore, from (4), (5) and the Lebesgue dominated theorem, we obtain that

$$
\begin{aligned}
& \int_{0}^{\mathcal{T}}\left|\mathfrak{g}\left(\eta, \omega_{n}(\eta)\right)-\mathfrak{g}(\eta, \omega(\eta))+\int_{0}^{\eta} \mathfrak{h}\left(s, \omega_{n}(s)\right) d s-\int_{0}^{\eta} \mathfrak{h}\left(s, \omega_{n}(s)\right) d s\right| d \eta \leq \\
& \int_{0}^{\mathcal{T}}\left|\left(\mathfrak{g}\left(\eta, \omega_{n}(\eta)\right)-\mathfrak{g}(\eta, \omega(\eta))\right) d \eta+\int_{0}^{\mathcal{T}} \int_{0}^{\eta}\right| \mathfrak{h}\left(s, \omega_{n}(s)\right)-\mathfrak{h}\left(s, \omega_{n}(s)\right) d s \mid d \eta \rightarrow 0
\end{aligned}
$$

It follows, for an arbitrary $\phi \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}$ with $\|\phi\|_{\mathcal{H}_{2}^{\kappa, \theta, \Lambda}}=1$, that
$\prec \Theta\left(\omega_{n}\right)-\Theta(\omega), \phi \succ=\mid \int_{0}^{\mathcal{T}}\left(\mathcal{F}_{1}\left(\eta, \omega_{n}(\eta)-\mathcal{F}_{1}(\eta, \omega(\eta)) \phi(\eta) d \eta \mid \leq \| \mathcal{F}_{1}\left(\eta, \omega_{n}(\eta)-\mathcal{F}_{1}\left(\eta, \omega(\eta) \|_{\mathcal{L}^{2}} \rightarrow 0\right.\right.\right.\right.$,
where $\mathcal{F}_{1}(\eta, \mathfrak{w}(\eta))=(\mathfrak{g}(\eta, \mathfrak{w}(\eta))+\mathcal{F}(\eta, \mathfrak{w}(\eta)))$. This implies condition $(K 2)$ of the Lax-Milgram theorem also holds. By Theorem 2 we get the desired result.
Remark 2 Clearly, we have the following from the above result:

- Choosing $\Lambda(\eta)=\eta$ in (1), then there exists at least a solution in the Caputo fractional derivative sense for $\operatorname{FDE}(1)$, whenever $\theta \longrightarrow 1$ and $|\lambda|<\frac{1}{\zeta \sqrt{\eta}}$.
- Taking $\Lambda(\eta)=\eta^{\kappa},(\kappa>0)$ in (1), then there exists at least a solution in the Katugampola fractional derivative sense for FDE (1), whenever $\theta \longrightarrow 0$ and $|\lambda|<\frac{1}{\zeta \sqrt{\eta^{\kappa}}}$.
- Similarly for $\Lambda(\eta)=\eta^{\kappa},(\kappa>0)$ in (1), then there exists at least a solution in the Caputo-Katugampola fractional derivative sense for $\operatorname{FDE}(1)$, whenever $\theta \longrightarrow 1$ and $|\lambda|<\frac{1}{\zeta \sqrt{\eta^{K}}}$.

3.1 Regularity result

To prove our regularity result, we first recall some preliminaries.
Definition 3 Let $u, v, w \in L^{2}[0, \mathcal{T}]$. Then for all $\phi \in C_{0}^{\infty}[0, \mathcal{T}]$ we define

$$
\int_{0}^{\mathcal{T}} u(\eta)^{H} \mathfrak{D}_{\mathcal{T}-}^{\kappa, \theta ; \Lambda} \phi(\eta) d \eta=\int_{0}^{\mathcal{T}} v(\eta) \phi(\eta) d \eta
$$

and

$$
\int_{0}^{\mathcal{T}} u(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \phi(\eta) d \eta=\int_{0}^{\mathcal{T}} w(\eta) \phi(\eta) d \eta
$$

where ${ }^{H} \overline{\mathfrak{D}}_{\mathcal{T}^{-}}^{\kappa, \theta ; \Lambda} u(\eta)=v(\eta)$ and ${ }^{H} \overline{\mathfrak{D}}_{0^{+}}^{\kappa, \theta ; \Lambda} u(\eta)=w(\eta)$. The functions v and w are called the weak left and the weak right fractional derivative of $u(\eta)$, of order $\kappa \in(0,1]$ and type $\theta \in[0,1]$, respectively.

Lemma 1 ([14,15]) Let $\Omega=[0, \mathcal{T}]$ and $w(\eta) \in \mathcal{L}^{2}(\Omega)$, if

- ${ }^{H} \overline{\mathfrak{D}}_{0^{+}}^{\kappa, \theta ; \Lambda} w(\eta)$ exists and it is almost everywhere equal to a function in $C(\Omega)$, then $w(\eta)$ is a.e. equal to a function $\tilde{w}(\eta) \in C(\Omega)$. Moreover, ${ }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} w(\eta)$ exists for every $\eta \in \Omega$, and $w(\eta)$ belongs to $C(\Omega)$.
- ${ }^{H} \overline{\mathfrak{D}}_{\mathcal{T}-}^{\kappa, \theta ; \Lambda} w(\eta)$ exists and it is almost everywhere equal to a function in $C(\Omega)$, then $w(\eta)$ is a.e. equal to a function $\tilde{w}(\eta) \in C(\Omega)$. Furthermore, ${ }^{H} \mathfrak{D}_{\mathcal{T}-}^{\kappa, \theta ; \Lambda} w(\eta)$ exists for every $\eta \in(\Omega)$, and $w(\eta)$ belongs to $C(\Omega)$.

