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Abstract: In this paper, we introduce the matrix Mittag-Leffler function, which is a generalization of
the multivariate Mittag—Leffler function, in order to investigate the uniqueness of the solutions to a
fractional nonlinear partial integro-differential equation in R” with a boundary condition based on
Banach’s contractive principle and Babenko’s approach. In addition, we present an example demon-
strating applications of the key results derived using a Python code that computes the approximate
value of our matrix Mittag-Leffler function.
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1. Background

In this section, we introduce some basic notations, a new matrix Mittag—Leffler
function as well as Babenko’s approach with an illustrative example solving a fractional
differential equation.

Lety € Q = [0,1]" € R" (n > 1) and x € [0,1]. It follows from [1] for a; >
0,---,a, > 0 that:

1 Y1 Yn 1
I IM 7 (x, :—/ / || —5) % Z(x, 59, -+ ,5p)dsy - - - dsq.
1 n ( y) F(“l)"'r(“n) 0 0 k:1(yk k) ( 1 n) n 1

In particular, for ay = - - - = &, = 0, we have:
I'Z(x,y) = L/yl(yl —sl)"‘l_lz(x S1,Y2,* ,Yn)ds1. (1)
1 7 r(al) 0 7 7 7 7
Let1 < a < 2. Then, from [2]
o« Cazx /
LamZoy) = Z(xy) = Z(0y) = Zx(0,y)x, @)

where the operator I} is the partial Riemann-Liouville fractional integral of order & > 0
with respect to x with initial point zero [3]:

(B2)(oy) = s ) =012 0, ®
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d
and =7

is the partial Liouville-Caputo fractional derivative of order « with respect to x

0" 1 "X —a "
<8x“Z> (x,y) = To-a '/0 (x —8)“TIW, (s,y)ds, 1<a<2. 4)

S([0,1] x Q) is defined as the Banach space with the norm given as:

1Z|ls = sup |Z(x,y)| for Z € S([0,1] x Q).
x€[0,1],yeQ

In this paper, we study the uniqueness of the solutions to the following equation with
the boundary condition for 1 < a« <2 and m € Nin the space S([0,1] x Q) for constants

aj:
i3

a m
gva(x,w + ) w iYL Z(x,y) = f(x,y, Z(x,y)),
k=1

Z(0,y) =Z(Ly) =0, (xy)€[01]xQ,

©)

where ajy > 0foralli=1,--- ,n,k=1,---,m,and f : [0,1] x QO x R — R is a function
satisfying certain conditions to be given. Equation (5), with its boundary condition, is new
and, to the best of our knowledge, has never previously been investigated. This research
has many potential applications since uniqueness is an important topic in many scientific
areas, such as control theory, and the method used clearly opens up new directions for
studying other types of equations with initial or boundary problems.

A function Z is a solution of the problem (5) if it satisfies the equation over S([0, 1] x )
and its boundary condition Z(0,y) = Z(1,y) = 0.

Leta;; > 0,7; > Oforalli=0,---,n,j=1,---,m,and

Xo1-- &m Y0
“ P [X

M= |11 m M . (6)
Xp1 " &npm  Tn

Definition 1. A matrix Mittag—Leffler function is defined by the following series:

Eule ) =Y, ¥ ( ! )r( gl

=T = Nl Taorh + - -+ + &ombn + 70)
1120, l;n>0

1
Iﬂ("‘llll + ot + 'Yl) i 'r<‘xnlll + - ""Yn),

@)

wherez; € Cfori=1,2,--- ,mand

! oo
T T

Clearly, the above series converges since there is a positive number & such that

Tl + - 4wyl +71) 29,

r(DCn]ll + e + “nmlm + ’)/;1) 2 5
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In particular,

EP(le e /Zm> = E(Dé()l,-“,lxom),’yo(zll e /Zm)
[ee] l m
=Y X ( l > o ®
£\l ) T(aoth + -+ + aomlm +70)”
llZQ"'JmZO

which is the multivariate Mittag—Leffler function given in [4], with

X1+ Xom Y0
b 0--- 0 1 ©)
0 0 1
Moreover,
00 1

Epy(2) = Eagn0(2) = E T = zeC, (10)

= T(eor! + 7o)

which is the well known two-parameter Mittag—Leffler function, with

ap 0--- 0 70
Py = 0 0 01 (11)

0 0--- 0 1

Remark 1. In 2018, Garrappa and Popolizio [5] also defined the matrix Mittag—Leffler function to
study fractional calculus. They called it the Mittag—Leffler (ML) function with matrix arguments,
which is based on the spectrum of the matrix with the Jordan canonical form, and is totally different
from Definition 1.

