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Abstract We study the existence of weak solutions for a system and a coupled system of �-Hilfer fractional
differential equations on compact domains using the Lax–Milgram and Minty–Browder theorems. Furthermore,
we provide an illustrative example, and a regularity result to imply that the obtained solution is classical.
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1 Introduction

Fractional differential equations (in short FDEs) are useful in a variety of domains, including physics, biology,
and engineering, (see [1–7] and references therein). The variational approach to FDEs articulated in boundary
value issues, p-Laplacian problems, critical point theory (CPT) problems, and so on is gaining popularity [8–10].
For example, Jiao and Zhou [11] used CPT to prove the existence and uniqueness of solutions for FBV equations
on a variational structure. In addition, [12] applying the same theory proved the existence and uniqueness results
for fractional p-Laplacian in the Caputo sense, under the Dirichlet boundary condition with mixed derivatives
and integral boundary constraints. Fattahi and Alimohammady [13] studied the existing solutions for an FBV
problem utilizing non-smooth CPT and variational approaches in 2017. For more results, one can see [14,15]
and references therein.

Motivated by the research described above and to further investigate in the field, the main goals of our study
focus on the following:

1. Applying the Lax–Milgram theorem we prove the existence and uniqueness of solutions to a class of FDEs.
Moreover, we present a regularity result for the solution and demonstrate an example using our main theorem.

2. Applying the Minty- Browder theorem to extend our result to a system of coupled of FDEs.
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2 Preliminaries

We begin by recalling some fundamental definitions of �-Riemann-Liouville fractional integral, �-Hilfer frac-
tional derivative and variational definitions and related results. We refer readers to [14,15] and references therein
for more details.

Definition 1 Let κ ∈ (0, 1] and θ ∈ [0, 1]. The �-fractional derivative space(in short �-FDS) Hκ,θ,�
2 :=

Hκ,θ,�
2 ([0, T ],R)) is defined as the space C∞

0 ([0, T ],R). That is,

Hκ,θ,�
2 =

{
ϑ ∈ L2([0, T ],R) : HDκ,θ;�

0+ ϑ ∈ L2([0, T ],R) and I θ(θ−1)
0+ ϑ(0) = I θ(θ−1)

0+ ϑ(T ) = 0
}

= C∞
0 ([0, T ],R)),

with the norm

||ϑ ||Hκ,θ,�
2

=
(
||ϑ ||2L2

+ ||HDκ,θ;�
0+ ϑ ||2L2

)1/2
.

The �-FDS Hκ,θ,�
2 is a reflexive and separable Banach space, for 0 < κ ≤ 1 and 0 ≤ θ ≤ 1.

The following Theorems 1 and 2, as well as Remark 1 can be found from [14,15].

Theorem 1 Let κ > 1/2 and θ ∈ [0, 1]. If the sequence {�n} converges weakly to � in Hκ,θ,�
2 , then �n −→ �

in C[0, T ].

Remark 1 For all w ∈ Hκ,θ,�
2 we have ||w||∞ ≤ (�(T ) − �(0))κ−1/2

�(κ)(2κ − 1)1/2
||w||Hκ,θ,�

2
.

We recall the generalizations of the Lax–Milgram theorem [14,15] and Browder–Minty theorem [16], which
will play an important role in presenting existence results of our FDEs and coupled system of FDEs respectively
below.

The Generalization of the Lax–Milgram Theorem

Theorem 2 Let H be a Hilbert space, B(ω1, ω2) : H × H → R be a continuous coercive bilinear form, and
F : H → H∗ satisfy:

(K1) For some positive constant C we have ||F(ω)||H ≤ C for all ω ∈ N1(0), where N1(0) stands for unit ball
inH.

(K2) If {ωn} is a sequence in H so that ωn ⇀ ω weakly in H, then the sequence {F(ωn)} has a subsequence
{F(ωnk )} such that F(ωnk ) ⇀ F(ω) weakly in H.

