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Abstract

This paper is to obtain sufficient conditions for the uniqueness and existence of solu-
tions to a new nonlinear fractional partial integro-differential equation with boundary
conditions. Our analysis relies on an equivalent implicit integral equation in series
obtained from an inverse operator, the multivariate Mittag-Leffler function, Leray-
Schauder’s fixed point theorem as well as Banach’s contractive principle. Several
illustrative examples are also presented to show applications of the key results derived.
Finally, we consider the generalized fractional wave equation in R" and deduce the
analytic solution for the first time based on the inverse operator method, which leads
us a fresh approach to studying some well-known partial differential equations.

Keywords Fractional calculus (primary) - Partial integro-differential equation -
Banach’s contractive principle - Multivariate Mittag-Leffler function - Inverse
operator - Leray-Schauder’s fixed point theorem - Generalized fractional wave
equation
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1 Introduction

Let T,b > 0 and ¢1(x), ¢2(x) € C[O0, b]. The objective of this paper is to study
the following nonlinear partial integro-differential equation through a well-defined
inverse operator and a few notable fixed-point theorems:

0 " _
3?“(1‘,.75)"'2&1' If'u(t,x) :g([’x’u(t’x))’ 1 < S 2’ /Si Z O,
i=

u(0,x) = —=¢1(x), u(T,x)=¢2(x),
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where (t,x) € [0, T] x [0, b], all a; are arbitrary constants fori = 1,2,---,m,
g 1 [0,7T] x [0,b] x R — R satisfies certain conditions to be given later, If is
the partial Riemann-Liouville fractional integral of order 8 € R™ with respect to
x € [0, b] with initial point zero (see [1, 2]),

. poi
(Puy(t, x) = %,3)/0 (x — 1) e, Tydt = F— s u(t, x),

')

0% . . . o .
and C—a is the partial Caputo fractional derivative of order « with respecttot € [0, T']

(2],

c0” _ 1 ! l—a 1
<8t°‘ u) (t,x) = m/() (t —s) “ug(s,x)ds.

In particular,
(Iu)(t, x) = 8(x) % u(t, x) = u(t, x),

from [3] by noting that

-1

0o_ *+ _
10 = O = §(x)

in Schwartz’s distribution theory (see page 117 in [4]).

Equation (1.1) is new and, to the best of our knowledge, has not been previously
investigated. Another motivation of considering this equation is to demonstrate how
the use of an inverse operator of a bounded integral in a complete space can be used to
study the nonlinear fractional integro-differential equation with boundary conditions.

In addition, we construct a new space S and derive the analytic solution for the
generalized wave equation in R”, and obtain several uniform and simple formulas
such as solutions (4.5) and (4.7) using inverse operators.

The increasing attempts in applied mathematics to describe real world phenomena
often lead to differential or integro-differential equations ( [5-7]). This explains a
growing interest in the applied mathematics community to integro-differential equa-
tions, and in particular, to partial integro-differential equations [8]. They frequently
arise and play an important role in many areas of mathematics, physics, engineering,
biology, and other sciences. Main challenges in solving these kinds of problems, both
numerically and analytically, are due to different types of factors, such as variable coef-
ficients, large range of variables, nonlinearity and non-local phenomena, etc. Yoon et
al. [9] considered the following linear partial integro differential equation with a series
solution:

t
U = Uy +/ K(t — $)uxx(x, s)ds,
0

@ Springer



On boundary value problem of the...

where o > 0, K(t—s) = (t —s)~ /2 is the kernel function and the unknown function
u(x,t)issoughtfor0 <t <7, 0 <x < 1, with the initial condition

u(x,t) =sin(rx), 0<x <1,
and the boundary conditions
u@©,1) =u(l,t) =0, 0<r<T.

In 2011, Ouyang [10] studied the following fractional order delay partial differen-
tial equation based on Banach’s contractive principle, Leray-Schauder’s fixed point
theorem, Lebesgue dominated convergence theorem as well as an integral equation:

o
c

o

u(t,x) =a()Au(t,x)+ (¢, ut, r1(x)), -, ut, ryx))), tel0,Tl,

where A is the Laplacian operator, 0 < « < 1,/ is a positive integer number and the
function f is defined as f(¢,uy,--- ,u;)) :RxRx--- xR — R,and x € 2 (£2 is
a M-dimensional space).

The associated boundary conditions are given by

u(t,x) =0, (,x) [0, To] x 952,
a
Wu(t,x) =0, (,x) €0, Tp] x 082,

where N is the unit exterior normal vector to 052, and initial data is
u0,x) =¢(x), x € 2.

Recently, Zhu and Han [11] considered the following initial boundary value problem
of nonlinear time fractional partial integro-differential equations:

i(u(t x) 4+ h(u(t, x))) = twa—z(u(s x) + h(u(s, x)))ds
ot ’ ’ o I'(B—1) dx?2 ’ ’

+f(t,u(t, x),Gu(t,x)), tel0,b],
u(,0)=u(@,7)=0, tel0,b],

u0,x)=¢x), x€l0,n],

where 8 € (1,2),h: R — Rand f : [0, b] x R2 — are continuous, ¢ € LZ[O, ],
and the linear operator G defined by

t
Qu(t,x):/ K, s)u(s, x)ds,
0

@ Springer



CLi

where K € C(D, R,) and
D={(t>s)eR>:0<s<t<b).

