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Abstract. In this article, we study an integral boundary condition prob-
lem. In fact, we consider a new nonlinear fractional integro-differential
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1. Introduction

Due to the many applications of fractional calculations in various sciences
such as engineering, the attention of many researchers has been drawn to
this field. For example, boundary value problems including integro-differential
equations (IDEs) are suitable tools for modeling multiple events. Cabada and
his colleague Hamdi [1], Young, and his coauthors [2] were among those who
have investigated two models of IBCPs. These two FDEs with boundary

conditions are defined as follows:

{RLDéZu(x) + f(a,u(@)) =0, z€(0,1)
u(0) =u/(0) =0, u(l)= pfol u(x)dz,

(1.1)
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for the continuous function f(z,u) and 2 < 8 <3, 0 < p < B and a more
general problem in a Banach space E, given by

{—uuDéywm::ﬂauw»+vaw,xe<an
u(0) =u'(0) =0, u(l)=pf, ulz)ds

for the continuous functions f(z,u):[0,1] x K — K, ¢:]0,1] — K and
2< <3 0<p<pP,v€ R K and 0 are the normal cone and a zero
element in the Banach space E, respectively. v € R is also a variable sign
parameter. Cabada and Hamdi proved their results by considering Guo—
Krasnoselskii’s fixed point theorem (G-KFPT) for Eq. (1.1). The following
nonlinear fractional differential equation (N-FDE) is another integral bound-
ary condition problem (IBCP) that has been investigated by Wang et al.,
using the monotonic iterative method [3]:

(RLD ) ( ) f(x U(IE)), T e [OvT]v T>0,
0) = A u@)de +d, deR,

for the continuous function f:[0,7] x R — Rand A > 0,0 < ¢ < 1.

In this article, for I, m e N and 0 < a,, < - < a1 <l —1< a </,
0< B << PBm, 0<a<b< 400, we consider the following nonlinear
fractional integro-differential equation (N-FIDE), which is an IBCP:

oDYu(x) — A\ ¢ D2 u(x) — - — Ay ¢ D u() — A1 1P u(x)
- )‘n+mlgmu(x)
~ fau(e). ¢ a8 "
u(a) =u'(a) = - = u"D(a) = 0,
w(b) = M I u(b) + - + A I u(b) + A1 12TP1u(b)
+o )‘n+mlg+ﬁmu<b)7

where f:[a,b] x R — R is a mapping satisfying certain conditions and \; is
a constant for all j =1,2,...,n 4+ m. In particular for [ = 1, Eq. (1.2) turns
out to be

cDu(x) — Ay w(x) — Ay [P u(z) — - — Ao IPmu()
= f(x,u(x)), S [avb]
u(b) = M I8u(b) 4+ Ny 1 10T U (b) + -+ 4+ Ny 19 TBmu(b).

The remainder of this paper is structured as follows: In Sect. 2, we state
the definitions and preliminary results. These definitions include a Banach
space C'~1[a, b] which is a subspace of C|a, b], the multivariate Mittag-Leffler
function and Babenko’s approach. Moreover, an IBCP using Babenko’s strat-
egy is also investigated. Then we derive sufficient conditions for the unique-
ness and existence of Eq. (1.2) with the help of BCP and Leray—Schauder’s
fixed point theorem (LS-FPT) in Sect.3, and further demonstrate applica-
tions of main results by several examples in Sect. 4. At the end, we summarize
the entire work in Sect. 5.
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2. Preliminaries

We begin with all the basic and required concepts. First, we define a Banach
space used in our investigation. For [ € N, a subset of Cla,b] is a Banach
space C'~1[a, b] defined as follows

C' 1 a,b] = {u(m) : [a,b] — R such that v~ (z) is continuous on [a, b]} ,
with the norm

Jul = mas fu@)] < +oc.
Definition 1 [4]. The Riemann-Liouville fractional integral for function u(x)
of order € R™ is defined as

1

(Igu)(z) = @

/m(x — 1) y(t)de.
In particular,
(Igu)(z) = u(2).

Definition 2. The Liouville-Caputo fractional derivative for function u(x) of
order a € RT is defined as

(eDEu)(@) = 11 (o) = oo [ =t 0

forne N={1,2,3,...}andn—1<a<n.

In the following, we will define the 2-parameter Mittag—Leffler function
and the multivariate Mittag—Leffler function. In relation to linear fractional
differential equations with constant coefficients, the multivariate Mittag—
Leffler function was defined by Hadid and Luchko. See [5-9] for more details.