Then for some constant CH > 0, there exists an element ω̃ ∈ H such that B(ω̃, ω) = λ ≺ F(ω̃), ω �, for all
ω ∈ H and |λ| ≤ 1.

The Browder–Minty Theorem

Theorem 3 ([16]) Assume that � is a separable, reflexive Banach space, and A : � −→ �∗ is a monotone and
continuous mapping on finite dimensional subspace, and assume that A is coercive in the sense that

≺ Aϕ, ϕ �
||ϕ||� −→ ∞ as ||ϕ||� −→ ∞.

Then for all F ∈ �∗, there exists ϕ ∈ � such that Aϕ = F.
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3 Existence results

We first prove that there exists at least a weak solution for the following FDE, then we state some conditions so
that the weak solution can be classical. Let κ ∈ (1/2, 1), θ ∈ [0, 1]. Assume HDκ,θ;�

T− (.) and HDκ,θ;�
0+ (.) are the

�-Hilfer fractional derivatives left-sided and right-sided of order κ and type θ , and consider
{

HDκ,θ;�
T−

(
HDκ,θ;�

0+ w(η)
)

− A(w(η)) = λ
[
g(η,w(η)) + ∫ η

0 h(s,w(s))ds
]
,

I θ(θ−1);�
0+ w(0) = I θ(θ−1);�

0+ w(T −) = 0,
(1)

where the boundary conditions are given by the � -Riemann-Liouville left and right sided fractional integrals.
Moreover, λ is a parameter, the operator g : [0, T ] × R −→ R is a continuous mapping, h : [0, T ] × R −→ R

is an integrable function, and A is a bounded linear operator.

Definition 2 A function w ∈ Hκ,θ,�
2 [0, T ] is a weak solution of (1) if

∫ T

0

(
HDκ,θ;�

0+ w(η)HDκ,θ;�
0+ φ(η) − A(w(η))φ(η)

)
dη = λ

∫ T

0

[
g(η,w(η)) + μ

∫ η

0
h(s,w(s))ds

]
φ(η)dη,

for all φ ∈ Hκ,θ,�
2 [0, T ].

Also, a function w ∈ C[0, T ] is a classical solution of (1) if it satisfies Equation (1) and its boundary
conditions.

Theorem 4 Assume that κ ∈ ( 12 , 1], θ ∈ [0, 1], g ∈ C([0, T ] × R,R) is a continuous mapping, h : [0, T ] ×
R −→ R is an integrable function, and A is a bounded linear operator. Also take

ζ := max

{
g(η, ν) +

∫ η

0
h(s, ν)ds : (η, ν) ∈ [0, T ] ×

[−(�(T ) − �(0))κ−1/2

�(κ)(2κ − 1)1/2
,
(�(T ) − �(0))κ−1/2

�(κ)(2κ − 1)1/2

]}
.

(2)

Then for every |λ| < 1
ζ(�(T )−�(0))1/2

FDE (1) has at least one weak solution.

Proof To prove this theorem, we consider the following bilinear form B(w, φ)and show that it satisfies the
condition of the Lax–Milgram theorem:

B(w, φ) :=
∫ T

0

(
HDκ,θ;�

0+ w(η)HDκ,θ;�
0+ φ(η) − A(w(η))φ(η)

)
dη.

Using Holder’s inequality and boundedness of the operator A we obtain that

|B(w, φ)| ≤ ||HDκ,θ;�
0+ w(η)||L2 ||HDκ,θ;�

0+ φ(η)||L2 + ||A||||w||L2 ||φ||L2 ≤ (1 + ||A||)||w||Hκ,θ,�
2

||φ||Hκ,θ,�
2

(3)

and |B(w,w)| ≥ ||w||2Hκ,θ,�
2

. Therefore, B is a continuous, bounded and coercive bilinear form onHκ,θ,�
2 [0, T ].

