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1. INTRODUCTION

The Riemann-Liouville fractional integral Iβ of order β ∈
R+ is defined for the function ζ(x) as

(Iβζ)(x) =
1

Γ(β)

x∫

0

(x− τ)β−1ζ(τ)dτ, x ∈ [0, 1].

In particular,

(I0ζ)(x) = ζ(x),

from Li (2015).

Let n ∈ N = {1, 2, 3, · · ·}. The Caputo fractional deriva-
tive of order β ∈ R+ of the function ζ(x) is defined as (see
Li (2023))

(CD
βζ)(x) =

1

Γ(n− β)

x∫

0

(x− τ)n−β−1ζ(n)(τ)dτ,

where n− 1 < β ≤ n.

Assume η : [0, 1]×R → R is a mapping and ϕ : C[0, 1] →
R is a functional. We shall study the uniqueness and
existence for the following nonlinear fractional differential
equation with a nonlocal boundary condition for 1 < β ≤ 2
and a constant λ:

CD
βζ(x) + λ CD

γζ(x) = η(x, ζ(x)), x ∈ [0, 1], (1)

ζ(0) = 0, ζ(1) = ϕ(ζ),

where 0 < γ ≤ 1 is a constant.

Equation (1) is a particular instance of equation (1.2) dis-
cussed in C. Li (2023), but with a new functional boundary
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condition which extends many integral boundary condi-
tions.

Nonlinear boundary value problems, including those with
nonlocal conditions, often appear in the mathematical
models of real world phenomena. The study of boundary
value problems is important due to their extensive appli-
cations in diverse disciplines of applied sciences and engi-
neering. There have been many interesting investigations
in the area dealing with different boundary conditions
(J. Tariboon (2014), S.K. Ntouyas (2020), Li (2023)).

We define the Banach space C[0, 1] of all continuous
functions from [0, 1] to R with the norm

||ζ|| = max
x∈[0,1]

|ζ(x)| < +∞.

The two-parameter Mittag-Leffler function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C, α, β > 0.

Babenko’s approach (see Babenko (1986)) is a powerful
tool for studying uniqueness and existence of differential
equations with initial or boundary conditions. To demon-
strate this in detail, we consider the following nonlinear
fractional differential equation with a nonlocal boundary
condition for 0 < α ≤ 1:

CD
αζ(x) + λ ζ(x) = g(x, ζ(x)), x ∈ [0, 1], (2)

ζ(0) = s

1∫

0

ζ(x)dx,

where s is a constant.

Applying the operator Iα to equation (2), we get

ζ(x)− ζ(0) + λIαζ(x) = Iαg(x, ζ(x)),
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which deduces

(1 + λIα) ζ(x) = Iαg(x, ζ(x)) + s

1

0

ζ(x)dx.

Treating the factor (1 + λIα) as a normal variable (Babenko’s
approach), we informally obtain

ζ(x) = (1 + λIα)
−1


Iαg(x, ζ(x)) + s

1

0

ζ(x)dx




=
∞
k=0

(−1)kλkIαk+αg(x, ζ(x))

+s

1

0

ζ(x)dx

∞
k=0

(−1)kλkIαk1

=
∞
k=0

(−1)kλkIαk+αg(x, ζ(x))

+s

1

0

ζ(x)dx

∞
k=0

(−1)kλk xαk

Γ(αk + 1)
.

The above integral equation is clearly equivalent to equa-
tion (2) with the initial condition. Furthermore, we assume
g is a continuous and bounded function over [0, 1]×R, and

d = 1− |s|E(α, 1)(|λ|) > 0.

Then ζ is uniformly bounded on [0, 1]. Indeed,

||ζ|| ≤
∞
k=0

|λ|k

Γ(αk + α+ 1)
sup

(x,y)∈[0,1]×R
|g(x, y)|

+|s|||ζ||E(α, 1)(|λ|).
Thus,

||ζ|| ≤ 1

d
Eα, α+1(|λ|) sup

(x,y)∈[0,1]×R
|g(x, y)| < +∞,

which claims ζ is uniformly bounded. If the function g
further satisfies the following Lipschitz condition:

|g(x, y1)− g(x, y2)| ≤ L|y1 − y2|, y1, y2 ∈ R,

and

Q = LE(α, α+1)(|λ|) + |s|E(α, 1)(|λ|) < 1,

then equation (2) has a unique solution in C[0, 1] by
Banach’s contractive principle. To show this, we start by
defining a mapping T over C[0, 1] as

T ζ(x) =

∞
k=0

(−1)kλkIαk+αg(x, ζ(x))

+s

1

0

ζ(x)dx

∞
k=0

(−1)kλk xαk

Γ(αk + 1)
.