Definition 3 [8]. The two-parameter Mittag—Leffler function is defined by
o0 k

z
Eop(z) = gma ze€C, a,3>0,

and the multivariate-Mittag—Leffler function is defined as follows
E(al,...,am),ﬁ(zla ceey Z'm)
Sy (o )
o kl,...,km F(a1k1++amkm+ﬂ),

k=0 ki+4-+km=k

where «;, 3 >0 fori=1,2,...,m and

k R
Kiveokm) Kl k!

One of the important tools for solving differential and integral equations
with initial conditions is Babenko’s strategy. This method is generally the
same as the Laplace transform while dealing with equations with constant
coefficients. Also, this method is used for differential and integral equations
with continuous and certain variable coefficients [10]. In the following, to show
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the applications of this approach in detail, we will investigate the solutions of
two problems in the space C'~'[a, b]. These equations are defined as follows:

cDgu(z) +a(x)]é3u(:£) =g(x), z€[0,T], I-1<a<l, >0, @2.1)
u(0) =/ (0) = --- = =1 (0) = 0, '
where a(x), g(z) € C[0,T], and
oD%u(z) — A\ ¢ DX u(x) — -+ — Ny DS u(z) — Aya 1 101 u(2)
— o = AngmIPru(x)
= f(z), z€la,b]
u(a) = (@) = - = w2 (a) = 0, (2.2)
w(b) = M1~ alu(b) o A L2 u(b) + Ay IS P1u(b)
+ oo A ISP u(b).

where f € Cla,b].

Lemma 4. Assume that a(z), g(x) € C[0,T]. Equation (2.1) has a unique
solution.

Proof. First, we can apply the operator I§* to both sides of equation

oDgu(e) + a(@) I u(z) = g(z),
then using the initial condition u(0) = u/(0) = - -- = u(!'=Y(0) = 0, we have
ulw) + Iga(@) I u(x) = 1§9(a).
Then,
(1 + Ia(@)If)u(e) = u(z) + [a(@) Fu() = 1§9(x).
Due to the boundedness of the variable I§a(z)I on C[a,b] and treating

1+ Ig‘a(x)loﬁ as a normal variable, we use Babenko’s strategy. Considering

(Iga(x)f(’?)k Ig =1y (a(x)Ig‘Jrﬁ)k, then we have

u(e) = (14 Iga(@)I) Igg(e) = S () (150(2)15)" g g(a)

k=0
Z Dk ( I‘Hﬁ) g(x).
k=0

In the following, we show that in the space Cl_l[a, b], the obtained series on
the right-hand side of the above equation is convergent. Clearly

(63

v T
[ = oma < 5 5 ol

1
Ie — —
115 g(=)]] LB T

and

a+p3
o] o(o)] < M ol

Tla+p+1
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where M = maxxe[o 7] la(x)|. Furthermore,
oz+ﬁ)k+a

I 1") e < MF =
(0 09(@ ”9”2 T((a+B)k+a+1)

= ||9||T Eayp, at1 (MTHP),
which infers that u € C[0, T]. Moreover, from the identity

o) = Y0155 (015 7) o) = 15 3" (o)1) o),

k=0

we deduce that u € C'~1[a, b] due to the factor I§. O

Lemma 5. Assume that 0 < a,, < -+ < a1 <Il—-1<a<leN,0< [ <
- < B, 0<a < b < 400, Aj is a constant for all j =1,2,...,n+m and
f € Cla,b]. Then, Eq. (2.2) has a unique solution

W =3 3 (kl,‘..’fmm)

k=0 Fky+-+k

k Kntm a+(a a)kitH(atBm)kngm
>\11'”>\n-‘:nt.‘[ v * f(.’,U)

k
(b—2)* 1 f(z)dz -
b—a)l i a)/ kz:()kH_ §n+m:k (kl,...,kner

/\Ifl' Y Kntm I(Ot o)kt +(a+5m)kn+m(mia)l—1

n+m

).

in the space C'~'[a,b].