Now, we state our regularity result with the similar proof of Theorem 10 in [14] and Theorem 3.1 in [8].
Theorem 5 Assume that $\kappa \in\left(\frac{1}{2}, 1\right], \theta \in[0,1], \mathfrak{g} \in C([0, \mathcal{T}] \times \mathbb{R}, \mathbb{R})$ is a continuous mapping, $\mathfrak{h}:[0, \mathcal{T}] \times$ $\mathbb{R} \longrightarrow \mathbb{R}$ is an integrable function, and \mathcal{A} is a bounded linear operator. Also, let ζ be defined in (2), and $|\lambda|<\frac{1}{\zeta(\Lambda(\mathcal{T})-\Lambda(0))^{1 / 2}}$. Then every weak solution of FDE (1) is classical.

Proof Let $v(\eta)$ be a weak solution of equation (1) and take $L(\eta):=\mathcal{A} v(\eta)+\lambda\left(\mathfrak{g}(\eta, v(\eta))+\int_{0}^{\eta} \mathfrak{h}(s, v(s)) d s\right)$. From the definition of weak solution, we have

$$
\int_{0}^{\mathcal{T}}\left({ }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \phi(\eta)\right) d \eta=\int_{0}^{\mathcal{T}} L(\eta) \phi(\eta) d \eta
$$

for all $\phi \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$. From Definition 3 we claim $L(\eta)={ }^{H} \overline{\mathfrak{D}}_{\mathcal{T}^{-}}^{\kappa, \theta ; \Lambda}{ }_{H} \overline{\mathfrak{D}}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)$. Moreover, from Remark 1 and Theorem 1, we imply $L(\eta)={ }^{H} \overline{\mathfrak{D}}_{\mathcal{T}^{-}}^{\kappa, \theta ; \Lambda} H_{\mathfrak{D}_{0^{+}}}^{\kappa, \theta ; \Lambda} v(\eta)$ belongs to $C[0, \mathcal{T}]$. It follows from Lemma 1 that ${ }^{H} \mathfrak{D}_{\mathcal{T}^{-}}^{\kappa, \theta ; \Lambda}{ }^{H} \overline{\mathfrak{D}}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)$ exists for all $\eta \in[0, \mathcal{T}]$. In addition, it belongs to $C[0, \mathcal{T}]$ and ${ }^{H} \overline{\mathfrak{D}}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)$ is a.e equal to an element of $C[0, \mathcal{T}]$. Moreover, the first part of the Lamma 1 shows that there exists ${ }^{H} \overline{\mathfrak{D}}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)$ for all $[0, \mathcal{T}]$, and by Remark 1, we derive that ${ }^{H} \overline{\mathfrak{D}}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)={ }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)$ a.e. on $[0, \mathcal{T}]$. Therefore, ${ }^{H} \overline{\mathfrak{D}}_{\mathcal{T}^{-}}^{\kappa, \theta ; \Lambda}{ }_{H^{\prime}}{ }_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)$ exists for any $\eta \in[0, \mathcal{T}]$. Since $L(\eta)={ }^{H} \overline{\mathfrak{D}}_{\mathcal{T}-}^{\kappa, \theta ; \Lambda}{ }^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)$ is a.e equal and both are continuous, hence we conclude that $L(\eta)={ }^{H} \overline{\mathfrak{D}}_{\mathcal{T}^{-}}^{\kappa, \theta ; \Lambda} H \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} v(\eta)$ for all $\eta \in[0, \mathcal{T}]$, which is our desired result. \square

We are ready to demonstrate an application of our main result by the following example:

Example 1 Let

$$
\left\{\begin{array}{c}
\left.H \mathfrak{D}_{T^{-}}^{3 / 4,1 / 4 ; e^{\eta}}\left({ }^{H} \mathfrak{D}_{0^{+}}^{3 / 4,1 / 4 ; e^{\eta}} \mathfrak{w}(\eta)\right)-\mathfrak{w}(\eta)=\lambda\left[\frac{1}{2} e^{-\eta} \mathfrak{w}(\eta)\right)+\frac{1}{3} \int_{0}^{\eta} \sin (s \mathfrak{w}(s)) d s\right] \tag{6}\\
I_{0^{+}}^{3 / 16 ; e^{\eta}} \mathfrak{w}(0)=I_{1^{-}}^{3 / 16 ; e^{\eta}} \mathfrak{w}(1)=0
\end{array}\right.
$$