In this paper, we will use the inverse operator method to deduce implicit integral
equations to investigate the uniqueness and existence to equation (1.1). This tech-
nique is a useful tool for studying partial integro-differential equations with initial or
boundary conditions. To illustrate this in detail, we consider the following nonlinear
fractional partial integro-differential equation with boundary conditions and a variable
coefficient:

o

aaau(t x) +a(x) Iﬁu(t x)=f(t,x,u(t,x)), l<a<2, =0,
u0,x)=0, u(l,x)=¢x), (, x)el0,1]x]I0,1],

(1.2)

where a and ¢ are in C[0, 1],and f : [0, 1] x [0, 1] x R — R is a continuous function.
We begin by applying the operator I to both sides of equation (1.2) to get
u(t, x) —u(0,x) —u, (0, x)t + I*a(x) Ifu(t, x) =IF f(t, x, u(t, x)).

Setting t = 1 and using (0, x) = 0, we have

d(x) —uy(0,x) + F(ag)lc“)(ﬂ) / 1—7)*! /Ox(x — )P Nu(z, s)dsdr

1
= ﬁfo (1= f(z, x, u(z, x))dx.

This implies that

uy(0,x) = ¢ (x) + e )F(ﬂ)/ (1—1)% ‘/ (x — )P u(z, s)dsdr

r(a)/ A=) f(z, x, u(r, x))dr,
and

(1+ Ifa() 1P ut, x) = I7 f(t, x, u(t, x)) + ¢ (x)t

a(x)t el o
F(a)F(ﬂ)/( v) /(x $)" u(t, s)dsdt

@ )/ (1 —0)* L f(r, x, u(z, x))dr. (1.3)
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We are going to show that the inverse operator of 1 + I*a(x) I f is
> k
V=Y (-Df(IFawx) If)
k=0

in the Banach space C([0, 1] x [0, 1]). Indeed, for any w € C([0, 1] x [0, 1]) we come
to

ak
It

)

00 k
lal I
Vwl| < k
IVw| < ||w||k;||an Ilkg ek DTGRED < T

using the fact that the two—parameter Mittag-Leffler function

o0
Eyp(2) = Z 1k+y2),ze<C,y1,Vz>O,

is an entire function in the complex plane C. Furthermore, we prove that

V(1+I%a@x) IP) = (1 4+ Ifa(x) IP) V =1 (identity).

Clearly,
V(14 fa@) 1) =V + Y (= DF (Ifato) 1)
k=0
=1+ Z(—l)k (Ia(x) If)k + Z(—l)k (I a(x) I)/cg)kJrl
k=1 k=0
_H_Z( D (Ia(x )Iﬁ +Z( DF (Ia(x )Iﬁ) =1.

Similarly,
(1+1fa) IP)V =1,
the uniqueness follows obviously.

From equation (1.3), we derive

u(t,x) = 3 (=D (1%a@) 18)" (1 £t x ut, ) + i+

k=0

a(x)t 1 ot [* -
+W/o -0 /0 (x = )" u(z, s)dsdr
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o )f( >°‘—1f<r,x,u<r,x>)dr],

which is equivalent to equation (1.2).
In addition, if we assume

1A= sup |f(t,x, y)| < +oo,
(t,x,y)e[o,l]sz
and
S k
1
A—1— llal Z lal -0,
Fla+DEB+1) = Flek+1) I'(Bk+1)
then

lal Jalf
1Y e e D S T b T

o0

n llall flull 3 la]l*
F(@+DIB+1) & T(ak+DI(Bk+1)

o]

£l 3 lla|*
Fla+ 1) &= Ik + DI (Bk+ 1’

This claims that

g <M1 Z llall* L ol i la]l*
A kioF(ak+a+1)F(,8k+l) A ek + DI (Bk+1)

e¢]

LISl 3 la|*
AT (@ + 1) = I'(ek + DI (Bk + 1’

which infers that u is uniformly bounded.