Now, we set the operator � : Hκ,θ,�
2 [0, T ] → (Hκ,θ,�

2 [0, T ])∗ as follows:

≺ �(w), φ �=
∫ T

0
(g(η,w(η)) + F(η,w(η))) φ(η)dη,

where F(η,w(η)) = ∫ η

0 h(s,w(s))ds.

Assume that w ∈ N1(0) ⊂ Hκ,θ,�
2 [0, T ], so ||w||Hκ,θ,�

2
≤ 1, and by Remark 1 we have �(κ)(2κ −

1)1/2||w||∞ ≤ (�(T )−�(0))κ−1/2, for all η ∈ [0, T ]. So, we deduce that |g(η,w(η))+ ∫ η

0 h(s,w(s))ds| ≤ ζ ,

where ζ is defined in (2). For any arbitrary φ ∈ Hκ,θ,�
2 with ||φ||Hκ,θ,�

2
= 1 we have

| ≺ �(w), φ � |
≤

∫ T

0
(g(η,w(η)) + F(η,w(η))) φ(η)dη
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≤
(∫ T

0
| (g(η,w(η)) + F(η,w(η))) |2dη

)1/2

||φ(η)||L2

≤ T
√

ζ ,

whereF(η,w(η)) = ∫ η

0 h(s,w(s))ds. ChoosingCF = T
√

ζ we show that hypothesis (H1) in theLax–Milgram
theorem holds.

Next, we assume that {ωn} is an arbitrary sequence inHκ,θ,�
2 [0, T ] which is weakly convergent in the space.

UsingTheorem1wehaveωn(η) → ω(η) for allη ∈ [0, T ].Applying continuity ofg(η,w(η))+∫ η

0 h(s, w(s))ds,
we come to

g(η, ωn(η)) +
∫ η

0
h(s, ωn(s))ds → g(η, ω(η)) +

∫ η

0
h(s, ω(s))ds, (4)

whenever n tends to infinity, and for all η ∈ [0, T ]. Since {ωn} is bounded, there exists a positive constant
Cω such that ||ωn|| ≤ Cω, for every n ∈ N. In addition, from Remark 1 we have �(κ)(2κ − 1)1/2||ωn||∞ ≤
Cω(�(T ) − �(0))κ−1/2, for all η ∈ [0, T ]. Hence we can conclude that there exists a positive constant ζ ′ such
that

|g(η, ωn(η)) +
∫ η

0
h(s, ωn(s))ds| ≤ ζ ′, (5)

for all η ∈ [0, T ], and n ∈ N. Therefore, from (4), (5) and the Lebesgue dominated theorem, we obtain that

∫ T

0
|g(η, ωn(η)) − g(η, ω(η)) +

∫ η

0
h(s, ωn(s))ds −

∫ η

0
h(s, ωn(s))ds|dη ≤

∫ T

0
| (g(η, ωn(η)) − g(η, ω(η))) dη +

∫ T

0

∫ η

0
|h(s, ωn(s)) − h(s, ωn(s))ds|dη → 0.

It follows, for an arbitrary φ ∈ Hκ,θ,�
2 with ||φ||Hκ,θ,�

2
= 1, that

≺ �(ωn) − �(ω), φ �= |
∫ T

0
(F1(η, ωn(η) − F1(η, ω(η))φ(η)dη| ≤ ||F1(η, ωn(η) − F1(η, ω(η)||L2 → 0,

where F1(η,w(η)) = (g(η,w(η)) + F(η,w(η))). This implies condition (K2) of the Lax–Milgram theorem
also holds. By Theorem 2 we get the desired result. �
Remark 2 Clearly, we have the following from the above result:

• Choosing �(η) = η in (1), then there exists at least a solution in the Caputo fractional derivative sense for

FDE (1), whenever θ −→ 1 and |λ| <
1

ζ
√

η
.