where $\eta \in[0,1],{ }^{H} \mathfrak{D}_{T^{-}}^{3 / 4,1 / 4 ; e^{\eta}}($.$) and { }^{H} \mathfrak{D}_{0^{+}}^{3 / 4,1 / 4 ; e^{\eta}}($.$) are the \Lambda$-Hilfer fractional derivatives left-sided and rightsided of order $3 / 4$ and type $1 / 4$. The function $\frac{1}{2} e^{-\eta} \mathfrak{w}(\eta)+\frac{1}{3} \int_{0}^{\eta} \sin (s \mathfrak{w}(s)) d s$ is clearly bounded for $\eta \in[0,1]$, and let

$$
\mathcal{M}:=\max \left\{\frac{1}{2} e^{-\eta} v+\frac{1}{3} \int_{0}^{\eta} \sin (s v) d s: \quad(\eta, v) \in[0,1] \times\left[\frac{-(e-1)^{0.25}}{\Gamma(0.75) \sqrt{0.5}}, \frac{(e-1)^{0.25}}{\Gamma(0.75) \sqrt{0.5}}\right]\right\} \simeq 2.17
$$

So Theorem 4 implies that (6) has at least one weak solution whenever $|\lambda|<\frac{1}{\mathcal{M} \sqrt{e-1}} \simeq 0.36$. Also, by Theorem 5 every weak solution of (6) is a classical solution.

4 System of coupled fractional equations

We are going to extend the existence result discussed in the previous section to the following coupled system of FDEs

$$
\left\{\begin{array}{l}
{ }^{H} \mathfrak{D}_{\mathcal{T}^{-}}^{\kappa_{1}, \theta_{1} ; \Lambda}\left({ }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda} \mathfrak{w}(\eta)\right)-\mathcal{A}_{1}(\mathfrak{w}(\eta))=\lambda\left(\mathfrak{g}_{1}(\eta, \mathfrak{w}(\eta), \mathfrak{v}(\eta))+\int_{0}^{\eta} \mathfrak{h}_{1}(s, \mathfrak{w}(s), \mathfrak{v}(s)) d s\right), \tag{7}\\
H_{\mathfrak{D}_{\mathcal{T}}, \theta_{2} ; \Lambda}^{\kappa_{2}, H^{-}}\left({ }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda} \mathfrak{v}(\eta)\right)-\mathcal{A}_{2}(\mathfrak{v}(\eta))=\lambda\left(\mathfrak{g}_{2}(\eta, \mathfrak{w}(\eta), \mathfrak{v}(\eta))+\int_{0}^{\eta} \mathfrak{h}_{2}(s, \mathfrak{w}(s), \mathfrak{v}(s)) d s\right), \\
I_{0^{+}}^{\theta_{1}\left(\theta_{1}-1\right) ; \Lambda} \mathfrak{w}(0)=I_{0^{+}}^{\theta_{1}\left(\theta_{1}-1\right) ; \Lambda} \mathfrak{w}\left(\mathcal{T}^{-}\right)=0, \\
I_{0^{+}}^{\theta_{2}\left(\theta_{2}-1\right) ; \Lambda} \mathfrak{v}(0)=I_{0^{+}}^{\theta_{2}\left(\theta_{2}-1\right) ; \Lambda} \mathfrak{v}\left(\mathcal{T}^{-}\right)=0
\end{array}\right.
$$

where $\eta \in[0, \mathcal{T}],{ }^{H} \mathfrak{D}_{T-}^{\kappa_{i}, \theta_{i} ; \Lambda}($.$) and { }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{i}, \theta_{i} ; \Lambda}($.$) , for i=1,2$, are the Λ-Hilfer left and right sided fractional derivatives of order $\frac{1}{2}<\kappa_{i}<1$ type $0 \leq \theta_{i} \leq 1$, and the boundary conditions are given by the Λ-RiemannLiouville left and right sided fractional integrals. Moreover, λ is a parameter, the operator $\mathfrak{g}_{i}, \mathfrak{h}_{i}:[0, \mathcal{T}] \times \mathbb{R}^{2} \longrightarrow$ \mathbb{R}, where $\mathfrak{g}_{i}(\eta, \mathfrak{w}(\eta), \mathfrak{v}(\eta))$ are continuous mappings, and $\mathfrak{h}_{i}(s, \mathfrak{w}(s), \mathfrak{v}(\eta))$, for $i=1,2$, are integrable functions, and \mathcal{A}_{i}, for $i=1,2$, are bounded linear operators.

Definition 4 A pair of functions $\mathfrak{w}, \mathfrak{v} \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$ are weak solutions of coupled system of FDEs (7), if

$$
\begin{aligned}
& \int_{0}^{\mathcal{T}}{ }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda} \mathfrak{w}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda} \phi_{1}(\eta) d \eta \\
& \quad-\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{1}(\mathfrak{w}(\eta))+\lambda\left(\mathfrak{g}_{1}(\eta, \mathfrak{w}(\eta), \mathfrak{v}(\eta))+\int_{0}^{\eta} \mathfrak{h}_{1}(s, \mathfrak{w}(s), \mathfrak{v}(s)) d s\right)\right] \phi_{1}(\eta) d \eta \\
& \quad+\int_{0}^{\mathcal{T}}{ }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda} \mathfrak{v}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda} \phi_{2}(\eta) d \eta \\
& \quad-\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{2}(\mathfrak{v}(\eta))+\lambda\left(\mathfrak{g}_{2}(\eta, \mathfrak{w}(\eta), \mathfrak{v}(\eta))+\int_{0}^{\eta} \mathfrak{h}_{2}(s, \mathfrak{w}(s), \mathfrak{v}(s)) d s\right)\right] \phi_{2}(\eta) d \eta=0
\end{aligned}
$$