Babenko’s approach [6] is an efficient tool for dealing with integral and differential
equations with initial conditions or boundary value problems [1]. The method itself is
similar to the Laplace transform while working on differential and integral equations with
constant coefficients, but it can be applied to equations with continuous and bounded
variable coefficients. To show this method in detail, we will derive the solution to the
following equation with the initial conditions in the space C[0, 1] for constant A:

Dix(t) +A DEx(H) =, 0<B<a, 1<a<?2, 12)
x(0) = x'(0) =0,
where . ,
3 - - o\ —a+l <
Djx(t) T2 —a) /0 (t—s) x'(s)ds, 1<a<2,
and
Dﬁx(t) _ 1 /t(t —5)Px'(s)ds, f0<p<1
PO a=p) o P ROsEEL
From (2), one has
Iy (eDjx(t)) = x(t) — x(0) — x"(0)t = x(t). (13)
Applying If to the first equation in (12), we have
a—p _oqag2 # x+2
(1+AIO )x(t)—lot =t (14)
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Treating the operator (1 —Q—/\ISHﬂ ) as a variable, we informally derive using

Babenko’s approach
_ 2 a—p\ "L g2 2 - ! l(a B) ja+2
x(t)—r(a+3>(1+)\lo )t _r(a+3>,§( DIALEF)
t”‘ p B
— a2 Z r ?X T3 = 20" 2E, g u1a (—)Lt"‘ ﬁ), (15)
using
l(a—P) ja+2 _ I'(x+3) I(a—B)+a+2
o = F(l(a—ﬁ)+o¢+3)t ' (16)
This infers that
<23 M _op (A < o )
= T(a—p)+a+3)
which claims that the series solution
px+2 —AM B) a+2 x—pB
2t Z iy 2 E,x,ﬁ,,x+3(—/\t ) (18)

isin C[0,1].

We can also readily show x € C[0,1] from a different point of view: Ey_g 53 (—At*"F)
is an entire function of f so it is continuous. Hence, x(#) is continuous.

Fractional nonlinear PDEs have been used to describe many different physical systems,
ranging from optical fibres to dynamical processes in various scientific fields [7,8]. There
are many interesting studies on the uniqueness and existence of solutions, based on the
theory of fixed points, for fractional nonlinear integro-differential equations with initial
value or boundary condition problems, as well as for integral equations [9]. Very recently,
Li [1] investigated the uniqueness of solutions for the following equation with the initial
conditions for any positive integer m:

m 1 amfl

9
S 2 y) = kElAk(y)If”‘mlf”kZ(x,y)—f<x,y,Z(x/y)w“/le(xfy)>f 1)
T am—1

d
2(0,y) =0, , 5 5=gu(0,y) =0,

in the Banach space

m

(0,30 x 00) = { 2(3,) + 2 2(5,) € S(0,7] x ) and 2] < o1,

where xo > 0, Q1 = [0,wq] X -+ X [0, w,] C R", and

d "
12l = max{ 120l 352 )l 2ol -

The remainder of this paper is structured as follows. Section 2 studies the uniqueness
of the solutions to the problem (5) using the matrix Mittag—Leffler function given above,
Babenko’s approach and Banach’s contractive principle. Section 3 presents an example
to demonstrate the applications of the main results based on the value of a matrix Mit-
tag—Leffler function evaluated using our Python code. In Section 4, we provide a summary
of the work.
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2. Uniqueness of Solutions
Theorem 1. Let1 <a <2, a;; > Ofori=1,---,n j=1,---,m, and

Q- « 2
M, = |41 % a1 (20)
Kyl &uym Kup+1
fork=1,---,m. Weassume that
1 m
Azl—mk;WHEMk(\ﬂl\w“r|ﬂm\)>0-

Then, Z(x,y) is a solution to the problem (5), if and only if it is bounded and satisfies the following
implicit integral equation in the space S([0,1] x Q):