• Taking�(η) = ηκ , (κ > 0) in (1), then there exists at least a solution in the Katugampola fractional derivative

sense for FDE (1), whenever θ −→ 0 and |λ| <
1

ζ
√

ηκ
.

• Similarly for �(η) = ηκ , (κ > 0) in (1), then there exists at least a solution in the Caputo–Katugampola

fractional derivative sense for FDE (1), whenever θ −→ 1 and |λ| <
1

ζ
√

ηκ
.

3.1 Regularity result

To prove our regularity result, we first recall some preliminaries.

Definition 3 Let u, v, w ∈ L2[0, T ]. Then for all φ ∈ C∞
0 [0, T ] we define

∫ T

0
u(η)HDκ,θ;�

T − φ(η)dη =
∫ T

0
v(η)φ(η)dη,
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and

∫ T

0
u(η)HDκ,θ;�

0+ φ(η)dη =
∫ T

0
w(η)φ(η)dη,

where H D̄κ,θ;�
T − u(η) = v(η) and H D̄κ,θ;�

0+ u(η) = w(η). The functions v and w are called the weak left and the
weak right fractional derivative of u(η), of order κ ∈ (0, 1] and type θ ∈ [0, 1], respectively.
Lemma 1 ([14,15]) Let � = [0, T ] and w(η) ∈ L2(�), if

• H D̄κ,θ;�
0+ w(η) exists and it is almost everywhere equal to a function in C(�), then w(η) is a.e. equal to a

function w̃(η) ∈ C(�). Moreover, HDκ,θ;�
0+ w(η) exists for every η ∈ �, and w(η) belongs to C(�).

• H D̄κ,θ;�
T − w(η) exists and it is almost everywhere equal to a function in C(�), then w(η) is a.e. equal to a

function w̃(η) ∈ C(�). Furthermore, HDκ,θ;�
T − w(η) exists for every η ∈ (�), and w(η) belongs to C(�).

Now, we state our regularity result with the similar proof of Theorem 10 in [14] and Theorem 3.1 in [8].

Theorem 5 Assume that κ ∈ ( 12 , 1], θ ∈ [0, 1], g ∈ C([0, T ] × R,R) is a continuous mapping, h : [0, T ] ×
R −→ R is an integrable function, and A is a bounded linear operator. Also, let ζ be defined in (2), and
|λ| < 1

ζ(�(T )−�(0))1/2
. Then every weak solution of FDE (1) is classical.

Proof Let v(η) be a weak solution of equation (1) and take L(η) := Av(η) + λ(g(η, v(η)) + ∫ η

0 h(s, v(s))ds).
From the definition of weak solution, we have

∫ T

0

(
HDκ,θ;�

0+ v(η)HDκ,θ;�
0+ φ(η)

)
dη =

∫ T

0
L(η)φ(η)dη,

for all φ ∈ Hκ,θ,�
2 [0, T ]. From Definition 3 we claim L(η) = H D̄κ,θ;�

T − H D̄κ,θ;�
0+ v(η). Moreover, from Remark 1

and Theorem 1, we imply L(η) = H D̄κ,θ;�
T − H D̄κ,θ;�

0+ v(η) belongs to C[0, T ]. It follows from Lemma 1 that
HDκ,θ;�

T − H D̄κ,θ;�
0+ v(η) exists for all η ∈ [0, T ]. In addition, it belongs toC[0, T ] and H D̄κ,θ;�

0+ v(η) is a.e equal to

an element ofC[0, T ]. Moreover, the first part of the Lamma 1 shows that there exists H D̄κ,θ;�
0+ v(η) for all [0, T ],

and by Remark 1, we derive that H D̄κ,θ;�
0+ v(η) = HDκ,θ;�

0+ v(η) a.e. on [0, T ]. Therefore, H D̄κ,θ;�
T − HDκ,θ;�

0+ v(η)

exists for any η ∈ [0, T ]. Since L(η) = H D̄κ,θ;�
T − HDκ,θ;�

0+ v(η) is a.e equal and both are continuous, hence we

conclude that L(η) = H D̄κ,θ;�
T − HDκ,θ;�

0+ v(η) for all η ∈ [0, T ], which is our desired result. � �
We are ready to demonstrate an application of our main result by the following example:

Example 1 Let

{
HD

3/4,1/4;eη

T−
(
HD

3/4,1/4;eη

0+ w(η)
)

− w(η) = λ
[ 1
2e

−ηw(η)) + 1
3

∫ η

0 sin(sw(s))ds
]
,

I 3/16;e
η

0+ w(0) = I 3/16;e
η

1− w(1) = 0,
(6)

where η ∈ [0, 1], HD3/4,1/4;eη

T− (.) and HD
3/4,1/4;eη

0+ (.) are the �-Hilfer fractional derivatives left-sided and right-
sided of order 3/4 and type 1/4. The function 1

2e
−ηw(η)+ 1

3

∫ η

0 sin(sw(s))ds is clearly bounded for η ∈ [0, 1],
and let

M := max

{
1

2
e−ην + 1

3

∫ η

0
sin(sν)ds : (η, ν) ∈ [0, 1] ×

[
−(e − 1)0.25

�(0.75)
√
0.5

,
(e − 1)0.25

�(0.75)
√
0.5

]}
� 2.17.

SoTheorem4 implies that (6) has at least oneweak solutionwhenever |λ| < 1
M

√
e−1

� 0.36. Also, by Theorem5
every weak solution of (6) is a classical solution.
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4 System of coupled fractional equations

We are going to extend the existence result discussed in the previous section to the following coupled system of
FDEs

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

HD
κ1,θ1;�
T −

(
HD

κ1,θ1;�
0+ w(η)

)
− A1(w(η)) = λ

(
g1(η,w(η), v(η)) + ∫ η

0 h1(s,w(s), v(s))ds
)
,

HD
κ2,θ2;�
T −

(
HD

κ2,θ2;�
0+ v(η)

)
− A2(v(η)) = λ

(
g2(η,w(η), v(η)) + ∫ η

0 h2(s,w(s), v(s))ds
)
,

I θ1(θ1−1);�
0+ w(0) = I θ1(θ1−1);�

0+ w(T −) = 0,

I θ2(θ2−1);�
0+ v(0) = I θ2(θ2−1);�

0+ v(T −) = 0

(7)

where η ∈ [0, T ], HD
κi ,θi ;�
T− (.) and HD

κi ,θi ;�
0+ (.), for i = 1, 2, are the �-Hilfer left and right sided fractional

derivatives of order 1
2 < κi < 1 type 0 ≤ θi ≤ 1, and the boundary conditions are given by the � -Riemann-

Liouville left and right sided fractional integrals.Moreover, λ is a parameter, the operator gi , hi : [0, T ]×R
2 −→

R, where gi (η,w(η), v(η)) are continuousmappings, and hi (s,w(s), v(η)), for i = 1, 2, are integrable functions,
and Ai , for i = 1, 2, are bounded linear operators.

Definition 4 A pair of functions w, v ∈ Hκ,θ,�
2 [0, T ] are weak solutions of coupled system of FDEs (7), if

∫ T

0

HD
κ1,θ1;�
0+ w(η)HD

κ1,θ1;�
0+ φ1(η)dη

−
∫ T

0

[
A1(w(η)) + λ

(
g1(η,w(η), v(η)) +

∫ η

0
h1(s,w(s), v(s))ds

)]
φ1(η)dη

+
∫ T

0

HD
κ2,θ2;�
0+ v(η)HD

κ2,θ2;�
0+ φ2(η)dη

−
∫ T

0

[
A2(v(η)) + λ

(
g2(η,w(η), v(η)) +

∫ η

0
h2(s,w(s), v(s))ds

)]
φ2(η)dη = 0

for all φ1, φ2 ∈ Hκ,θ,�
2 [0, T ].