for all $\phi_{1}, \phi_{2} \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$.
To prove our main existence result, we first state the following growth conditions:
(i) There exist constants $c_{i}, d_{i}, i=1,2$, and $p \in\left[2,2^{*}\right)$ so that for all $\left(\eta, v_{i}, \xi_{i}\right) \in\left([0, \mathcal{T}], \mathbb{R}^{2}\right), i=1$, 2 , we have

$$
\left|\mathfrak{g}_{i}(\eta, v, \xi)\right| \leq \sigma_{i}(\eta)+c_{i}|v|^{p-1}+d_{i}|\xi|^{p-1}
$$

where $\sigma_{i} \in \mathcal{L}^{q}[0, \mathcal{T}]$ and $q \in\left(2^{*}, 2\right]$. Moreover, $\mathfrak{g}_{i}(\eta, 0, \xi)$ and $\mathfrak{g}_{i}(\eta, \nu, 0)$, for $i=1,2$, belong to $\mathcal{L}^{q}[0, \mathcal{T}]$ as functions of η.
(ii) There exist constants $e_{i}, f_{i}, i=1,2$, and $p \in\left[2,2^{*}\right)$ so that for all $\left(\eta, v_{i}, \xi_{i}\right) \in\left([0, \mathcal{T}], \mathbb{R}^{2}\right), i=1$, 2 , we have

$$
\left|\mathfrak{h}_{i}(\eta, v, \xi)\right| \leq \delta_{i}(\eta)+e_{i}|\nu|^{p-1}+f_{i}|\xi|^{p-1},
$$

where $\delta_{i} \in \mathcal{L}^{q}[0, \mathcal{T}]$ and $q \in\left(2^{*}, 2\right]$. Moreover, $\mathfrak{h}_{i}(\eta, 0, \xi)$ and $\mathfrak{h}_{i}(\eta, \nu, 0)$, for $i=1,2$, belong to $\mathcal{L}^{q}[0, \mathcal{T}]$ as functions of η.
(iii) For all $\eta \in[0, \mathcal{T}]$, and $v_{i}, \xi_{i} \in \mathbb{R}$ such that $v_{i} \neq \xi_{i}$, for $i=1$, 2 , we have

$$
\frac{\mathfrak{g}_{1}\left(\eta, \nu_{1}, \xi_{1}\right)-\mathfrak{g}_{1}\left(\eta, \nu_{2}, \xi_{2}\right)}{\nu_{1}-\nu_{2}} \geq \rho \quad \text { and } \quad \frac{\mathfrak{g}_{2}\left(\eta, \nu_{1}, \xi_{1}\right)-\mathfrak{g}_{2}\left(\eta, \nu_{2}, \xi_{2}\right)}{\xi_{1}-\xi_{2}} \geq \rho,
$$

(iv) For all $\eta \in[0, \mathcal{T}]$, and $\nu_{i}, \xi_{i} \in \mathbb{R}$ such that $\nu_{i} \neq \xi_{i}$, for $i=1$, 2 , we have

$$
\frac{\int_{0}^{\eta}\left[\mathfrak{h}_{1}\left(s, v_{1}, \xi_{1}\right)-\mathfrak{h}_{1}\left(s, \nu_{2}, \xi_{2}\right)\right] d s}{v_{1}-v_{2}} \geq \rho^{*} \quad \text { and } \quad \frac{\int_{0}^{\eta}\left[\mathfrak{h}_{2}\left(s, v_{1}, \xi_{1}\right)-\mathfrak{h}_{2}\left(s, v_{2}, \xi_{2}\right)\right] d s}{\xi_{1}-\xi_{2}} \geq \rho^{*} .
$$

Theorem 6 Assume that $\kappa \in\left(\frac{1}{2}, 1\right], \theta \in[0,1], \mathfrak{g} \in C([0, \mathcal{T}] \times \mathbb{R}, \mathbb{R})$ is a continuous mapping, $\mathfrak{h}:[0, \mathcal{T}] \times$ $\mathbb{R} \longrightarrow \mathbb{R}$ is an integrable function, and \mathcal{A} is a bounded linear operator. Also suppose that the hypotheses (i)-(iv) are satisfied and $\left\|\mathcal{A}_{1}\right\|+\left\|\mathcal{A}_{2}\right\| \leq \frac{\Gamma(\kappa+1)}{\left(\psi((T)-\psi(0))^{\kappa}\right.}$. Then there exists a unique pair of functions $(\mathfrak{w}, \mathfrak{v})$ satisfying the coupled differential equation (7) in the weak sense.
Proof Take the operator $\mathcal{S}: \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}] \rightarrow\left(\mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]\right)^{*}$ as follows:

$$
\begin{aligned}
& \prec \mathcal{S}(\mathfrak{w}, \mathfrak{v}),\left(\phi_{1}, \phi_{2}\right) \succ:=\int_{0}^{\mathcal{T}} H_{\mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda}} \mathfrak{w}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda} \phi_{1}(\eta) d \eta+\int_{0}^{\mathcal{T}} H_{\mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda}}^{\mathfrak{v}(\eta)^{H}} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda} \phi_{2}(\eta) d \eta \\
&-\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{1}(\mathfrak{w}(\eta))+\lambda\left(\mathfrak{g}_{1}(\eta, \mathfrak{w}(\eta), \mathfrak{v}(\eta))+\int_{0}^{\eta} \mathfrak{h}_{1}(s, \mathfrak{w}(s), \mathfrak{v}(s)) d s\right)\right] \phi_{1}(\eta) d \eta \\
&-\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{2}(\mathfrak{v}(\eta))+\lambda\left(\mathfrak{g}_{2}(\eta, \mathfrak{w}(\eta), \mathfrak{v}(\eta))+\int_{0}^{\eta} \mathfrak{h}_{2}(s, \mathfrak{w}(s), \mathfrak{v}(s)) d s\right)\right] \phi_{2}(\eta) d \eta
\end{aligned}
$$

for all $\mathfrak{w}, \mathfrak{v}, \phi_{1}, \phi_{2} \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, \mathcal{T}]$.
Note that from hypothesis (i) we derive that

$$
\left|\int_{0}^{\mathcal{T}} \mathfrak{g}_{i}(\eta, \mathfrak{w}(\eta), \mathfrak{v}(\eta)) \phi_{i} d \eta\right| \leq\left\|\sigma_{i}\right\|_{q}\left\|\phi_{i}\right\|_{p}+c_{i}\left\|\phi_{i}\right\|_{p}\|\mathfrak{w}\|_{p}^{p-1}+d_{i}\left\|\phi_{i}\right\|_{p}\|\mathfrak{v}\|_{p}^{p-1}<\infty
$$

and from (ii) we come to

$$
\left|\int_{0}^{\mathcal{T}}\left[\int_{0}^{\eta} \mathfrak{h}_{2}(s, \mathfrak{w}(s), \mathfrak{v}(s)) d s\right] \phi_{2}(\eta) d \eta\right| \leq\left\|\delta_{i}\right\|_{q}\left\|\phi_{i}\right\|_{p}+e_{i}\left\|\phi_{i}\right\|_{p}\|\mathfrak{w}\|_{p}^{p-1}+f_{i}\left\|\phi_{i}\right\|_{p}\|\mathfrak{v}\|_{p}^{p-1}<\infty
$$

for all $\mathfrak{w}, \mathfrak{v}, \phi_{1}, \phi_{2} \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, T]$. Moreover, due to boundedness of the operator \mathcal{A}_{i}, for $i=1$, 2 , we deduce

$$
\left|\int_{0}^{\mathcal{T}} \mathcal{A}_{1}(\mathfrak{w}(\eta)) \phi_{1} d \eta\right| \leq\|\mathcal{A}\|\left(\|\mathfrak{w}\|_{2}\left\|\phi_{1}\right\|_{2}\right)<\infty
$$

and

$$
\left|\int_{0}^{\mathcal{T}} \mathcal{A}_{2}(\mathfrak{v}(\eta)) \phi_{2} d \eta\right| \leq\|\mathcal{A}\|\left(\|\mathfrak{v}\|_{2}\left\|\phi_{2}\right\|_{2}\right)<\infty
$$

Therefore, $\prec \mathcal{S}(\mathfrak{w}, \mathfrak{v}),\left(\phi_{1}, \phi_{2}\right) \succ \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, T]^{*}$ for all $\mathfrak{w}, \mathfrak{v}, \phi_{1}, \phi_{2} \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, T]$. So the operator \mathcal{S} is well defined.

Taking $\mathfrak{w}_{j}, \mathfrak{v}_{j} \in \mathcal{H}_{2}^{\kappa, \theta, \Lambda}[0, T], i=1,2$, we obtain that