Then T ζ ∈ C[0, 1]. It remains to be shown that T is
contractive. Evidently,

||T ζ1 − T ζ2|| ≤ LE(α, α+1)(|λ|)||ζ1 − ζ2||
+|s|E(α, 1)(|λ|)||ζ1 − ζ2|| = Q||ζ1 − ζ2||.

Since Q < 1, equation (2) has a unique solution in C[0, 1]
from Banach’s contractive principle.

We will first convert equation (1) into an equivalent im-
plicit integral equation in a series by Babenko’s approach
in Section 2, and then further study the uniqueness of
solutions via Banach’s contractive principle in the space
C([0, 1]) with an illustrative example. In Section 3, we
derive an existence theorem based on the implicit inte-
gral equation and Leray–Schauder’s fixed point theorem,
and present an example demonstrating application of the
theorem obtained. Finally, we summarize the entire work
in Section 4.

2. UNIQUENESS

Theorem 1. Let η be a continuous and bounded function
on [0, 1]×R, ϕ : C[0, 1] → R be a functional and

w = 1− |λ|
Γ(β − γ + 1)

E(β−γ, 2)(|λ|) > 0.

Then ζ is a solution of equation (1) if and only if it satisfies
the following integral equation:

ζ(x) =
∞
k=0

(−1)kλkIk(β−γ)+βη(x, ζ(x))

+ϕ(ζ)
∞
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)

+Iβ−γ
x=1 ζ(x)

∞
k=0

(−1)kλk+1 xk(β−γ)+1

Γ(k(β − γ) + 2)

−Iβx=1η(x, ζ(x))

∞
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)
. (3)

In addition,

||ζ|| ≤ 1

w
(E(β−γ, β+1)(|λ|)

+
1

Γ(β + 1)
E(β−γ, 2)(|λ|)) sup

(x,y)∈[0,1]×R
|η(x, y)|

+
1

w
|ϕ(ζ)|E(β−γ, 2)(|λ|) < +∞.

Proof. Let 1 < β ≤ 2. It follows from S.G. Samko (1993)
that

Iβ(CD
β)ζ(x) = ζ(x)− ζ(0)− ζ ′(0)x = ζ(x)− ζ ′(0)x,

using ζ(0) = 0. Thus, applying the integral operator Iβ to
the equation

CD
βζ(x) + λ CD

γζ(x) = η(x, ζ(x)),

we come to

ζ(x)− ζ ′(0)x+ λIβ−γ(ζ(x)− ζ(0)) = Iβη(x, ζ(x)),

by noting that 0 < γ ≤ 1. It follows from setting x = 1
that

ϕ(ζ)− ζ ′(0) + λIβ−γ
x=1 ζ(x) = Iβx=1η(x, ζ(x)),
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which deduces

(1 + λIα) ζ(x) = Iαg(x, ζ(x)) + s

1

0

ζ(x)dx.

Treating the factor (1 + λIα) as a normal variable (Babenko’s
approach), we informally obtain

ζ(x) = (1 + λIα)
−1


Iαg(x, ζ(x)) + s

1

0

ζ(x)dx




=
∞
k=0

(−1)kλkIαk+αg(x, ζ(x))

+s

1

0

ζ(x)dx

∞
k=0

(−1)kλkIαk1

=
∞
k=0

(−1)kλkIαk+αg(x, ζ(x))

+s

1

0

ζ(x)dx

∞
k=0

(−1)kλk xαk

Γ(αk + 1)
.

The above integral equation is clearly equivalent to equa-
tion (2) with the initial condition. Furthermore, we assume
g is a continuous and bounded function over [0, 1]×R, and

d = 1− |s|E(α, 1)(|λ|) > 0.

Then ζ is uniformly bounded on [0, 1]. Indeed,

||ζ|| ≤
∞
k=0

|λ|k

Γ(αk + α+ 1)
sup

(x,y)∈[0,1]×R
|g(x, y)|

+|s|||ζ||E(α, 1)(|λ|).
Thus,

||ζ|| ≤ 1

d
Eα, α+1(|λ|) sup

(x,y)∈[0,1]×R
|g(x, y)| < +∞,

which claims ζ is uniformly bounded. If the function g
further satisfies the following Lipschitz condition:

|g(x, y1)− g(x, y2)| ≤ L|y1 − y2|, y1, y2 ∈ R,

and

Q = LE(α, α+1)(|λ|) + |s|E(α, 1)(|λ|) < 1,

then equation (2) has a unique solution in C[0, 1] by
Banach’s contractive principle. To show this, we start by
defining a mapping T over C[0, 1] as

T ζ(x) =

∞
k=0

(−1)kλkIαk+αg(x, ζ(x))

+s

1

0

ζ(x)dx

∞
k=0

(−1)kλk xαk

Γ(αk + 1)
.