To consider the uniqueness, we further suppose that f satisfies the following

Lipchitz condition with respect to the third variable for a nonnegative constant L:

[ f@, x,u1) — f(t,x,u2)| < Lluy —uz|, uyp,uz €R,

and

[ee} o]

k k
B—L Z llall llall Z llal
& Tk +a+ DIBk+1) - T+ DIB+1) 2 ek + DIk +1)

oo

L L 3 llall® -
I'e+1) =0 I'ak+ 1) (Bk+1) )
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Then equation (1.3) has a unique solution in C([0, 1] x [0, 1]) from Banach’s
contractive principle. In fact, we define a nonlinear mapping M over C ([0, 1] x [0, 1])
as

e¢]

(Mu)(t, x) = Z(—l)k (Ifa(x) If)" [17 £, x, u(t, x)) + ¢ (X)t+

k=0
a(x)t 1 ot [ e
m/o -7 /0 @ — )P (e, s)dsdr

1
an) /0 (1 — ) f(z, x, u(f,x))df:| )

Then it follows that | Mu|| < 400 by noting that f(z, x, 0) is bounded, and
lftx, ) =1f x,u)— f(t,x,0)+ f(#,x,0)] < Lllull+[f(, x,0)] <+oo,

where u € C([0, 1] x [0, 1]).
It remains to be shown that M is contractive. Clearly,

oo
k
Muy = Muy = Y (=08 (1a@) 18) 1/ x u(0) = F0x w20, 20)
k=0

_awr 1(1 —r)“—lfx(x—s)ﬁ—l(u (t,5) — us(z, 5))dsdr
r@re Jo 0 e e
1
—#/ (1 =) (f(r, %, up(z, %) = f(z, %, uz(z, x)))dt | .
r@ Jo
Then
N llall®
Muy — M L —
IMuy — Mus|| < ,;Or(akﬂﬂmﬁﬂl) lluy — ozl
llall - lla|*
lluey — uall
Ca+DI(B+1) & Tak+DE(Bk+1)
L - lla|*
—uy| = Blluy — usl|.
+ F(a+1)];1“(oek+l)1’(/3k+l) luy — uzll = B lluy — ua|

Since B < 1, equation (1.2) has a unique solution from Banach’s contractive principle.
In summary, we have the following theorem:

Theorem 1 Assume that a and ¢ are continuous functions over [0, 1], f : [0, 1] x
[0, 1] x R — R is a continuous function satisfying

[f(t,x,u) — f(t, x,u)| < Lluy —uzl, ui,uz €R,
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for a nonnegative constant L, and

oo oo

Bl Z lall* lal 3 lall*
¢ Dek+a+DIBk+1) - T+ DB +1) = Fak+DEBk+1)

Z flall® B
F(a +1) o Fak+ DI (Bk+ 1)

Then there exists a unique solution to equation (1.2).

Example 1 The following nonlinear partial integro-differential equation with a variable
coefficient:

815 1 2
a7 15u(t x)+s1nx Il6u(t x) = —|cosu(t,x)|+ ——

120 x2+1’ (1.4
u©,x) =0, u(l,x)=x>,
has a unique solution in the space C ([0, 1] x [0, 1]).
Proof Clearly,

2

f(ﬂx»)’) m|005)’|+ 2+1

is a continuous function over [0, 1] x [0, 1] x R, and

|f @, x,ut, x) — £t x, 0, x)] < mlu(t X)) — v, x)|.

Thus, L = 1/120. Furthermore, we have
[sinx’| <1, a =15, B=1.6.

We need to compute

o]

0 k k
B :LZ llall llall Z llall
 [ak+a+ DI Bk+1) e+ DI +1) &= Tak+DI(Bk+1)

[00]

P 3 llall®
I +1) &= I'ak+ DI (Bk+1)

> 1
“H X
120 4= I'(1.5k + 1.5 + DI (1.6k + 1)

o0

1 1
+ )
F(L5+ D16+ 1) &= I'(1.5k+ DI (1.6k+ 1)
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N 1 i 1
12017 (1.5 + 1) & I (1.5k + DI (1.6k + 1)

1
%m * 0.871313 4 0.526189 * 1.5479 + 0.0062877 x 1.5479 = 0.83124 < 1,

using online calculators from the site https://www.wolframalpha.com/ (accessed on 05
December 2024). So equation (1.4) has a unique solution in the space C ([0, 1] x [0, 1])
by Theorem 1. O

The multivariate Mittag-Leffler function [12] is defined as follows:

E((X],m,c{m),ﬂ(zl, T Zm)
ki

o km
ki, km F(Ollkl'|""+Olmkm"'IB)7

k=0 ky+-+km=k

where (21, ,zm) € C", 0;, 8 >0fori =1,2,--- ,m, and

k K
LSPREERY. _kl'km'

The rest of this paper is organized as follows. Section 2 begins converting equation
(1.1) to an equivalent implicit integral equation using an inverse operator. Then we
obtain sufficient conditions for the uniqueness of solutions by Banach’s contractive
principle with an example. Section 3 is to study the existence problem to equation (1.1)
based on Leray-Schauder’s fixed point theorem and equicontinuity with applications.
Finally, we find the analytic solution for the generalized fractional wave equation in
R” by using a new space S and the inverse operator method, which provides a novel
technique for seeking solutions of some PEDs involving the Laplacian as well gradient
operators in Section 4. At the end, we summarize the entire work in Section 5.

2 Uniqueness

In this section, we will study the uniqueness of solutions to equation (1.1) based on
Banach’s contractive principle and an implicit integral equation which is equivalent
to equation (1.1) in the space C([0, T'] x [0, b]).