Proof. Like the previous lemma, we begin the proof by applying I to both
sides of the following equation:
eD%u(z) — A\ ¢ DX u(z) — - — A oD u(x) — My 1 1P u(z)
= I u(e) = [ (),
then we have
u(z) — A\ 187 %%(2) — - = XN IO u(z) — A1 19T Pu()
— = My LOTBmy(2) = IO f(2) + c(x — a)' 1, (2.3)
by utilizing the condition
u(a) = u'(a) = =u"H(a) =0, (2.4)

and 0 < a, < -+ <a; <l—1<a<léeN, where cis a constant to be
determined by the boundary condition.
Setting « = b in Eq. (2.3) and using the condition

w(b) = M IS u(b) + - + N I u(b)
+ /\n+1[3+51u(b) 4+ )\n+m1§+ﬁmu(b),
we get

ISf(b) + c¢(b—a) "' =0,
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which implies that

CcC = _WI: (b)
Hence, Eq. (2.3) turns out to be
(L= Ap 1970 — o = NG T2 = Ny IO — = N IO ()

(r —a)l~t

b
=13 f(z) - m/a (b—2)* " f(x)dx

By Babenko’s approach, we come to

-1
(1 MI““1fu.fogﬂnfAm4ﬁ*mf~-fMHmm+%) :
@ (I - a)l_l /b a—1
I _wma) [ d
[ 210~ G L -0 e

k
A IS e XN I8 A At ISP e I8P

Mg

(z—a)l™?!

1270 - G [0 ]

It follows from the multinomial theorem that

()\1 Ig‘foq + .-+ Anlgé*an + )\n+1I3+ﬁ1 S >\n+mjg+ﬁm)k

F a—ai\k wi .
— Z (k17"'7kn+m> (Al Ia 1) 1,..()\n+m]—a+ﬁ ) "

kit kg m=k

- x E Yl e et
kh kn+m
k14 +kntm=k

Thus,

:Si b)) <m,.fk

k=0 ki+- - +knpm=k ' ”+m>
>\’191 . _)\kn+m . Ia+(o‘7a1)kl+"‘+(a+ﬁm)kn+m,f( )

n+m

—( llF /(byc)"‘1 dxz Z

()
k=0ki4 +kppm=Fk k17~~~akn+m

)\ SN Entm I(CY ap)kit-+H(at+Bm)knim (z _a)l—l.

n+m
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Evidently, u("~Y () is continuous due to the two factors I® and (z — a)'~'.

Further, we consider

« > k kq Knitm
bl < 1A G=a)* 3 3 (T )l D

k=0ki+ - +knpim=Fk
(b _ a)(a_al)k1+"'+(0¢+Bm)kn+m

T((@a—aki+ +(@+ Bo)bnsm tat)
L UIe—a & (*
Ma+1) /= P ki,..., kntm
(b — a)(a*al)knh-»+(a+ﬁm)kn+m
(¢ —a)ki+ -+ (a+ Bm)kngm + 1)
= 11— ) - (Bla—ar,.ats, atn (M= a)* " gl (b — ) T77)

1 _
+ mE(a—al ..... a8, 1) (|>\1\(b —a)* T A (b = a)aw’“)) < oo,

N

which claims that u € C'~![a, b]. Given that the following system

cDYu(z) — A\ ¢ D u(z) — -+ — Ay ¢ D u(x) — A1 I8 ()
- T )‘n+mI§mu<x>
=0, =€ [a,b]
u(a) = /(@) = -+ = u=D(a) =,
u(d) = M I8 u(b) + - + A\ IS u(b) + A1 ISP u(b)
o A L8P (b)),

has only zero solution in C'~![a, b], therefore the uniqueness is proved. [

3. Existence and Uniqueness

Theorem 6. We consider the following conditions for the continuous function
f:la,b] x R — R and 6:

e f satisfies in the Lipschitz condition with constant L > 0, that is
|f(z,y1) = f(z,92)| < Llyr — v2l,

Jor y1,y2 € R.
o We suppose

,,,,, a+Bm, a+1) (P\l‘(b —a)* o g (b — a)a+6"”)
1

_ o oya—on _ ot Bm
+7“&“)13(&,&1,..,%5%1)(|A1|(b )™ Pl (b = )" ) | < 1

Then, the boundary value problem (1.2) has a unique solution in the space
C'"1a,b].
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Proof. Define a nonlinear mapping T over C'~![a, b] by

(Tw)(2)
= k ke Enpm  pat(a—ar) k4 +(a+Bm)knim
- DI VAR ot o f (@, u(x))
I;Ok1+-~-§n+m=k klv“-akn+m) ! *
1 b . o k
O ESYC) /a (b —2)*" fz,u(z))dz - ’CZ::O kﬁ“_%;”m:k (k1, N ’kner).
)\If‘ S )\::r;;; . [((l"—al>k1+'“+(0¢+Bn.)k,,+m(z _ a)l_l_
Clearly,
max |f(z,u(z))| = max [f(z,u(z)) — f(z,0) + f(z,0)]
z€[a,b] z€[a,b)
< max Llu(z)| + max |f(z,0)]
z€[a,b] z€[a,b]