Then T ζ ∈ C[0, 1]. It remains to be shown that T is
contractive. Evidently,

||T ζ1 − T ζ2|| ≤ LE(α, α+1)(|λ|)||ζ1 − ζ2||
+|s|E(α, 1)(|λ|)||ζ1 − ζ2|| = Q||ζ1 − ζ2||.

Since Q < 1, equation (2) has a unique solution in C[0, 1]
from Banach’s contractive principle.

We will first convert equation (1) into an equivalent im-
plicit integral equation in a series by Babenko’s approach
in Section 2, and then further study the uniqueness of
solutions via Banach’s contractive principle in the space
C([0, 1]) with an illustrative example. In Section 3, we
derive an existence theorem based on the implicit inte-
gral equation and Leray–Schauder’s fixed point theorem,
and present an example demonstrating application of the
theorem obtained. Finally, we summarize the entire work
in Section 4.

2. UNIQUENESS

Theorem 1. Let η be a continuous and bounded function
on [0, 1]×R, ϕ : C[0, 1] → R be a functional and

w = 1− |λ|
Γ(β − γ + 1)

E(β−γ, 2)(|λ|) > 0.

Then ζ is a solution of equation (1) if and only if it satisfies
the following integral equation:

ζ(x) =
∞
k=0

(−1)kλkIk(β−γ)+βη(x, ζ(x))

+ϕ(ζ)
∞
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)

+Iβ−γ
x=1 ζ(x)

∞
k=0

(−1)kλk+1 xk(β−γ)+1

Γ(k(β − γ) + 2)

−Iβx=1η(x, ζ(x))

∞
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)
. (3)

In addition,

||ζ|| ≤ 1

w
(E(β−γ, β+1)(|λ|)

+
1

Γ(β + 1)
E(β−γ, 2)(|λ|)) sup

(x,y)∈[0,1]×R
|η(x, y)|

+
1

w
|ϕ(ζ)|E(β−γ, 2)(|λ|) < +∞.

Proof. Let 1 < β ≤ 2. It follows from S.G. Samko (1993)
that

Iβ(CD
β)ζ(x) = ζ(x)− ζ(0)− ζ ′(0)x = ζ(x)− ζ ′(0)x,

using ζ(0) = 0. Thus, applying the integral operator Iβ to
the equation

CD
βζ(x) + λ CD

γζ(x) = η(x, ζ(x)),

we come to

ζ(x)− ζ ′(0)x+ λIβ−γ(ζ(x)− ζ(0)) = Iβη(x, ζ(x)),

by noting that 0 < γ ≤ 1. It follows from setting x = 1
that

ϕ(ζ)− ζ ′(0) + λIβ−γ
x=1 ζ(x) = Iβx=1η(x, ζ(x)),
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and hence

ζ ′(0) = ϕ(ζ) + λIβ−γ
x=1 ζ(x)− Iβx=1η(x, ζ(x)).

So we have

(
1 + λIβ−γ

)
ζ(x)

= Iβη(x, ζ(x)) + xϕ(ζ) + λxIβ−γ
x=1 ζ(x)− xIβx=1η(x, ζ(x)).

Using Babenko’s approach, we get

ζ(x) =
(
1 + λIβ−γ

)−1 (
Iβη(x, ζ(x))

+xϕ(ζ) + λxIβ−γ
x=1 ζ(x)− xIβx=1η(x, ζ(x))

)

=
∞∑
k=0

(−1)kλkIk(β−γ)
(
Iβη(x, ζ(x)) + xϕ(ζ)

+λxIβ−γ
x=1 ζ(x)− xIβx=1η(x, ζ(x))

)

=
∞∑
k=0

(−1)kλkIk(β−γ)+βη(x, ζ(x))

+ϕ(ζ)
∞∑
k=0

(−1)kλkIk(β−γ)x

+Iβ−γ
x=1 ζ(x)

∞∑
k=0

(−1)kλk+1Ik(β−γ)x

−Iβx=1η(x, ζ(x))

∞∑
k=0

(−1)kλkIk(β−γ)x

=
∞∑
k=0

(−1)kλkIk(β−γ)+βη(x, ζ(x))

+ϕ(ζ)
∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)

+Iβ−γ
x=1 ζ(x)

∞∑
k=0

(−1)kλk+1 xk(β−γ)+1

Γ(k(β − γ) + 2)

−Iβx=1η(x, ζ(x))

∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)
.