Theorem 2 Let a; be constants foralli = 1,2,--- ,m, g : [0, T] x [0,b] x R - R
be a continuous and bounded function, and ¢1(x), ¢p2(x) € C[0, b]. Assume that

Qzl_LEUS B I(T"‘xbﬂl Taxbﬂm)ib—ﬁ[>()
F(O{+1) 1:"sPm), 9 3 p F(ﬁl+1) )

where

x = max{lail, |az|, - - , laml|}.
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Then equation (1.1) is equivalent to the following implicit integral equation in the
space C([0, T] x [0, b]):

o0
k
_ k k km
u(t,x) = E (=1 E (k],kz,'n,km)all”.am

k=0 k1+--+kn=k
.Itak+a I£1k1+"'+lgmkm g([’ X, u(l, )C))

- k
_ ]k kL gkm
,Z} > (kl,kz,m ,km>“1 o

ki+--+kn=k
1 Biki 4Bk
—I 1K1 mKm
Tk+1)* o1(x)
> k
DGO ( )a’f‘ agy
k=0 Ky 4tk =k kl ) k27 Tty km
tozk+1
. 1ﬂ1k1+"'+ﬂmkmc(x)t’
I'ak+2) *
where
1 T
c(x) = T /O (T —0)* 'g(z, x, u(z, x))dt — w

m

1 a; T o N .
) Z B /0 (T —1) dr/o (x — )P~ Nu(z, s)ds.

i=1

In addition,

lull < (”g” T gl T 2l + ||¢>2||>
A0 O (o + 1) 0
CE gy 1 (T4 P Ty P

which deduces that u is uniformly bounded.

Proof Clearly,

o

Iﬁ%u(t, x) =u(t,x) —u0,x)+cx)t =u(t,x) + ¢1(x) + c(x)t,

where c(x) is a function of x to be determined by u (T, x) = ¢2(x) in the following.
Applying the operator I{* to both sides of equation (1.1), we get

1 0
ot%

m
w(t,x)+ Y Irai IPu(, x) = I g(t, x, u(t, x)).

i=1
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Setting t = T, we come to

m

1 i r a—1
W(T5)+ 613+ T + = Y s [ =l

i=1

X T
/ (x — s)ﬂf—lu(t, s)ds = ;/‘ (T — r)“_lg(r, x,u(t, x))dr.
0 (o) Jo

This implies that

_ a1 $1(0) + $2(x)
c(x) = T @ /0 (T — 1) "g(r, x,u(r,x))dt — I
_ i di /T(T—r)“_ldr /x(x—s)ﬁi_lu(r, 5)ds.
T () = T'(Bi) Jo 0
Hence,

(1 + Z IYa; If"> u(t,x)=1I7gt, x, ut,x)) — ¢1(x) — c(x)t. 2.1
i=1

Next, we will show that the inverse operator of 1 + Y™ I%a; I7" is

o0 m k
U=>Y (D <Z Ifa; 1}?1‘)
k=0 i=1

o
k k cen
=Z(_1)k Z (k PR )all --~afn’”ll“klf1k1+ +Bmkm

k=0 kit thm=k VoL A2 K

in the Banach space C ([0, T'] x [0, b]). Obviously, for any w € C([0, T] x [0, b]) we
have

oo
el <y 3 (k o )xk ] [ ottt
k=0 ky 4tk =k 1, K2, » Km

bﬁlkl+"‘+ﬁmkm

<lwld> Y (k ko ook )X (ak+1) T Bkt 4 -+ Bmkm + 1)’
D o o

where
x =max{lai|, lazl, -, laml}-
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Clearly,

Tak - ok
Tak+1) ~

forallk =0, 1, ---. Therefore,
bﬁlkl+'“+ﬂmkm

o0
k k k
U < T
Il <hwl 3, 3 (kl,kz,m,km)X T(Brki+ -+ Pukm + 1)

k=0 ky+-+kpm=k

=lwll E@,, ). 1 (T"‘Xbm, - T“Xbﬂm) < +00,

which deduces that U is a continuous mapping from C ([0, 7] x [0, b]) toitself. Further,
we show that

m m
U(1+Zlf‘a,- 1;?’) = <1+Zl,“ai Iff)U= 1. 2.2)
i=1 i=1

Indeed,

m 00 m k+1
U (1 + Y Ifa; I;"i> =U+) (-DF (Z 1%a Iff)
k=0 i=1

i=1

[e'9) m k %) m k+1
=1+ Z(—l)k (Z I%a; 1;9‘) + Z(—l)k (Z I%a; 1;?)
k=1 i=1 k=0 i=1
00 m k+1 ) m k+1
=1+ (=D (Z Ifa; 1ff> +y (=D (Z Ifa; sz) = 1.
i=1 k=0 i=1

k=0

Similarly,

m
(1 +) Ifa Iff) U=1.
i=1

Assuming Uy is another inverse operator, then we have U = Uy by applying Uy to
both sides of equation (2.2).
From equation (2.1), we obtain that

o
k k [
u(t.x) =y (=nk 3" ( )al'-"am'"lf‘
k=0 k17k27"‘7km

kyi+--+kn=k
Bk Bk 100 (1 u(t, X)) — ¢1(x) — c(0)1]