= Lljull+ max (2.0 < +o0,

using the Lipschitz condition and noting that f(z,0) € C|a,b].
It follows from the proof of Lemma 5 that (Tw)(z) € C'~1[a, b]. We need
to prove that T is contractive. Indeed for u, v € C*~'[a, b],

[(Tw)(z) — (Tv)(z)]
=SSR SN RN (AR

k=0 kit A knsm=k <o kntm
1
IF((a—a1)k1 + -+ (a4 Bim)kntm + @)

/ T — gyl ek B R ke (4 (1)) — f(2, v(t))dt'

1 b a—1
e | @ 0" @) - 1o o))

i Z (klk kn+m)'

k=0 ki++hnim=k

|>\1‘k1 . ‘An+m‘kn+rn . I((l(’*111)k1+‘“+(f¥+5m)kn+m(z _ a)l—l
@ > k . :,
< L(b—a)* |Ju—v Z Z ( )IAllkl.”|>\"+m|kn+m.
k=0 k _ kly---ykn+m
=0 kit o=k
(b _ a)<(’7(11)k1+‘“+((’+5m)k‘n+1n
(e —ar)ki1 + -+ (a4 Bm)kn+m + @+ 1)
1 > k " "
+Lb-a)" fu—v] o a5 P
Fla+1) ,;, kr%—----%v:nm:k (kh S kn+m>
(b _ a)F((a_al>kl+"'+(a+6m)kn+7n
F((CM - al)kl + -+ (Oé + ﬂm)kn+m + 1)
=Lb—-a)"|lu—v] Eo—a,..., a+Bm, a+1) (|>\1‘(b —a)* T Angm (b — a)aJrﬁm)
1
L(b—a)” — -
F L= )" = vl s
E(aan oot 1) (M1 = 07 P (b = 0) )

= 0lu— .
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Since # < 1, Eq. (1.2) has a unique solution in the space C'~![a,b] by BCP.
O

Regarding the existence of solutions to Eq. (1.2), we have the following
theorem.
Theorem 7. We consider the following conditions
e For My >0, My >0 and y € R, the continuous function f:[a,b] x R —
R satisfying
[f(z,y)| < My + Malyl,

e suppose that

0= MQ(b - a)a (E<047(11,...,04+ﬁm, a+1) (|>‘1|(b - a’)aial DI |)‘n+m‘(b - a)a+5m)
1

—F
+F(a+1) .....

Then, Eq. (1.2) has at least one solution in the space C'~1[a,b].

Proof. We again consider the nonlinear mapping T over C'~1[a, b] given by
(Tw) (=)

- k : _ .
=3 3 (k i )Allu co A ect(am ekt (o B R £ (5 (7))
50 ket omimete Ly Bngm

,(71)_@117111(&) /ab(bfz)aflf(z,u(:r))dm- i Z <k1,. k ) .

k=0ki+-+knim=k . ‘7kn+m
/\’1“1 L. )\Zvr;z . Iéaial)kﬁr‘"+(0‘+ﬁm)k"+m (- a)lfl.
Obviously,
| Tul] < (My + Mz [|ul])(b— a)® -
(E(ocfozu.”,oz+ﬁm, a+1) (|)\1‘(b — a)u—al’ R |>‘n+m|(b _ a)a+ﬁm)
1 —
e 3D Heaar et » (Ml —a)” O Pl (b = @)7 ) < +oo,

which claims that the mapping T is from the space C'~![a,b] to itself. We
are going to prove (i) 7" is continuous. Indeed,

[(Tu)(z) — (Tv)(z)| < Jmax |f (2, u(x)) — f(z,v(x))|(b —a)* -
(E(a—al ,,,,, a+B,,, a+1) (lAl‘(b - 6")0670[1 R |>"’L+m|(b - a)a+ﬁm)

T e D) Haar et b (M](b = @)=, g (b — @)*+5n)) < +oo,
which claims T is continuous, according to the continuity of f.