Hence, ζ is a solution of equation (1) if and only if it
satisfies the integral equation (3) since all above steps are
reversible.

Furthermore,

||ζ|| ≤
∞∑
k=0

|λ|k

Γ(k(β − γ) + β + 1)
sup

(x,y)∈[0,1]×R
|η(x, y)|

+|ϕ(ζ)|
∞∑
k=0

|λ|k

Γ(k(β − γ) + 2)

+
||ζ||

Γ(β − γ + 1)
|λ|

∞∑
k=0

|λ|k

Γ(k(β − γ) + 2)

+
1

γ(β + 1)

∞∑
k=0

|λ|k

Γ(k(β − γ) + 2)
sup

(x,y)∈[0,1]×R
|η(x, y)|

= E(β−γ, β+1)(|λ|) sup
(x,y)∈[0,1]×R

|η(x, y)|

+|ϕ(ζ)|E(β−γ, 2)(|λ|) +
||ζ||

Γ(β − γ + 1)
|λ|E(β−γ, 2)(|λ|)

+
1

γ(β + 1)
E(β−γ, 2)(|λ|) sup

(x,y)∈[0,1]×R
|η(x, y)|.

Since

w = 1− |λ|
Γ(β − γ + 1)

E(β−γ, 2)(|λ|) > 0,

we deduce

||ζ|| ≤ 1

w

(
E(β−γ, β+1)(|λ|) +

1

γ(β + 1)
E(β−γ, 2)(|λ|)

)

· sup
(x,y)∈[0,1]×R

|η(x, y)|+ 1

w
|ϕ(ζ)|E(β−γ, 2)(|λ|) < +∞.

This completes the proof.

The following is a theorem regarding the uniqueness to
equation (1) based on Banach’s contractive principle.

Theorem 2. Let η be a continuous and bounded function
on [0, 1] × R, satisfying the following Lipschitz condition
for a nonnegative constant L1:

|η(x, y1)− η(x, y2)| ≤ L1|y1 − y2|, y1, y2 ∈ R,

ϕ : C[0, 1] → R be a functional satisfying the condition
for a nonnegative constant L2

|ϕ(ζ1)− ϕ(ζ2)| ≤ L2||ζ1 − ζ2||,

for ζ1, ζ2 ∈ C[0, 1]. Furthermore, we assume

S = L1E(β−γ, β+1)(|λ|) + (L2

+
L1

Γ(β + 1)
+

|λ|
Γ(β − γ + 1)

)E(β−γ, 2)(|λ|) < 1.

Then equation (1) has a unique solution in C[0, 1].

Proof. Define a nonlinear mapping M over C[0, 1] as

Mζ =
∞∑
k=0

(−1)kλkIk(β−γ)+βη(x, ζ(x))

+ϕ(ζ)
∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)

+Iβ−γ
x=1 ζ(x)

∞∑
k=0

(−1)kλk+1 xk(β−γ)+1

Γ(k(β − γ) + 2)

−Iβx=1η(x, ζ(x))

∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)
.

It follows from the proof of Theorem 1 that Mζ ∈ C[0, 1].
We are going to show that M is contractive. Clearly,

Mζ1 −Mζ2

=

∞∑
k=0

(−1)kλkIk(β−γ)+β(η(x, ζ1(x))− η(x, ζ2(x)))

+(ϕ(ζ1)− ϕ(ζ2))
∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)

+Iβ−γ
x=1 (ζ1(x)− ζ2(x))

∞∑
k=0

(−1)kλk+1 xk(β−γ)+1

Γ(k(β − γ) + 2)

−Iβx=1(η(x, ζ1(x))− η(x, ζ2(x)))

·
∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)
.

Hence,

||Mζ1 −Mζ2|| ≤ L1||ζ1 − ζ2||E(β−γ, β+1)(|λ|)
+L2||ζ1 − ζ2||E(β−γ, 2)(|λ|)

+
|λ|

Γ(β − γ + 1))
||ζ1 − ζ2||E(β−γ, 2)(|λ|)

+
L1

Γ(β + 1)
||ζ1 − ζ2||E(β−γ, 2)(|λ|) = S||ζ1 − ζ2||.

Since S < 1, equation (1) has a unique solution using
Banach’s contractive principle. The proof is complete.

As an application, we have the following example.