> k
DECHEDS ( )ai” a1
k=0 k13k21"' skm

kl+"'+km=k
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APkt Bk o (r x u(t, x))

ad k k ki r t(xk
— -1 B
kX:(:)( ) Z (k1, kp, - ,km>a1 @m I'(ak +1)

o =k
. Iflkl+"‘+,3mkm é1(x)

00 . k K . tak—H
_ 1 cogkm =
kX:(:)( ) Z (kl, kp, - ,km>a1 m I'(ak +2)

4o =k
. Ixﬁlkl+'“+ﬁmkmc(x)_

Moreover,

o0
k
lall < lgl > > (/q " k)x"
3 s "N s A

k=0 ki +-+kn=k

o0
k
gl Y <k1,k2,~-~,km>XkTak

k=0 ki +-+hkm=k

o0
k
) ol S (R Yol FECE

k=0 k4 Hhp=k N L2 K20 77T K

ak+a Brk14+++~+Bmk,
It Ix mm

‘ JBk1+ Bk
X

k mkm
k > P pPrki++p

oo
<lglT* < x'T
ngﬁ_;%:k ki ka, -« km I'(Biki + - - + Bukm + 1)

o k bﬂlkl+"'+ﬂmkm
+lel > > ( ) kpak
ki, ko, -\ km L (Biki + -+ Bukm + 1)

k=0 ki +-+hkm=k

0 k krmatk bﬁlkl+"‘+ﬂmkm
Fhel Ty (k ky, -k )X T S ——
k=0 k) 4~k =k 1, K2, s Km 1K1 mim

=gl T*Eqpy.. ). 1 (T“)(bﬂl7 cee T“Xbﬂm)
+ o1l Egy,-e ), 1 (Taxbﬂl e, T“Xbﬁm)
+ el TEg,,... g, 1 (Taxbﬂl, e T“Xbﬁm) )
Clearly,
¢ o " Bi
xT b
cllT = + + + ul| .
I T < el oy + 101+ Wl + s 3 gy ol
Since
xT* " bbi
=1———— E@,... T bBly...’T“ bﬂm -0,
Q F((X + 1) B, Bm), 1 ( X X ); —F(ﬂl T 1)
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we claim that

T T« 2
]l < (Ilgll n gl n o1l + |I¢>2II>
0 Or(@+1) 0
CE(py,e oy, 1 (TOXDPY - T bPm) |

which indicates that  is uniformly bounded. This completes the proof of Theorem 2.
O

We are now ready to present the following theorem regarding the uniqueness of
solutions to equation (1.1).

Theorem 3 Let a; be constants foralli = 1,2,--- ,m, g : [0, T] x [0,b] x R - R
be a continuous function satisfying the Lipchitz condition for a constant L > 0,

lgt, x, y1) —g(t, x, y2)| < Lly1 — 21, y1,y2 €R,

and ¢1(x), p2(x) € C[0, b]. Further we assume that

L d Bi
FZ(L+F(a+1) F(a+ gl“(ﬂ, )

’ TaE(,Bl"",ﬁm),l (Taxbﬂl, s, Taxbﬁm) < 1

Then equation (1.1) has a unique solution in the space C([0, T] x [0, b]).

Proof Define a nonlinear mapping W over the space C ([0, T'] x [0, b]) by

o0
k
_ k k km yok+
(Wu>(r,x>—k§_0:<—1) > (kl,k2,~-~,km> ay’ a7

kl+'”+km:k
.1)/631](1+"'+ﬂmkmg(t’ X, M(t, X))

ad X k X r tak
- ) (-1 L. ghm
,g( ) Z (kl,kz,--- ,km)a1 “m Tk + 1)

ey -tk =k
,])/?lkl‘i’"""ﬂmkmqbl (x)

tak+1

oo

k k
—) (=D 1 o
,;() Z <k1,k2,---,km)a1 T @k + 2)

A —
.[flkl"l‘“"f‘ﬂmkmc(x)t.

It follows from Theorem 2 that Wu € C([0, T] x [0, b]) by noting that for u €
C([0, T] x [0, b)),

lg@, x,u)| =g, x,u) — g(t,x,0) + g, x,0)| < Llul+ |g(t, x,0] < +o0,
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since g(¢, x, 0) is a continuous and bounded function. We only need to show that W
is contractive. Indeed,

max lg(t, x, u(t, x)) — g(t, x,v(t, x)| < L|lu—v,
(t,x)€[0,T]1x[0,b]
and
IWu — Woll < LT*Eg, ... g1 (T*MbP - [ T*MbPr) u — v
+L—’IWE I(Taxbﬂl Taxbﬁm)”u_v”
F(Ol+1) (ﬁl""’ﬁm)v ’ )
m .
X « wo o
+ —< T Egp,,. TxbP', ..., T bm "—1v
FasD | E g (T9X X ; F(ﬂl I
L " bbi
Fe+1) T+ Z I+
TYE@, . po, 1 (TOxbP, o T 6P Jlu — vl .