Z(x’y) = Z(_l)l Z (l o l )ﬂlll . ahlelila+ +lmlx+lX
e R A B
1120, I >0

. Ii‘llll-'r...-i-t)élmlm .. I}‘/’l‘nlll+"‘+‘x11mlmf(x’ yrz(xly))
i+ Faly+1

o 1 ]
— -1 l ( >a 1. .. alm
I;O( ) ll+-;lm:l b ) "T(al 4 +aly +2)
llZO,"'/lmZO

m [ee]
ggtretb bt sy, 7(xy)) + ) ac Y (1)
a1

g o Nl )0 T Ty o o+ 2)
1120, 1z >0

. 111%1111+'"+061mlm+041k . I}’fl‘nlll+"'+annllm+“nk I*_,Z(x,y). 1)

Furthermore,

1 1
1711 < £ (Foulasl -+~ hanl) + Fgy Beu ol lan) )

sup [f(xy,w)| < 4oo, (22)
(x,y)€[0,1]xQ, weR

where
o o a+1
N1+ - - o 1
er — 1.1. . 1m , (23)
Xpl - &nm 1
and we define
o a2
N1+ - - o 1
Q= |1 T (24)
Kp1 v gy 1

Proof. Applying the operator I to the first equation in (5), we get

9% n
Iy gva(x,y) T Z a8 L Z(x,y) = 18 f(x,y, Z(x,y)). (25)
k=1
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According to (2), we get
Z(x,y) = Z(0,y) — Zx(0,y)x = I3 f(x,y, Z Zakl“ L% L"Z(x,y),  (26)
which implies
~Z(0,y) = L1 f(x,y, Z Z ol LI Z(x,y), (27)
using the boundary condition
Z(0,y) = Z(1,y) = 0.
(28)

I i Z(x, ),

Hence,
Z.(0,y) = —Lioy f (x4, Z(x,y)) + ) axIy
k=1

which infers that

m
Z(x,y) + ) aIgl - -
k=1

Lf(x,y, Z(xy)) = xLi_i f(x, 5, Z(x,y)) +kZ a1
=1

" Z(x,y) =
LIS Z(x, ). (29)

Therefore,

m
(1 + ) alg

Lf(xy Z(x,y)) —xI_qf(x,y, (x,y))+k_21akl &

I,i‘”k) Z(x,y) =
(30)

LIS Z(x,y)-

Using Babenko’s method and the multinomial theorem, we have

-1
m
Z(x,y) — (1 + Z aklfctli‘lk . Iﬁnk)
k=1
m
Lf(xy, Z(x,y)) — xIE_ f(x,y, Z(x,y) + Y aply ™ - - - LI, Z(x, y))
k=1

1
<Za ItX ’Xlk . “nk)

m
L1 f(xy, Z(x,y)) + ) ac™
k=1

MS/'\

0
LIt Z(x, y))

Lif(xy Z(x,y)) —
’1111 lm (I?Iixll R L‘;‘nl)ll . (I;‘I‘lxlm e Iznm)lm

= i(_l)l 11+.--Z+:1m:1 (11,' 'l' /lm)

=0
llZO,‘“,lsz
m
' <I,‘§f(x,y,Z(x,y)) —xIf f(xy, Z(xy) + Y apli™ -
k=1

Iy xIf_, Z(x, y))
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l
D v R L 7 B
0 Litotly=1 7777 stm

l] >0, /lm >0

ngk:

1

. [‘1"1ll1+..-+lxlmlm e I";‘nlll“"""‘ranmlmf(x’y’Z(xly))
s l ! xoh+taln+1
_ -1 ! ( )H 1... alm
zg)( : 11+---Z+:1m:1 oo )t T (ady A ady +-2)

120, =0

m [}
I+ mlm a1l nmlm
_Iltxll (R S L - Iym 1ot L f(x,y,Z(x,y)) + Zak Z(_l)l
k=1 =0

1 I ] all+ Faly+1
’ Z aj - ay
L=t N\ b T(aly + - +aly +2)
ll >0, rlanO

EK1111+"'+IX] lm+tX1k o 1]1+"'+!Xnmlm+ﬂé k T
I " SR i IS 1Z(x,Y).