Example. The following nonlinear fractional differential
equation with the nonlocal boundary condition:

CD
1.5ζ(x)− 1

2
CD

0.5ζ(x) =
1

19
sin((x2 + 1)ζ(x))

+ arctan(x3 + 1), x ∈ [0, 1], (4)

ζ(0) = 0, ζ(1) =
1

10(1 + ζ2(1/2))
,

has a unique solution in C[0, 1].

Proof.

η(x, ζ) =
1

19
sin((x2 + 1)ζ) + arctan(x3 + 1).

Then η is a continuous and bounded function on [0, 1]×R,
satisfying

|η(x, ζ1)− η(x, ζ2)| ≤
1

19
| sin((x2 + 1)ζ1)− sin((x2 + 1)ζ2)|

≤ 2

19
|ζ1 − ζ2|,

which infers that L1 = 2/19. On the other hand,

ϕ(ζ) =
1

10(1 + ζ2(1/2))

satisfies

|ϕ(ζ1)− ϕ(ζ2)| ≤
∣∣∣∣

1

10(1 + ζ21 (1/2))
− 1

10(1 + ζ22 (1/2))

∣∣∣∣

≤ 1

10
|ζ1(1/2)− ζ2(1/2)| ≤

1

10
||ζ1 − ζ2||,

by the mean value theorem and noting that∣∣∣∣
d

dx

(
1

1 + x2

)∣∣∣∣ =
2|x|

(1 + x2)2
≤ 1, x ∈ R.

So L2 = 1/10 and

S =
2

19
E(1, 2.5)(1/2)

+

(
1

10
+

2/19

Γ(1.5 + 1)
+

1/2

Γ(1.5− 0.5 + 1)

)
E(1, 2)(1/2)

=
2

19
E(1, 2.5)(1/2) +

(
1

10
+

2

19Γ(2.5)
+ 1/2

)

·E(1, 2)(1/2)

≈ 2

19
∗ 0.926819 +

(
1

10
+

2

19Γ(2.5)
+ 1/2

)
∗ 1.2974

≈ 0.978734 < 1.

By Theorem 2, equation (4) has a unique solution in
C[0, 1].

3. EXISTENCE

Using Leray–Schauder’s fixed point theorem, we present
the following existence theorem.

Theorem 3. Let η be a continuous and bounded function
on [0, 1]×R and ϕ : C[0, 1] → R be a functional satisfying
the condition for a nonnegative constant L2

|ϕ(ζ1)− ϕ(ζ2)| ≤ L2||ζ1 − ζ2||,

for ζ1, ζ2 ∈ C[0, 1]. In addition, we assume

Q = 1−
(
L2 +

|λ|
Γ(β − γ + 1)

)
E(β−γ, 2)(|λ|) > 0.

Then there exists at least one solution to equation (1) in
the space C[0, 1].

Proof. Clearly,

|ϕ(ζ)| ≤ |ϕ(ζ)− ϕ(0)|+ |ϕ(0)| ≤ L2||ζ||+ |ϕ(0)| < +∞,

if ζ ∈ C[0, 1].

We define the nonlinear mapping M over C[0, 1] again as

Mζ =
∞∑
k=0

(−1)kλkIk(β−γ)+βη(x, ζ(x))

+ϕ(ζ)
∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)

+Iβ−γ
x=1 ζ(x)

∞∑
k=0

(−1)kλk+1 xk(β−γ)+1

Γ(k(β − γ) + 2)

−Iβx=1η(x, ζ(x))

∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)
.

It follows from the proof of Theorem 1 that

||Mζ|| ≤ E(β−γ, β+1)(|λ|) sup
(x,y)∈[0,1]×R

|η(x, y)|

+|ϕ(ζ)|E(β−γ, 2)(|λ|)

+
|λ|||ζ||

Γ(β − γ + 1)
E(β−γ, 2)(|λ|)

+
1

Γ(β + 1)
E(β−γ, 2)(|λ|) sup

(x,y)∈[0,1]×R
|η(x, y)| < +∞,

which claims that Mζ ∈ C[0, 1]. We first show that (i) M
is continuous. In fact,
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+Iβ−γ
x=1 (ζ1(x)− ζ2(x))

∞∑
k=0

(−1)kλk+1 xk(β−γ)+1

Γ(k(β − γ) + 2)

−Iβx=1(η(x, ζ1(x))− η(x, ζ2(x)))

·
∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)
.

Hence,

||Mζ1 −Mζ2|| ≤ L1||ζ1 − ζ2||E(β−γ, β+1)(|λ|)
+L2||ζ1 − ζ2||E(β−γ, 2)(|λ|)

+
|λ|

Γ(β − γ + 1))
||ζ1 − ζ2||E(β−γ, 2)(|λ|)

+
L1

Γ(β + 1)
||ζ1 − ζ2||E(β−γ, 2)(|λ|) = S||ζ1 − ζ2||.