By the assumption that

L m f
F=<L+r(a+1) F(a+ ;1“(/3, )

TEy e ot (TOXDP, - T MbP7) < 1,

so W is contractive. Equation (1.1) has a unique solution in the space C ([0, T'] x [0, b])
from Banach’s contractive principle. This completes the proof of Theorem 3. O

Example 2 The following nonlinear fractional partial integro-differential equation:

17u(t x) + 1 12°u(t, x) — LIz‘u(t x) = iarctan|u(t )|+ 12x3
arl7 13 1575 17 (2.3)
u(,x) =sin(x + 1), u(l,x)=——,
x+1

has a unique solution in the space C([0, 1] x [0, 1]).

Proof Since
1
gt,x,u) = (0 arctan |u(z, x)| + t*x
is a continuous function over [0, 1]> x R, satisfying the Lipchitz condition:
1 1
l8(t, x, u1) = g(t, x, up)| = =l arctan |u; | —arctan Juz|| = T=lur — ual,
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using the mean value theorem and

— arctan x = <1.
dx 1+ x2

Clearly,
x=1/13, a=1.7, B =25, B =21, L=1/17.

We need to evaluate

L m f
F=<L+r(a+1) F(a+1)zr(ﬂl )

i=1
. TaE(ﬁly...,/gm)’ 1 (Taxbﬂl S, T“Xbﬂm)

1 1 1 1 1
B (ﬁ T ren T nren [r(3.5) * 1“(3.1)D E@son,1(1/13,1/13).

It follows that

(1/13)*
Eeszn 1 (/13,1/13) = Z 2 ki, k2)F(2.5k1+2.1k2+1)

k=0 ki +ko=k

k
Z (2/13) ~ 1.07074.
< T 2.1k +1)

Hence,

1 1 1 1 1
F<(— 1.07074
= (17 tren T ren [1‘(3.5) + 1“(3.1)}) ¥
= (0.05882353 + 0.0380812 + 0.0497985 * 0.755939)  1.07074 < 1.

Thus equation (2.3) has a unique solution from Theorem 3. O

3 Existence

We are going to present the theorem regarding the existence of equation (1.1) based
on Leray-Schauder’s fixed point theorem and equicontinuity which are given below.

Theorem 4 (Leray-Schauder’s Fixed Point Theorem (see [13] and [14])) Consider the
continuous and compact function W of a Banach space B into itself. The boundedness

of
{xeB:x=0Wx forsome 0 <6 <1}

implies that W has a fixed point in B.
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Definition 1 Let (X, d) be a metric space, and F a family of functions from X to X.
The family F is uniformly equicontinuous if for every € > 0, there exists ad > 0 such
that d(f(x1), f(x2)) < € forall f € F and all x1, x» € X such that d(x1, x2) < &,
which may depend only on €.

Theorem 5 Let a; be constants foralli = 1,2,--- ,m, g : [0, T] x [0,b] x R > R
be a continuous and bounded function satisfying the Lipchitz condition for a constant
L>0:

g, x,y1) — g, x,y2)| < Lly1 — I, y1.»2 €eR.

Further assume that ¢1(x), ¢2(x) € C[0, b] and

Q:l—ﬂE(ﬂ ﬁ)l(TaXbﬂl Taxbﬁm)ib—ﬁi>0
Lo+ 1) ~Frmpbm o —~rE+1n

i=1
where
x = max{lai|, |azl, -, lam|}.

Then there is a solution to equation (1.1) in C ([0, T] x [0, b])

Proof We again consider the nonlinear mapping W over the space C([0, T'] x [0, b])
by

o0
k
_ k ki ki yak+
(Wu)(r,x>—k§:0(—1> ) (k17k27'.',km)a1 - afp gt

kit =k
APtk g (¢, x, u(t, x))

s k k & ‘ tak
_ —1 coughm =
];( ) Z <k1, kp, - ,km>a1 m I'(ek+1)

kit =k
.Iflkl+“'+ﬁmkm b1 (x)

tak+1

)
k k
— _1 k ... ki
](X:(:)( ) Z <k1,k2,"~ ,km>a1 G I'(ak +2)

O
.Iflkl‘i’""”lgmkm C(.X)t.

It follows from Theorem 3 that Tu € C([0, T'] x [0, b]), and
[Wu — Wol < F|lu—vl,

where

bﬁz
Z TG+ D)

P PP S +
- Fa+1) T'a+1) 4
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“TOE(gy,e 1 (TOXDP, - T xbP") > 0

which is not required to be less than 1. These imply that (i) W is a continuous mapping
from C ([0, T'] x [0, b)) to itself.