To prove our main existence result, we first state the following growth conditions:

(i) There exist constants ci , di , i = 1, 2, and p ∈ [2, 2∗) so that for all (η, νi , ξi ) ∈ ([0, T ],R2), i = 1, 2, we
have

|gi (η, ν, ξ)| ≤ σi (η) + ci |ν|p−1 + di |ξ |p−1,

where σi ∈ Lq [0, T ] and q ∈ (2∗, 2]. Moreover, gi (η, 0, ξ) and gi (η, ν, 0), for i = 1, 2, belong to Lq [0, T ]
as functions of η.

(ii) There exist constants ei , fi , i = 1, 2, and p ∈ [2, 2∗) so that for all (η, νi , ξi ) ∈ ([0, T ],R2), i = 1, 2, we
have

|hi (η, ν, ξ)| ≤ δi (η) + ei |ν|p−1 + fi |ξ |p−1,

where δi ∈ Lq [0, T ] and q ∈ (2∗, 2]. Moreover, hi (η, 0, ξ) and hi (η, ν, 0), for i = 1, 2, belong to Lq [0, T ]
as functions of η.

(iii) For all η ∈ [0, T ], and νi , ξi ∈ R such that νi �= ξi , for i = 1, 2, we have

g1(η, ν1, ξ1) − g1(η, ν2, ξ2)

ν1 − ν2
≥ ρ and

g2(η, ν1, ξ1) − g2(η, ν2, ξ2)

ξ1 − ξ2
≥ ρ,

(iv) For all η ∈ [0, T ], and νi , ξi ∈ R such that νi �= ξi , for i = 1, 2, we have
∫ η

0 [h1(s, ν1, ξ1) − h1(s, ν2, ξ2)]ds
ν1 − ν2

≥ ρ∗ and

∫ η

0 [h2(s, ν1, ξ1) − h2(s, ν2, ξ2)]ds
ξ1 − ξ2

≥ ρ∗.
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Theorem 6 Assume that κ ∈ ( 12 , 1], θ ∈ [0, 1], g ∈ C([0, T ] × R,R) is a continuous mapping, h : [0, T ] ×
R −→ R is an integrable function, andA is a bounded linear operator. Also suppose that the hypotheses (i) -(iv)

are satisfied and ||A1|| + ||A2|| ≤ �(κ+1)
(ψ((T )−ψ(0))κ . Then there exists a unique pair of functions (w, v) satisfying

the coupled differential equation (7) in the weak sense.

Proof Take the operator S : Hκ,θ,�
2 [0, T ] → (Hκ,θ,�

2 [0, T ])∗ as follows:

≺ S(w, v), (φ1, φ2) �:=
∫ T

0

HD
κ1,θ1;�
0+ w(η)HD

κ1,θ1;�
0+ φ1(η)dη +

∫ T

0

HD
κ2,θ2;�
0+ v(η)HD

κ2,θ2;�
0+ φ2(η)dη

−
∫ T

0

[
A1(w(η)) + λ

(
g1(η,w(η), v(η)) +

∫ η

0
h1(s,w(s), v(s))ds

)]
φ1(η)dη

−
∫ T

0

[
A2(v(η)) + λ

(
g2(η,w(η), v(η)) +

∫ η

0
h2(s,w(s), v(s))ds

)]
φ2(η)dη,

for all w, v, φ1, φ2 ∈ Hκ,θ,�
2 [0, T ].