Since S < 1, equation (1) has a unique solution using
Banach’s contractive principle. The proof is complete.

As an application, we have the following example.

Example. The following nonlinear fractional differential
equation with the nonlocal boundary condition:

CD
1.5ζ(x)− 1

2
CD

0.5ζ(x) =
1

19
sin((x2 + 1)ζ(x))

+ arctan(x3 + 1), x ∈ [0, 1], (4)

ζ(0) = 0, ζ(1) =
1

10(1 + ζ2(1/2))
,

has a unique solution in C[0, 1].

Proof.

η(x, ζ) =
1

19
sin((x2 + 1)ζ) + arctan(x3 + 1).

Then η is a continuous and bounded function on [0, 1]×R,
satisfying

|η(x, ζ1)− η(x, ζ2)| ≤
1

19
| sin((x2 + 1)ζ1)− sin((x2 + 1)ζ2)|

≤ 2

19
|ζ1 − ζ2|,

which infers that L1 = 2/19. On the other hand,

ϕ(ζ) =
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10(1 + ζ2(1/2))

satisfies

|ϕ(ζ1)− ϕ(ζ2)| ≤
∣∣∣∣

1

10(1 + ζ21 (1/2))
− 1

10(1 + ζ22 (1/2))

∣∣∣∣

≤ 1

10
|ζ1(1/2)− ζ2(1/2)| ≤

1

10
||ζ1 − ζ2||,

by the mean value theorem and noting that∣∣∣∣
d

dx

(
1

1 + x2

)∣∣∣∣ =
2|x|

(1 + x2)2
≤ 1, x ∈ R.

So L2 = 1/10 and

S =
2

19
E(1, 2.5)(1/2)

+

(
1

10
+

2/19

Γ(1.5 + 1)
+

1/2

Γ(1.5− 0.5 + 1)

)
E(1, 2)(1/2)

=
2

19
E(1, 2.5)(1/2) +

(
1

10
+

2

19Γ(2.5)
+ 1/2

)

·E(1, 2)(1/2)

≈ 2

19
∗ 0.926819 +

(
1

10
+

2

19Γ(2.5)
+ 1/2

)
∗ 1.2974

≈ 0.978734 < 1.

By Theorem 2, equation (4) has a unique solution in
C[0, 1].

3. EXISTENCE

Using Leray–Schauder’s fixed point theorem, we present
the following existence theorem.

Theorem 3. Let η be a continuous and bounded function
on [0, 1]×R and ϕ : C[0, 1] → R be a functional satisfying
the condition for a nonnegative constant L2

|ϕ(ζ1)− ϕ(ζ2)| ≤ L2||ζ1 − ζ2||,

for ζ1, ζ2 ∈ C[0, 1]. In addition, we assume

Q = 1−
(
L2 +

|λ|
Γ(β − γ + 1)

)
E(β−γ, 2)(|λ|) > 0.

Then there exists at least one solution to equation (1) in
the space C[0, 1].

Proof. Clearly,

|ϕ(ζ)| ≤ |ϕ(ζ)− ϕ(0)|+ |ϕ(0)| ≤ L2||ζ||+ |ϕ(0)| < +∞,

if ζ ∈ C[0, 1].

We define the nonlinear mapping M over C[0, 1] again as

Mζ =
∞∑
k=0

(−1)kλkIk(β−γ)+βη(x, ζ(x))

+ϕ(ζ)
∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)

+Iβ−γ
x=1 ζ(x)

∞∑
k=0

(−1)kλk+1 xk(β−γ)+1

Γ(k(β − γ) + 2)

−Iβx=1η(x, ζ(x))

∞∑
k=0

(−1)kλk xk(β−γ)+1

Γ(k(β − γ) + 2)
.

It follows from the proof of Theorem 1 that

||Mζ|| ≤ E(β−γ, β+1)(|λ|) sup
(x,y)∈[0,1]×R

|η(x, y)|

+|ϕ(ζ)|E(β−γ, 2)(|λ|)

+
|λ|||ζ||

Γ(β − γ + 1)
E(β−γ, 2)(|λ|)

+
1

Γ(β + 1)
E(β−γ, 2)(|λ|) sup

(x,y)∈[0,1]×R
|η(x, y)| < +∞,

which claims that Mζ ∈ C[0, 1]. We first show that (i) M
is continuous. In fact,
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||Mζ1 −Mζ2||
≤ E(β−γ, β+1)(|λ|) sup

x∈[0,1]

|η(x, ζ1)− η(x, ζ2)|

+L2||ζ1 − ζ2||E(β−γ, 2)(|λ|)

+
|λ|||ζ1 − ζ2||
Γ(β − γ + 1)

E(β−γ, 2)(|λ|)

+
1

Γ(β + 1)
E(β−γ, 2)(|λ|) sup

x∈[0,1]

|η(x, ζ1)− η(x, ζ2)|.