(i) Furthermore, we will prove that W is a mapping from bounded sets to bounded
sets in C([0, T'] x [0, b]). Let B be a bounded set in C([0, T'] x [0, b]). Then there
exists a positive constant C such that

lwll <C

for all w € B. Using the following facts

[Wull <llgl T*Eg,,... ). 1 (T‘)‘Xbﬂl, cee Ta)(bﬁ'")
+ ||¢1|| E(ﬁlwwﬂm), 1 (Taxbﬂl, cee, Taxbﬁm)
+ e TE@,, .. ). 1 (To‘xbﬂl, e Ta)(bﬁ"’),
and
re xT* & bbi
it = Tas+n F + + ull,
llell gl FatD @11l + 2l Tat D ; FETD Nl

as well as g is bounded, we claim that Wu is bounded.

(iii) W is equicontinuous on every bounded set 5 in C ([0, T] x [0, b]). Then W is a
compact operator by the Arzela-Ascoli theorem. It follows directly from Definition 1
and

Wu — Wol < Fllu—v|,

using F = {W} and d is the defined norm of the space C ([0, T'] x [0, b]).
(iv) Finally, we show that the set

{ueC(O0,T] x[0,b]) :u =6Wu forsome 0 <6 <1}

is bounded. From the proof of Theorem 2, we have

gl T gl T 21l + lig2ll
lull < 1Wal 5( " n
0 Ol (a+1) 0
“E@y. . 1 (To‘xbﬁ‘, cee Taxbﬁ'") ,
where
0= _X—TQE(ﬂ g1 (TOXDP, - Taxbﬂm)zb—ﬁi>0

Flat 1) G ST+ 1)

Hence, u is bounded. This completes the proof. O
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Remark 1 We must point out that F < 1 in Theorem 3 implies that Q > 0 in

Theorem 5, but the converse is not true in general.

Example 3 The following nonlinear fractional partial integro-differential equation:

1.5 1 1
catl.su(t’x) 10 I72u(t, x) — Elf:u(t,x) =2cos|u(t,x)|+1 +x>+1,
x
0.x) =sin®(x + 1), u(l,x) = ———,
u(0, x) = sin®>(x + 1), u(1,x) —

has a solution in the space C ([0, 1] x [0, 1]).

Proof Clearly,
g(t, x,u) = 2cos |u| +17+x2+1

is a continuous and bounded function over [0, 1]*> x R with the condition

|g(t1x’ ul) - g(tv-xv 142)| = 2|COS |M1| _COSIM2|| = 2|M1 - u2|’

by the mean value theorem. From Theorem 5, we need to evaluate

xT® ¢
A Eg.. TxbP, .. T xbPr)
QO I—v(a + 1) (ﬂ 1, sﬁm)vl ( X X ; (
1
- ___E 1/10,1/10
0r@s) Le2en1 4/10.1/ )[r@ 2) TG 7)]

Clearly,

(1/10)*
Eea27,1/10.1/10) = Z 2. <k1 k2>F(2.2k1+2.7k2+1)

k= 0k1+k2

/100
Z TR ~ 1.08341.

Therefore,

Qo ~ 0.0752253 % 1.08341 % 0.652318 < 1.

3.D

By Theorem 5, there is a solution to equation (3.1). However, F > 1 for this equation

so we are not that if solution is unique.

O
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4 An application of inverse operators

In this section, we are going to find the analytic solution for the following generalized
fractional wave equation in R":

aa
C—u(t,x) =0 ,u,x) g, x), 1<a =<2,

arv 4.1
u(0,x) = ¢1(x), uy(0,x) = $a(x), (1,x) € R* x R,
where
2 2
Doy =M + -+ Ap7—, allA; are contants.
i 0x}
In particular, if ¢« =2 and Ay = - -- = A, = 1, then equation (4.1) turns out to be the
nonhomogeneous wave equation in R":
32
ﬁu(tsx):Au(tﬂx)_i_g(tvx)’ (42)

u(0,x) = 1(x), uy(0,x) = ¢o(x), (#,x) € RT x R",

where
92 92
Alei=0A=—+ -+ —
b ax2 ox2

is the Laplacian operator.

As far as we know there does not exist any analytic solution to equation (4.1) up
to date. To demonstrate the use of inverse operators, we will establish the following
theorem finding the analytic solution.

Theorem 6 Let g, ¢1 and ¢ be in the space S given by

S = {g e C(RT x R") : 3 a constant Mg > 0 such that

82s1 82&1 o)l < MS1+~'+s
Sup — - —=—g(, 0 < n ,
(t,x)eR+ xR" 8x1251 dx 2o &
where (s1, -+, sp) € (NU {0})". Then equation (4.1) has a unique solution
0 2k 2k,
k k 9" g=kn
u(t,x):Z Z ( ))‘11"')‘Ir(rfnlfwra—z;q“'ﬁg(l,ﬂ)
k]?"'9kn axl B.Xnn

k=0 ky+---+k,=k
totk 32k1 82k’1

[e¢)
k k
Al gk
+Z Z <k1’ ’kn> ! " F(ak+ 1) a_xfkl 3xr21kn ¢1(x)

k=0 ki--+kn=k
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tak—l—l 821{] 82k”