$$
\begin{aligned}
\prec & \mathcal{S}\left(\mathfrak{w}_{1}, \mathfrak{v}_{1}\right)-\mathcal{S}\left(\mathfrak{w}_{2}, \mathfrak{v}_{2}\right),\left(\mathfrak{w}_{1}-\mathfrak{w}_{2}, \mathfrak{v}_{1}-\mathfrak{v}_{2}\right) \succ=\prec \mathcal{S}\left(\mathfrak{w}_{1}, \mathfrak{v}_{1}\right),\left(\mathfrak{w}_{1}-\mathfrak{w}_{2}, \mathfrak{v}_{1}-\mathfrak{v}_{2}\right) \succ \\
& -\prec \mathcal{S}\left(\mathfrak{w}_{2}, \mathfrak{v}_{2}\right),\left(\mathfrak{w}_{1}-\mathfrak{w}_{2}, \mathfrak{v}_{1}-\mathfrak{v}_{2}\right) \succ \\
= & \int_{0}^{\mathcal{T}}{ }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda} \mathfrak{w}_{1}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda}\left(\mathfrak{w}_{1}(\eta)-\mathfrak{w}_{2}(\eta)\right) d \eta \\
& -\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{1}\left(\mathfrak{w}_{1}(\eta)\right)+\lambda\left(\mathfrak{g}_{1}\left(\eta, \mathfrak{w}_{1}(\eta), \mathfrak{v}_{1}(\eta)\right)+\int_{0}^{\eta} \mathfrak{h}_{1}\left(s, \mathfrak{w}_{1}(s), \mathfrak{v}_{1}(s)\right) d s\right)\right]\left(\mathfrak{w}_{1}(\eta)-\mathfrak{w}_{2}(\eta)\right) d \eta \\
& +\int_{0}^{\mathcal{T}}{ }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda} \mathfrak{v}_{1}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda}\left(\mathfrak{v}_{1}(\eta)-\mathfrak{v}_{2}(\eta)\right) d \eta \\
& -\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{2}\left(\mathfrak{v}_{1}(\eta)\right)+\lambda\left(\mathfrak{g}_{2}\left(\eta, \mathfrak{w}_{1}(\eta), \mathfrak{v}_{1}(\eta)\right)+\int_{0}^{\eta} \mathfrak{h}_{2}\left(s, \mathfrak{w}_{1}(s), \mathfrak{v}_{1}(s)\right) d s\right)\right]\left(\mathfrak{v}_{1}(\eta)-\mathfrak{v}_{2}(\eta)\right) d \eta
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{0}^{\mathcal{T}}{ }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda} \mathfrak{w}_{2}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda}\left(\mathfrak{w}_{1}(\eta)-\mathfrak{w}_{2}(\eta)\right) d \eta \\
& +\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{1}\left(\mathfrak{w}_{2}(\eta)\right)+\lambda\left(\mathfrak{g}_{1}\left(\eta, \mathfrak{w}_{2}(\eta), \mathfrak{v}_{2}(\eta)\right)+\int_{0}^{\eta} \mathfrak{h}_{1}\left(s, \mathfrak{w}_{2}(s), \mathfrak{v}_{2}(s)\right) d s\right)\right]\left(\mathfrak{w}_{1}(\eta)-\mathfrak{w}_{2}(\eta)\right) d \eta \\
& -\int_{0}^{\mathcal{T}}{ }^{H} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda} \mathfrak{v}_{2}(\eta)^{H} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda}\left(\mathfrak{v}_{1}(\eta)-\mathfrak{v}_{2}(\eta)\right) d \eta \\
& +\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{2}\left(\mathfrak{v}_{2}(\eta)\right)+\lambda\left(\mathfrak{g}_{2}\left(\eta, \mathfrak{w}_{2}(\eta), \mathfrak{v}_{2}(\eta)\right)+\int_{0}^{\eta} \mathfrak{h}_{2}\left(s, \mathfrak{w}_{2}(s), \mathfrak{v}_{2}(s)\right) d s\right)\right]\left(\mathfrak{v}_{1}(\eta)-\mathfrak{v}_{2}(\eta)\right) d \eta \\
= & \left.\left.\int_{0}^{\mathcal{T}}\right|^{H} \mathfrak{D}_{0^{+}}^{\kappa_{1}, \theta_{1} ; \Lambda}\left(\mathfrak{w}_{1}(\eta)-\mathfrak{w}_{2}(\eta)\right)\right|^{2}+\left.\left.\int_{0}^{\mathcal{T}}\right|^{H} \mathfrak{D}_{0^{+}}^{\kappa_{2}, \theta_{2} ; \Lambda}\left(\mathfrak{v}_{1}(\eta)-\mathfrak{v}_{2}(\eta)\right)\right|^{2} \\
& +\int_{0}^{\mathcal{T}}\left(\mathcal{A}_{1}\left(\mathfrak{w}_{2}(\eta)-\mathfrak{w}_{1}(\eta)\right)+\lambda\left[\mathfrak{g}_{1}\left(\eta, \mathfrak{w}_{2}(\eta), \mathfrak{v}_{2}(\eta)\right)-\mathfrak{g}_{1}\left(\eta, \mathfrak{w}_{1}(\eta), \mathfrak{v}_{1}(\eta)\right)\right]\right)\left(\mathfrak{w}_{1}(\eta)-\mathfrak{w}_{2}(\eta)\right) d \eta \\
& +\int_{0}^{\mathcal{T}}\left(\lambda \int_{0}^{\eta}\left[\mathfrak{h}_{1}\left(s, \mathfrak{w}_{2}(s), \mathfrak{v}_{2}(s)\right)-\mathfrak{h}_{1}\left(s, \mathfrak{w}_{1}(s), \mathfrak{v}_{1}(s)\right] d s\right)\left(\mathfrak{w}_{1}(\eta)-\mathfrak{w}_{2}(\eta)\right) d \eta\right. \\
& +\int_{0}^{\mathcal{T}}\left[\mathcal{A}_{2}\left(\mathfrak{v}_{2}(\eta)-\mathfrak{v}_{1}(\eta)\right)+\lambda\left(\mathfrak{g}_{2}\left(\eta, \mathfrak{w}_{2}(\eta), \mathfrak{v}_{2}(\eta)\right)-\mathfrak{g}_{2}\left(\eta, \mathfrak{w}_{1}(\eta), \mathfrak{v}_{1}(\eta)\right)\right)\right]\left(\mathfrak{v}_{1}(\eta)-\mathfrak{v}_{2}(\eta)\right) d \eta \\
& +\int_{0}^{\mathcal{T}}\left(\lambda \int_{0}^{\eta}\left[\mathfrak{h}_{2}\left(s, \mathfrak{w}_{2}(s), \mathfrak{v}_{2}(s)\right) d s-\mathfrak{h}_{2}\left(s, \mathfrak{w}_{1}(s), \mathfrak{v}_{1}(s)\right)\right] d s\right)\left(\mathfrak{v}_{1}(\eta)-\mathfrak{v}_{2}(\eta)\right) d \eta
\end{aligned}
$$