(ii) In addition, we need to prove that T defined over C'~'[a,b] is a
mapping from bounded sets to bounded sets. In fact, let W be a bounded set
in C'~![a,b], then there exists a constant Z € R* such that

[f (@, u(x))] < My + Ma|u(z)| < Z,



298 Page 10 of 15 C.Lietal MJOM

for all w € W. This implies that

[Tul] < Z(b—a)*

(E<C“_C¥1 77777 a+B,,, a+1) (|)‘1‘(b7 a)oc—cn’. (R |>‘ﬂ+m|(b - a)CH—ﬁm)
1
Elaa Al(b—a)* %, At | (b — @) Pm)) < .
F Ea gy Pt (Ml —a) Pt (6 = @) 7)) < oo

Therefore, the set
{Tu: wueW}=TW

is uniformly bounded in C'~1[a, b].

(iii) 7 is completely continuous from C'~'[a, b] to itself, which is a sub-
space of C[a,b]. Now, we show that T is equicontinuous on every bounded
set such as W in C'~![a,b]. For this purpose, we consider the Arzela—Ascoli
theorem and assume that a < 71 < 75 < b and v € W. Then, we have

|(Tw)(72) — (Tw)(71)]

> k
S Z Z (kly...,kn#»m,)'kﬂkl ...IAn+m|k7]+m N

k
. -7kn+m

) Z(b k1 L —
- ar 1F(a+1) Z Z <k:1,. )"\1‘ Pl

k=0 kit K ym=k

==l \=lgp T' o= )Y (= q)t !
F('yi ) (t)dt/a( £ (t)dt‘

=1 + Iz,
where
vy=a+ (a—aj)ki+ -+ (a+ Bmn)kntm > a.

Regarding I, we have
/;2 (1o — )Y f (¢, u(t))dt
_ / " (s — L F(E ut))dt + / (72 — )71 F(t, u(t))dt.
Therefore,
/a " (1 — £, ()t — / " (= £, u(e)) e
= [l = = = )+ [ )

T1

and by the mean value theorem,

/arl (2 — )" = (11 — )" f(8, U(t))dt‘

<z {(TQ ;‘m _n ;“)7] < Z(m—m)(b—a)L.
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Furthermore,

/:2 (1o — t)W—lf(t,u(t))dt’ < Z(TZ—’yﬁ)V.

1

In summary,

L <Z(m—7)b—a)* ") > <k1 kk

k=0 ki+ +knim=k 1 fntm
(b _ a)(&*al)k1+"‘+(a+5m)kn+m

F(Oé+(&*0[1)k1 -+ - (a+5m)kn+m)

k
SRR DA DU RS T S
k=0 kit thyym=k 127 mAm

(b — a)(a—al)k1+-~~+(a+ﬁm)kn+m
T(a+1+ (a—a1)ki+ -+ (@ + Bm)kntm)
= Z(TQ - Tl)(b - a’)a_lE(Ozfoq ,,,,, a+Bm, o)

VM1 P

(M6 —a)>= o | (b — a)* )
+Z(7'2 - Tl)ﬂE(aial 7777 By at1)
(|>\1|(b - a)a7a17 T |>‘n+m|(b - a)a+ﬁm) .
As for 1o,
et R R U S MU R U R
< M [ /Tl((TQ _ t)»yfafl — (1 — t)'y*afl)dt‘ n /‘r2 (s — t)’Y*afldt]
= I‘('y Oé) a .
R
ST(h+1-a) [(TZ )’ — (1 —a) ]
(b— a)l 1 B o
Torioa T
for v > a.
Clearly,
Z(b—a)®
I, < ( ) ) [(7—2 _ a)l—l —(r — a)l_1]

(b - a)lflf(a +1

k
A ’fl...)\n m’fn+m.
a+1 Z > (kl,...,kn+m>| 1 [Antoml

k=1ki+-+kntm=k

F —|—1—a

a

— k
04+1)Z 2 (kl,...,mm)'Alk”'M"*m

k

k?n+7n .