Clearly, all above steps are reversible. It remains to be shown that Z € S([0,1] x Q). In fact,

<5 L () mer s
TS T N b That -+ e+ a+1)

ll >0, /lm >0
1 1

.. su Xy, w
r(zxnll + oty +1) C(aply + - + apmly +1) (x,y)e[O,l]IzQ,weR If (x,y,w)|
i Z ( l ) |gl|ll...|am|1m
DC+1 =0 L4-+ly=I ll/"'/lm r(llﬂ(++lm06+2)
1,20, Iy >0
1 1

. su Xy, w
r(txllll + ot oy +1) T(aplh + - + &yl + 1) (X,y)E[O,l]EQ,weR If (x,y,w)|

! Jag | - - - Jag, |
[x+1 2|ﬂk\2 ). (lll...,[m>]"(lla—|—---—|-lmlx—|—2)

=0 L+t ly=l
11>0,+ ;>0
1 1
I1ZI]
1"(["1111 + + Dilmlm + a + 1) 1"(D‘nlll + + lxnmlm + app + 1)
1
= | Eq,(lml,- -+ lam|) + o——=5 Eo (|ﬂ1|f"'/|ﬂm|)) sup |f(x,y,w)|
( Fla+1) (x)€[0,1]x Q, weR

1 m
e — E ZIl.
i X B el lan )2

Since,
1 m
A=1— —— E SR 0,
e L Bl lanl) >

we come to

1 1
1211 < 5 (ool lanl) + s Eaulanl -+ lan)

sup 1f(x,y,Z)| < +oo,
(xy)€[0,1]xQ), weR

since f is bounded. Hence, Z € S([0,1] x Q). This completes the proof of Theorem 1. O
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Theorem 2. Let f : [0,1] x QO x R — R be a continuous and bounded function satisfying the
following Lipschitz condition for a positive constant B:

If(x,y,w1) — f(x,y,w2)| < Blwy —wp|, wy, wp €R. 31)

In addition, we assume that 1 < a < 2 and

1
D = B(Equ (b lawl) + iy Feu - law) )
1 m
+mkzzl|ak|EMk(‘al‘/"‘/|am‘)<1. (32)
Then, the problem (5) has a unique solution in the space S([0,1] x Q).

Proof. The nonlinear mapping 7 is defined over the space S([0,1] x Q) by

o l
TR =R B (e
=0 Bty =1 N7t
1120,"'/ln120
. Iixllll-‘r"'-‘rﬁlmlm .. Iznlll'i"”"’_a”mlmf(x,y, ( y))
xtxll-‘r“"'!‘alm‘i‘]

o ! ! !
. _1 a 1 .qm
lgo( ) ll+‘~2+lm:l (lll e Ilm) ! " r(lxll + o + D‘Zm + 2)
120, 1y >0

m
aply+tayulm a1l +Atnmlm ya
I e Iy Lo f(xy 2 Z

uMg

1 wly 4 Faly+1
’ Z ( )all g X
L4+l =l ll/"' /lm 1 mr(ﬂél]—f--’—alm—f—Z)

[ 20, l;n>0

tX1111+"'+061 lm+061k o 1[1+"'+0€nmlm+ﬂt k T
I m R ks Z(

X, Y).

It follows from Theorem 1 that 7Z € S([0,1] x Q)). We shall show that 7T is contractive.
Indeed, for Z1,Z, € C([0,1] x Q)), we get

T2y = T2l < BEg,(|aal,- -+, lam|)[|Z1 = Za]|

B
—_— 71 —
gD Ealml - lanDlZy - 22|

1 m
ta T L |l Em (il lam]) (12 - Z
Tty K Bl lan DIz = Z|

= D||Z1 — Z,||, (33)
from the proof of Theorem 1, noting that
\f(ey, 21) = f(x,y, 22)| < B|Zy — Z,]. (34)

Since D < 1, the problem (5) has a unique solution in the space S([0, 1] x Q) using Banach'’s
contractive principle. This completes the proof of Theorem 2. [
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3. Example
Example 1. Consider the following equation:
0" Z(x,y) + i LRI L*Z(x,y) = o cos(x*y2Z(z,y)) + x> + |y| sinx
x> ok S 50 ' " (35)
Z(0,y) =Z(Ly) =0, (x,y)€[0,1] x[0,1)%,
where
1.1 12 13 14
(aij)1§i§3,1§j§4 =112 13 14 1.5]. (36)
13 14 15 16
Then, the problem (35) has a unique solution in the space S([0,1] x [0, 1]4).
Proof. Clearly,
19
f(x,y,Z) = 25 cos(x’y2Z(x,y)) + x* + [yl sinx, (37)