Applying hypotheses (iii) and (iv) we infer

$$
\prec \mathcal{S}\left(u_{1}, v_{1}\right)-\mathcal{S}\left(u_{2}, v_{2}\right),\left(u_{1}-u_{2}, v_{1}-v_{2}\right) \succ>0 .
$$

Thus \mathcal{S} is a monotone operator. To complete our proof, it suffices to show that \mathcal{S} is a coercive mapping. To do so, we take $\left(\phi_{1}, \phi_{2}\right)=(\mathfrak{w}, \mathfrak{v})$ in the definition of the operator \mathcal{S}, then we get

From Proposition 4.6 in [15], we imply that $\|\mathfrak{w}\|_{\mathcal{L}^{p}} \leq C_{\psi}\left\|^{H} \mathfrak{D}_{0^{+}}^{\kappa, \theta ; \Lambda} \mathfrak{w}(\eta)\right\|_{\mathcal{L}^{p}}$, where $C_{\psi}=\frac{\left(\psi((T)-\psi(0))^{\kappa}\right.}{\Gamma(\kappa+1)}$. Thus for $p=2$ in the last inequality we have

$$
\begin{aligned}
& \prec \mathcal{S}(\mathfrak{w}, \mathfrak{v}),(\mathfrak{w}, \mathfrak{v}) \succ \geq\left[1-C_{\psi}\left(\left\|A_{1}\right\|-\lambda \rho-\lambda \rho^{*}\right)\right]\|\mathfrak{w}\|^{2}+\left[1-C_{\psi}\left(\left\|A_{2}\right\|+\lambda \rho+\lambda \rho^{*}\right)\right]\|\mathfrak{v}\|^{2} \\
& \quad-\lambda\left(|\mathfrak{w}|_{\mathcal{L}^{p}}\left|\mathfrak{g}_{1}(\eta, 0, \mathfrak{v}(\eta))\right|_{\mathcal{L}^{q}}-|\mathfrak{v}|_{\mathcal{L}^{p}}\left|\mathfrak{g}_{2}(\eta, \mathfrak{w}(\eta), 0)\right|_{\mathcal{L}^{q}}\right) \\
&-\lambda\left(|\mathfrak{w}|_{\mathcal{L}^{p}}\left|\int_{0}^{\eta} \mathfrak{h}_{1}(s, 0, \mathfrak{v}(s)) d s\right|_{\mathcal{L}^{q}}-|\mathfrak{v}|_{\mathcal{L}^{p}}\left|\int_{0}^{\eta} \mathfrak{h}_{2}(s, \mathfrak{w}(s), 0) d s\right|_{\mathcal{L}^{q}}\right) \\
& \geq\left[1-C_{\psi}\left(\left\|A_{1}\right\|-\lambda \rho-\lambda \rho^{*}\right)\right]| | \mathfrak{w}\left\|^{2}+\left[1-C_{\psi}\left(\left\|A_{2}\right\|+\lambda \rho+\lambda \rho^{*}\right)\right]\right\| \mathfrak{v} \|^{2} \\
&-C_{p} \lambda\|\mathfrak{w}\|\left(\left|\mathfrak{g}_{1}(\eta, 0, \mathfrak{v}(\eta))\right|_{\mathcal{L}^{q}}+\left|\int_{0}^{\eta} \mathfrak{h}_{1}(s, 0, \mathfrak{v}(s)) d s\right|_{\mathcal{L}^{q}}\right) \\
&-C_{p}^{\prime} \lambda\|\mathfrak{v}\|\left(\left|\mathfrak{g}_{2}(\eta, \mathfrak{w}(\eta), 0)\right|_{\mathcal{L}^{q}}+\left|\int_{0}^{\eta} \mathfrak{h}_{2}(s, \mathfrak{w}(s), 0) d s\right|_{\mathcal{L}^{q}}\right)
\end{aligned}
$$

where C_{p}, C_{p}^{\prime} are the Sobolev constants corresponding to $\mathfrak{w}, \mathfrak{v}$. We now choose the following norm which is equivalent to the standard product norm:

$$
\|(\mathfrak{w}, \mathfrak{v})\|:=\max \{\|\mathfrak{w}\|,\|\mathfrak{v}\|\} .
$$