(2 —a)’™* = (11 —a)"™°]

1kt tkntm=k

1
(=)
F(V—I-l—a)( 2= T)
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Obviously, the second term above contains the factor 75 — 77 from the mean

value theorem and third includes the factor (72 —71)*~ %, by noting that the

index k starts from 1 rather than zero. Thus, T is completely continuous.
(iv) As a final step, we shall show that for some 0 < A < 1 the set

X={ue C'a,b): u = AMTu}

is bounded.
Indeed,
Jul| < [[Tul| < (M1 + Ma ||ull)(b —a)*
(E(a*alv--yoﬁ*ﬁm, a+1) (‘All(b - a)(x—oq’ RN |)‘n+m|(b - a)a-i—ﬁm)
1
T 1 1) et 1
(M5 = @)™ Py (b — @)™ +P)) < o,

which deduces that

(1*@) HUH S Ml(E(a—al 77777 ot B, atl)
<|)\1‘(b - a)a7a17 ey ‘)‘n+m|(b — a)O‘Jer)

# _ ) _ \atBm
+ a1 oot 1) (Male = )" P (6 = @) )).
Hence,

1 a—aq [e% m
ull € T2 (Blaan s, o) (Aalb = )™ Pl (b — @) )
e ot 1 (A0 = @) Dl (6 - @)™,

F(CZ+ 1) (a—aq,..., a+LBm, 1) ) )
This completes the proof of Theorem 7. 0

Theorem 8. Assume f:[a,b] x R — R is a continuous and bounded function.
Then, Eq. (1.2) has at least one solution in the space C'~1[a,b].

Proof. 1t follows immediately from the proof of Theorem 7 by setting Ms = 0.
O

Remark 9. Tt would be interesting and challenging to consider the following
integral boundary value problem with variable coefficients:

cDu(z) = M (x) e Dt u(x) — - = An(x) ¢ D u(x)
—/\,H_l(a:)lflu(x) - /\n+m($)lgmu(aj) = f(x,u(x)), HAS [CL, b]
u(a) = u'(a) = - = u=(a) =

u(b) = IgA1(b) o DG u(b) + - -+ + IgAn(b) o Dgmu(b)
HIE A1 (D) IF u(b) + - + Ig X (D) I u (D),

where \j(z) € Cla,b] forall j =1,2,...,n+mand -1 < a <.
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4. Examples
Ezxample 10. We consider the following IBCP

cDydu(z) — 2 ¢ DYPu(z) + I8 u(z) = 5—10 sin(zu(z)) + 2%, = €[0,1]
u(0) =0,
u(l) = 2Ipu(1) — IF%u(1) = 2 [y u(w)dz — g fo (1 = 2)*Ou(z)da.
(4.1)
According to Theorem 6, Eq. (4.1) has a unique solution in the space C1[0, 1].

Proof. Clearly,
1
flz,u(z)) = 0 sin(zu(x)) + 23,
and

7 () — fla,v(@)] < olau(a) —zo(@)] < o lul) — o)),

1
which implies that L = 0 using the fact 0 < x < 1. In addition, from
Theorem 6
1

0= |:E(116 2.5)(2,1) +

0 = =Fa,16 1)(2, 1)} .

1
I'(2.5)

By the definition,

2k
E (2,1) :
(1,16, 2.5)( 2: 2: (khké> (ki + 1.6ky + 2.5)

k=0 k1+ko=k
Evidently,
k
> ()=
ky+ha=k 1, 2
2]€1 Qk

<
['(ky + 1.6k +2.5) — T'(k+2.5)°
then, according to the calculations, we have
CRIE P
Ea6,25(2,1) < ~ 6.51075.
— T'(k+2.5)
On the other hand,
1 g (2,1) < 0.752253 * i A ome
F(25) (1,1.6, 1)\4» = Y- ~ F( ~ . .

k+1)
In summary,

1
0= =5[6.51075 +41.0716] < 1

By Theorem 6, the integral boundary value problem has a unique solution in
the space C'*[0, 1]. O
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Example 11. Consider the following FDE which is an IBCP.
cDE3u(z) — 4 ¢ D 3u(x) = cos?(z + u(z)) + 2% + arctan u?(z),
u(0) = u/(0) =0, (4.2)
u(l) = 4lyu(l) = 4f01 u(x)dz.

According to Theorem 8, Eq. (4.2) has at least one solution in the space
C?0,1].

Proof. The function
f(z,u(z)) = cos?(z + u(x)) + x* + arctan u?(z),

is clearly bounded over [0, 1]. From Theorem 8, the above equation with the
IBCP has at least one solution in the space C2[0,1]. O

5. Conclusion

In this work, we have first provided several definitions and basic concepts
needed to prove the main results of this article. These include the Banach
space, Riemann—Liouville fractional integral and Liouville-Caputo fractional
derivative, two-parameter Mittag—Leffler function and multivariate Mittag—
Leffler function, Babenko’s strategy. Then, applying BCP and LS-FPT, we
investigated IBCP (1.2) and proved our main results. In the end, by adding
some numerical examples, we have shown the applications of the obtained
results.
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