50
and

19 19
f(xy,21) = f(x,y,22)] < g5l cos(x®yaz1) — cos(Fyam)| < ol — 22|, (38)

for all z1,z; € R, noting that (x,y) € [0,1] x [0,1]*. Therefore, B = 19/50. We evaluate the
following D given in Theorem 2 using our Python code to get

p="> (EQ15(1/2 1/4,1/8) +

= 0,(1/2,1/4, 1/8))

;
)
1 31

27 (1/2,1/4,1/8) ~ 0.98% < 1. (39)

Using Theorem 2, the problem (35) has a unique solution in the space C([0,1] x [0,1]#). O
The following is our Python code used to evaluate D given in Theorem 2:

import math
from sympy import gamma
def partition(n, m):
if m ==
yield (n,)
else:
for i in range(n+1):
for j in partition(n-i, m-1):
yield (i,) + j
def ME(M, z): #Matrix Mittag-Leffler function

m = len(M)
n = len(M[0])
z1l = len(z)

result = 0
for 1 in range(O, 40): #approximate upper bound
for 1_partition in partition(l, zl):
if all(map(lambda x: x >= 0, 1l_partition)):
combination = 1
for i in range(zl):
combination *= math.factorial(l_partition[i])

combination = math.factorial(l) / combination
gamproduct = 1
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References

for i in range(m):

gaminput = sum([M[i] [j] * 1l_partition[j]

for j in range(zl)]) + M[i][z1]

gamproduct *= gamma(gaminput)
numerator = 1
for i in range(zl):

numerator *= z[i] ** 1_partition[i]
result += (numerator / gamproduct) * combination
return“result

#Matrices

mMQi5 = [[1.5, 1.5, 1.5, 2.5], [1.1, 1.2, 1.3, 1],

[1.2, 1.3, 1.4, 1], [1.3, 1.4, 1.5, 11, [1.4, 1.5, 1.6, 1]]

MQ1 = [[1.5, 1.5, 1.5, 2], [t1.1, 1.2, 1.3, 1], [1.2, 1.3, 1.4, 1],
[1.3, 1.4, 1.5, 1], [1.4, 1.5, 1.6, 1]]

Mt = [[1.5, 1.5, 1.5, 2], [1.1, 1.2, 1.3, 2.1], [1.2, 1.3, 1.4, 2.2],
[1.3, 1.4, 1.5, 2.3], [1.4, 1.5, 1.6, 2.4]]

M2 = [[1.5, 1.5, 1.5, 2], [1.1, 1.2, 1.3, 2.2], [1.2, 1.3, 1.4, 2.3],
[1.3, 1.4, 1.5, 2.4], [1.4, 1.5, 1.6, 2.5]]

M3 = [[1.5, 1.5, 1.5, 2], [t1.1, 1.2, 1.3, 2.3], [1.2, 1.3, 1.4, 2.4],
[1.3, 1.4, 1.5, 2.5], [1.4, 1.5, 1.6, 2.6]]

z = [0.5, 0.25, 0.125]

#Calculation in example

result = 0.38%x(ME(MQ15, z) + (1/gamma(2.5))*ME(MQ1, z)) + (1/gamma(2.5))
*(0.5%ME(M1, z) + 0.25%ME(M2, z) + 0.125%ME(M3, z))

print(result)

Remark 2. The Python language is quite powerful in computing values of the multivariate Mit-
tag—Leffler function or the newly introduced matrix multivariate Mittag—Leffler function. Indeed,
these functions often appear in various fields and play an important role in studying integral
or differential equations with initial or boundary conditions, as well as in finding approximate
solutions.

4. Conclusions

We have derived the sufficient condition for the uniqueness of the solutions to the new
boundary value problem of the fractional nonlinear partial integro-differential Equation (5)
in R" using the matrix Mittag—Leffler function, Babenko’s approach as well as Banach’s
contractive principle. Finally, we presented one example showing the applications of the
key results derived using the Python code, computing the approximate value of the matrix
Mittag-Leffler function.
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