This implies M is continuous since η is continuous.

(ii) Furthermore, we prove that M is a mapping from
bounded sets to bounded sets. Let S be a bounded set
in C[0, 1]. Then for ζ ∈ S,

|ϕ(ζ)| ≤ L2||ζ||+ |ϕ(0)| < C,

where C is a positive constant. It follows from the above
inequality that Mζ is uniformly bounded if ζ ∈ S, as η is
bounded.

(iii) We claim M is completely continuous from C[0, 1] to
itself. By the Arzela–Ascoli theorem, we need to show M
is equicontinuous on every bounded set S of C[0, 1]. For
0 ≤ t1 < t2 ≤ 1 and ζ ∈ S, we have

|(Mζ)(t2)− (Mζ)(t1)| ≤
∞∑
k=0

|λ|k

Γ(k(β − γ) + β)

·|
t2∫

0

(t2 − τ)k(β−γ)+β−1η(τ, ζ(τ))dτ

−
t1∫

0

(t1 − τ)k(β−γ)+β−1η(τ, ζ(τ))dτ |

+|ϕ(ζ)|
∞∑
k=0

|λk|
Γ(k(β − γ) + 2)

∣∣∣tk(β−γ)+1
2 − t

k(β−γ)+1
1

∣∣∣

+
|λ|||ζ||

Γ(β − γ + 1)

∞∑
k=0

|λk|
Γ(k(β − γ) + 2)

·
∣∣∣tk(β−γ)+1
2 − t

k(β−γ)+1
1

∣∣∣

+
1

Γ(β + 1)
sup

(x,y)∈[0,1]×R
|η(x, y)|

∞∑
k=0

|λk|
Γ(k(β − γ) + 2)

∣∣∣tk(β−γ)+1
2 − t

k(β−γ)+1
1

∣∣∣
= I1 + I2 + I3 + I4.
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t2∫

0

(t2 − τ)k(β−γ)+β−1η(τ, ζ(τ))dτ

=

t1∫

0

(t2 − τ)k(β−γ)+β−1η(τ, ζ(τ))dτ

+

t2∫

t1

(t2 − τ)k(β−γ)+β−1η(τ, ζ(τ))dτ,

and

t2∫

0

(t2 − τ)k(β−γ)+β−1η(τ, ζ(τ))dτ

−
t1∫

0

(t1 − τ)k(β−γ)+β−1η(τ, ζ(τ))dτ

=

t1∫

0

[(t2 − τ)k(β−γ)+β−1 − (t1 − τ)k(β−γ)+β−1]η(τ, ζ(τ))dτ

+

t2∫

t1

(t2 − τ)k(β−γ)+β−1η(τ, ζ(τ))dτ = I12 + I22.
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t1∫

0
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· sup
(x,y)∈[0,1]×R

|η(x, y)|

= (− (t2 − t1)
k(β−γ)+β

k(β − γ) + β
+

t
k(β−γ)+β
2

k(β − γ) + β

− t
k(β−γ)+β
1

k(β − γ) + β
) sup
(x,y)∈[0,1]×R

|η(x, y)|

≤

(
t
k(β−γ)+β
2

k(β − γ) + β
− t

k(β−γ)+β
1

k(β − γ) + β

)
sup

(x,y)∈[0,1]×R
|η(x, y)|.

By the mean value theorem, we deduce

t
k(β−γ)+β
2

k(β − γ) + β
− t

k(β−γ)+β
1

k(β − γ) + β

= θk(β−γ)+β−1(t2 − t1) ≤ t2 − t1,

where t1 < θ < t2. In summary,

|I12| ≤ (t2 − t1) sup
(x,y)∈[0,1]×R

|η(x, y)|.

On the other hand,

|I22| ≤ (t2 − t1) max
τ∈[t1,t2]

|(t2 − τ)k(β−γ)+β−1|

· sup
(x,y)∈[0,1]×R

|η(x, y)|

≤ (t2 − t1) sup
(x,y)∈[0,1]×R

|η(x, y)|.