Hence we get

$$
\begin{aligned}
& \prec \mathcal{S}(\mathfrak{w}, \mathfrak{v}),(\mathfrak{w}, \mathfrak{v}) \succ \geq\left(1-C_{\psi}\left(\left\|A_{1}\right\|+\left\|A_{2}\right\|\right)\right)\|(\mathfrak{w}, \mathfrak{v})\|^{2} \\
& \quad-C_{\psi}^{\prime} \lambda\|(\mathfrak{w}, \mathfrak{v})\|\left(\left|\mathfrak{g}_{1}(\eta, 0, \mathfrak{v}(\eta))\right|_{\mathcal{L}^{q}}-\left|\mathfrak{g}_{2}(\eta, \mathfrak{w}(\eta), 0)\right|_{\mathcal{L}^{q}}+\left|\int_{0}^{\eta} \mathfrak{h}_{1}(s, 0, \mathfrak{v}(s)) d s\right|_{\mathcal{L}^{q}}\right. \\
& \left.\quad-\left|\int_{0}^{\eta} \mathfrak{h}_{2}(s, \mathfrak{w}(s), 0) d s\right|_{\mathcal{L}^{q}}\right),
\end{aligned}
$$

where $C_{\psi}^{\prime}:=\max \left\{C_{p}, C_{p}^{\prime}\right\}$. Thus, by the above inequality we have

$$
\lim _{\|(\mathfrak{w}, \mathfrak{v})\| \rightarrow \infty} \frac{\prec \mathcal{S}(\mathfrak{w}, \mathfrak{v}),(\mathfrak{w}, \mathfrak{v}) \succ}{\|(\mathfrak{w}, \mathfrak{v})\|} \rightarrow \infty
$$

Therefore the operator \mathcal{S} is coercive. The desired result immediately follows from the Minty-Browder Theorem.

5 Conclusion

Applying the generalized Lax-Milgram Theorem, we have studied the existence and regularity of weak solutions to the nonlinear Λ-Hilfer fractional boundary value problem on certain function spaces, with an applicable example. Additionally, we extended our obtained results to the system of coupled FDEs based on the MintyBrowder FPT and some growth requirements.

Acknowledgements Chenkuan Li is supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. 2019-03907).

Data availability No data set is used to support this study.

Declarations

Conflict of interest The authors declare that they have no competing interests.

References

1. Kilbas, A. A., Srivastava, H. M., Trujillo,J. J. Theory and applications of fractional differential equations. Elsevier Science Limited, Amsterdam, (2006).
2. Sousa, J. Vanterler da C., Oliveira, E. Capelas de. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 81, 50-56 (2018).
3. Sousa, J. Vanterler da C., Kucche, Kishor D., Oliveira, E. Capelas de. Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 88, 73-80 (2019).
4. Sousa, J. Vanterler da C., Oliveira, D. S., Oliveira, E. Capelas de. On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation. Math. Meth. Appl. Sci. 42.4, 1249-1261 (2019).
5. Sousa, J. Vanterler da C., Santos, Magun N. N., Magna, L. A., Oliveira, E. Capelas de. Validation of a fractional model for erythrocyte sedimentation rate. Comput. Appl. Math. 37.5, 6903-6919 (2018).
6. Sousa, J. Vanterler da C., Rodrigues, Fabio G., Oliveira, E. Capelas de. Stability of the fractional Volterra integro-differential equation by means of ϕ-Hilfer operator. Math. Meth. Appl. Sci. 42.9, 3033-3043 (2019).
7. Sousa, J. Vanterler da C., and E. Capelas de Oliveira. On the stability of a hyperbolic fractional partial differential equation. Diff. Equ. Dyn. Sys. (2019).
8. Nyamoradi, N., Hamidi, M. R. An extension of the Lax-Milgram theorem and its application to fractional differential equations. Elec. J. Diff. Equ. 2015.95 ,1-9 (2015).
9. Zhang, W., Liu, W. Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses. Appl. Math. Lett. (2020)
10. Zhou, J., Deng, Y.,Wang, Y. Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses. Appl. Math. Lett. 104(2020)
11. Jiao, F., Zhou, Y. Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62.3, 1181-1199 (2011).
12. Mahmudov, N. I., Unul, S. Existence of solutions of fractional boundary value problems with p-Laplacian operator. Bound. Value Prob. 2015.1 (2015): 99.
13. Fattahi, F., Alimohammady, M. Existence of infinitely many solutions for a fractional differential inclusion with non-smooth potential. Electron. J. Differ. Equ. 66, 113 (2017).
14. Sousa, J. Vanterler da C., M. Aurora P. Pulido, and E. Capelas de Oliveira. Existence and Regularity of Weak Solutions for ψ-Hilfer Fractional Boundary Value Problem. Mediterranean Journal of Mathematics 18.4 (2021): 1-15.
15. Sousa, J. Vanterler da C., Leandro S. Tavares, and Cesar E. Torres Ledesma. A variational approach for a problem involving a ψ-Hilfer fractional operator. Journal of Applied Analysis and Computation 11.3 (2021):1610-1630.
16. Abdolrazaghi, F., Razani, A. A unique weak solution for a kind of coupled system of fractional Schrodinger equations. Opuscula Mathematica 40.3 (2020).

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Communicated by G.D. Veerappa Gowda.
 M. B. Ghaemi • F. Mottaghi • R. Saadati (\boxtimes)

 School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
 E-mail: mghaemi@iust.ac.ir; mottaghi@mathdep.iust.ac.ir; rsaadati@eml.cc
 C. Li

 Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada E-mail: lic@brandonu.ca