Note that from hypothesis (i) we derive that
∣∣∣∣∣
∫ T

0
gi (η,w(η), v(η))φi dη

∣∣∣∣∣ ≤ ||σi ||q ||φi ||p + ci ||φi ||p||w||p−1
p + di ||φi ||p||v||p−1

p < ∞,

and from (i i) we come to
∣∣∣∣∣
∫ T

0

[∫ η

0
h2(s,w(s), v(s))ds

]
φ2(η)dη

∣∣∣∣∣ ≤ ||δi ||q ||φi ||p + ei ||φi ||p||w||p−1
p + fi ||φi ||p||v||p−1

p < ∞,

for all w, v, φ1, φ2 ∈ Hκ,θ,�
2 [0, T ]. Moreover, due to boundedness of the operator Ai , for i = 1, 2, we deduce

∣∣∣∣∣
∫ T

0
A1(w(η))φ1dη

∣∣∣∣∣ ≤ ||A||(||w||2||φ1||2) < ∞,

and
∣∣∣∣∣
∫ T

0
A2(v(η))φ2dη

∣∣∣∣∣ ≤ ||A||(||v||2||φ2||2) < ∞.

Therefore,≺ S(w, v), (φ1, φ2) � ∈ Hκ,θ,�
2 [0, T ]∗ for allw, v, φ1, φ2 ∈ Hκ,θ,�

2 [0, T ]. So the operator S is well
defined.

Taking w j , v j ∈ Hκ,θ,�
2 [0, T ], i = 1, 2, we obtain that

≺ S(w1, v1) − S(w2, v2), (w1 − w2, v1 − v2) � = ≺ S(w1, v1), (w1 − w2, v1 − v2) �
− ≺ S(w2, v2), (w1 − w2, v1 − v2) �

=
∫ T

0

HD
κ1,θ1;�
0+ w1(η)HD

κ1,θ1;�
0+ (w1(η) − w2(η))dη

−
∫ T

0

[
A1(w1(η)) + λ

(
g1(η,w1(η), v1(η)) +

∫ η

0
h1(s,w1(s), v1(s))ds

)]
(w1(η) − w2(η))dη

+
∫ T

0

HD
κ2,θ2;�
0+ v1(η)HD

κ2,θ2;�
0+ (v1(η) − v2(η))dη

−
∫ T

0

[
A2(v1(η)) + λ

(
g2(η,w1(η), v1(η)) +

∫ η

0
h2(s,w1(s), v1(s))ds

)]
(v1(η) − v2(η))dη
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−
∫ T

0

HD
κ1,θ1;�
0+ w2(η)HD

κ1,θ1;�
0+ (w1(η) − w2(η))dη

+
∫ T

0

[
A1(w2(η)) + λ

(
g1(η,w2(η), v2(η)) +

∫ η

0
h1(s,w2(s), v2(s))ds

)]
(w1(η) − w2(η))dη

−
∫ T

0

HD
κ2,θ2;�
0+ v2(η)HD

κ2,θ2;�
0+ (v1(η) − v2(η))dη

+
∫ T

0

[
A2(v2(η)) + λ

(
g2(η,w2(η), v2(η)) +

∫ η

0
h2(s,w2(s), v2(s))ds

)]
(v1(η) − v2(η))dη

=
∫ T

0
|HDκ1,θ1;�

0+ (w1(η) − w2(η))|2 +
∫ T

0
|HDκ2,θ2;�

0+ (v1(η) − v2(η))|2

+
∫ T

0
(A1(w2(η) − w1(η)) + λ[g1(η,w2(η), v2(η)) − g1(η,w1(η), v1(η))]) (w1(η) − w2(η))dη

+
∫ T

0

(
λ

∫ η

0
[h1(s,w2(s), v2(s)) − h1(s,w1(s), v1(s)]ds

)
(w1(η) − w2(η))dη

+
∫ T

0
[A2(v2(η) − v1(η)) + λ(g2(η,w2(η), v2(η)) − g2(η,w1(η), v1(η)))](v1(η) − v2(η))dη

+
∫ T

0

(
λ

∫ η

0
[h2(s,w2(s), v2(s))ds − h2(s,w1(s), v1(s))]ds

)
(v1(η) − v2(η))dη.

Applying hypotheses (i i i) and (iv) we infer

≺ S(u1, v1) − S(u2, v2), (u1 − u2, v1 − v2) �> 0.