o
k k
AL )\’km .
+ Z Z <k1, . 7kn) 1 " T(ak +2) 8x12k' 8x,%k” P2 (x)

k=0 ky+-+k, =k

Proof Applying the operator I to both sides of equation (4.1), we get
n 82
u(t, X) = $100) = G200 = I i —u(t, x) = 178 (1, ),

i=1 [

which implies that

<1 —IF Zkiﬁ) u(t,x) =I7g(t, x) + ¢1(x) + ¢2(x)1. 4.3)
i=1 i

We shall show that the inverse operator of 1 — I# Y7 A % is
00 n 52 k
— o 2
V=2 | Migs
k=0 i=1 !
o0 2%k 2k
k 9 a~"n
ZZ Z )L’fl...kﬁn]ffk L2
k17 ’kn 8x2k1 8x2kn
k=0 ky+--+ky=k 1 n
in the space S given above. Indeed, for any g € S we have
> k
Vel < AR A, [
vell<d > (kl 7kn)| 1A ]
k=0 ky+-+k,=k
tozk1+--~+otkn 82/(1 82k’l
) sup — 58, 0)],
I'(aky +---+ak, +1) (t,x)eRT xR" 8x12k1 Bx,%k”
- k
=30 DI (RN [VARTVE
k=0 ky kg =k N L
tak1+"'+0{kn
. k|+"‘+kn
I'(ak; +---+ak, +1) 8
=E(a, )1 (M1 Mg, -+, [An]t¥Mg) < +o00,

which claims that V is a well-defined operator over S under the norm of C(R™ x R™).
In addition, we show that

( i 82 i 82
vit-Y v ) =(1-1rY n—5)v=1
| 0x; = 0x;
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In fact,

Similarly,

n 32
o —
bl Zkia? v
i=1 1

and the uniqueness follows easily.
From equation (4.3), we derive that

k ! —
u(t,x) = Z Z <k1,-~-,kn>)¥ll“')tm ]t“ +a

k=0 ky+--~4ky,=
82k1 82k"
ax axt
o
k X k totk 82k| 82k"
+ PRLRRY N é1(x)
]gkl-‘r;{ —k <k17 IR kn) ! " F(ak + 1) axl2kl 3x,2,k"

tak+1 32k1 32k,,

(o)
k k
Al...kkm .
+Z Z <k1,... vkn) 1 ™ T (ak + 2) axlzk' 2k”¢2()€)

k=0 ki +--tkn=k 0xy

This completes the proof. O
Using
52 92 \* k 52k 52k
et = Y (0 )
8x1 xn k1+'--+kn:k 1, »Kn 8x1 axn

we claim the fractional wave equation in R"

aa—::u(t x)=Au(t,x)+gt,x), 1l <a<2,
u(0,x) = ¢1(x), u,(0,x)=¢a(x), (t,x) e R" x R"

4.4
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has the solution

o ak ak+1

t
tx)=Y I akg(, - b Ak '
u(t, x) I;) &( x>+ZF( D ¢1(x>+ZF( g lew
4.5)
In particular, the wave equation in R"
2
5 ——u(t,x) =Au(t,x)+g@,x), 1 <a=<2, (4.6)
u(0,x) = ¢1(x), uy(0,x) = pa(x), (t,x) eR" x R"
has the solution
00 i ok 12k 0 2k+1
t,x)= 1752 A g(t, 4.7
u(t, x) kZO g( x>+Z a0 Ay (x )+Z o A (x). (4.7)
Example 4 The following fractional wave equation in R1%:
1.5
catllsu(t,x) = Au(t,x) +1xix15, 1 <o <2, (4.8)
(0, x) = x100, u;(0,x) =x3, (1,x) € R x RI®
has the solution
2.5
u(t,x) = TG3) s + x100 + 1x2.
Proof From solution (4.5), we have
o ok k 1 k
_ ak—+o
u(t, x) = ];)1 Akg(t, x)+ZF( e
o ozk+l k
+kX=: RO ES
o0 1Sk gk o0 1.5k . 1Sk .
CA —A —A
Z s+ ;0 O ];0 r(sk+2)" 7
125
= F(3 5)X1X15 =+ X100 + 1x2.
O

Remark2 This solution is much simpler than using the classical formula which
involves complicated integrals. Moreover, the solution given in (4.7) is equivalent
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to the classical results, such as d’Alembert and Kirchoff’s formulas, but in a neater
and simpler format.

5 Conclusion

We have studied the uniqueness and existence of solutions to the nonlinear frac-
tional partial integro-differential equation (1.1) with boundary condition using its
implicit integral equation, the inverse operator, the multivariate Mittag-Leffler func-
tion, Banach’s contractive principle as well as Leray-Schauder’s fixed point theorem,
with several illustrative examples. Finally, we presented the analytic solution to the
generalized fractional wave equation in R” for the first time based on a new space
S and the inverse operator method, which provides a new method for studying some
PDEs with the Laplacian and gradient operators.
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