Regarding I2, I3 and I4, we notice that the factor∣∣∣tk(β−γ)+1
2 − t

k(β−γ)+1
1

∣∣∣

contains the term t2 − t1 for all k ≥ 0. Hence, M is
equicontinuous on every bounded set S of C[0, 1].

(iv) Finally, we will prove that the set for 0 < δ < 1

Y = {ζ ∈ C[0, 1] : ζ = δMζ}

is bounded. Using

||ζ|| ≤ ||Mζ|| ≤ E(β−γ, β+1)(|λ|)

· sup
(x,y)∈[0,1]×R

|η(x, y)|+ |ϕ(ζ)|E(β−γ, 2)(|λ|)

+
|λ|||ζ||

Γ(β − γ + 1)
E(β−γ, 2)(|λ|)

+
1

Γ(β + 1)
E(β−γ, 2)(|λ|) sup

(x,y)∈[0,1]×R
|η(x, y)|

≤ E(β−γ, β+1)(|λ|) sup
(x,y)∈[0,1]×R

|η(x, y)|+ (L2||ζ||

+|ϕ(0)|)E(β−γ, 2)(|λ|)

+
|λ|||ζ||

Γ(β − γ + 1)
E(β−γ, 2)(|λ|)

+
1

Γ(β + 1)
E(β−γ, 2)(|λ|) sup

(x,y)∈[0,1]×R
|η(x, y)|,

and

Q = 1−
(
L2 +

|λ|
Γ(β − γ + 1)

)
E(β−γ, 2)(|λ|) > 0,

we come to

||ζ|| ≤ 1

Q
(E(β−γ, β+1)(|λ|)

+
1

Γ(β + 1)
E(β−γ, 2)(|λ|)) sup

(x,y)∈[0,1]×R
|η(x, y)|

+
1

Q
|ϕ(0)|E(β−γ, 2)(|λ|) < ∞,

which indicates that Y is bounded. By Leray–Schauder’s
fixed point theorem, equation (1) has at least one solution
in C[0, 1]. This completes the proof.

Example. The following nonlinear fractional differential
equation with the nonlocal boundary condition:

CD
1.8ζ(x) +

1

4
CD

0.7ζ(x)

=
x2|ζ(x)|

2(1 + ζ2(x))
+ arctan(ζ3(x)), x ∈ [0, 1], (5)

ζ(0) = 0, ζ(1) =
1

10
sin ζ(0.8),

has at least one solution in C[0, 1].

Proof. Clearly,

η(x, y) =
x2|y|

2(1 + y2)
+ arctan y3

is a continuous and bounded function on [0, 1]×R, and

ϕ(ζ) =
1

10
sin ζ(0.8)

satisfies

|ϕ(ζ1)− ϕ(ζ2)| ≤
1

10
| sin ζ1(0.8)− sin ζ2(0.8)|

≤ 1

10
|ζ1(0.8)− ζ2(0.8)|

≤ 1

10
||ζ1 − ζ2||, ζ1, ζ2 ∈ C[0, 1],

which implies L2 = 1/10. We compute

Q = 1−
(
1/10 +

1/4

Γ(1.1 + 1)

)
E(1.1, 2)(1/4)

≈ 1−
(
1/10 +

1/4

Γ(1.1 + 1)

)
∗ 1.1224 ≈ 0.619677 > 0.

So, the equation has at least one solution in C[0, 1] using
Theorem 3. This completes the proof.

To end off this section, we would like to point out that
Theorem 3 does not require that the function η satisfies
the Lipschitz condition. Moreover, S < 1 in Theorem 2
implies that Q > 0 in Theorem 3. In addition, equation
(4) is handled by Theorem 2, rather than Theorem 3, since
we need

η =
1

19
sin((x2 + 1)ζ(x)) + arctan(x3 + 1)

to be a Lipschitz function to derive the uniqueness. How-
ever, equation (5) is different as

η =
x2|ζ(x)|

2(1 + ζ2(x))
+ arctan(ζ3(x))

does not meet the Lipschitz condition, but it is a con-
tinuous and bounded function on [0, 1] × R, satisfying
the condition in Theorem 3 which shows the existence of
solutions.

4. CONCLUSION

We have investigated the uniqueness and existence of so-
lutions for the nonlinear fractional differential equation
(1) with functional boundary condition using the two-
parameter Mittag-Leffler function, Babenko’s approach,
Banach’s contractive principle and Leray–Schauder’s fixed
point theorem. In addition, we presented applicable exam-
ples making use of the theorems. By using similar tech-
niques, we can study other differential equations including
PDEs with nonlocal boundary or initial conditions.
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