Thus S is a monotone operator. To complete our proof, it suffices to show that S is a coercive mapping. To do
so, we take (φ1, φ2) = (w, v) in the definition of the operator S, then we get

≺ S(w, v), (w, v) �=
∫ T

0
|HDκ1,θ1;�

0+ w(η)|2dη +
∫ T

0
|HDκ2,θ2;�

0+ v(η)|2dη

−
∫ T

0

[
A1(w(η)) + λ

(
g1(η,w(η), v(η)) +

∫ η

0
h1(s,w(s), v(s))ds

)]
w(η)dη

−
∫ T

0

[
A2(v(η)) + λ

(
g2(η,w(η), v(η)) +

∫ η

0
h2(s,w(s), v(s))ds

)]
v(η)dη

≥ ||w||2 + ||v||2 − ||A1|||w|2L2 − ||A2|||v|2L2

−λ
(
|w|Lp |g1(η, 0, v(η))|Lq − ρ|w|2L2 − |v|Lp |g2(η,w(η), 0)|Lq + ρ|v|2L2

)

−λ

(
|w|Lp |

∫ η

0
h1(s, 0, v(s))ds|Lq − ρ∗|w|2L2 − |v|Lp |

∫ η

0
h2(s,w(s), 0)ds|Lq + ρ∗|v|2L2

)
.

From Proposition 4.6 in [15], we imply that ||w||Lp ≤ Cψ ||HDκ,θ;�
0+ w(η)||Lp , whereCψ = (ψ((T )−ψ(0))κ

�(κ+1) . Thus
for p = 2 in the last inequality we have

≺ S(w, v), (w, v) �≥ [1 − Cψ(||A1|| − λρ − λρ∗)]||w||2 + [1 − Cψ(||A2|| + λρ + λρ∗)]||v||2
−λ (|w|Lp |g1(η, 0, v(η))|Lq − |v|Lp |g2(η,w(η), 0)|Lq )

−λ

(
|w|Lp |

∫ η

0
h1(s, 0, v(s))ds|Lq − |v|Lp |

∫ η

0
h2(s,w(s), 0)ds|Lq

)

≥ [1 − Cψ(||A1|| − λρ − λρ∗)]||w||2 + [1 − Cψ(||A2|| + λρ + λρ∗)]||v||2

−Cpλ||w||
(

|g1(η, 0, v(η))|Lq + |
∫ η

0
h1(s, 0, v(s))ds|Lq

)

−C ′
pλ||v||

(
|g2(η,w(η), 0)|Lq + |

∫ η

0
h2(s,w(s), 0)ds|Lq

)
,
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where Cp,C ′
p are the Sobolev constants corresponding to w, v. We now choose the following norm which is

equivalent to the standard product norm:

||(w, v)|| := max{||w||, ||v||}.
Hence we get

≺ S(w, v), (w, v) �≥ (
1 − Cψ(||A1|| + ||A2||)

) ||(w, v)||2

−C ′
ψλ||(w, v)||

(
|g1(η, 0, v(η))|Lq − |g2(η,w(η), 0)|Lq + |

∫ η

0
h1(s, 0, v(s))ds|Lq

−|
∫ η

0
h2(s,w(s), 0)ds|Lq

)
,

where C ′
ψ := max{Cp,C ′

p}. Thus, by the above inequality we have

lim||(w,v)||→∞
≺ S(w, v), (w, v) �

||(w, v)|| → ∞.

Therefore the operatorS is coercive. The desired result immediately follows from theMinty–BrowderTheorem.�

5 Conclusion

Applying the generalized Lax–Milgram Theorem, we have studied the existence and regularity of weak solutions
to the nonlinear �-Hilfer fractional boundary value problem on certain function spaces, with an applicable
example. Additionally, we extended our obtained results to the system of coupled FDEs based on the Minty-
Browder FPT and some growth requirements.
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