Point Pattern Analysis

Points are zero dimensional, so no geometric properties to analyze.

Instead, quantitative techniques for evaluating:
- spatial distribution
- arrangement or pattern
- ... of a set of points

Occurrence is sufficient, but may also consider attributes values.

Descriptive Measures

- **Distribution** of points can be described by:
 1.
 2.
 3.
 4.

- Useful when evaluating:
 1.
 2.
 3.
Frequency & Density

- **Frequency**
 - Total points per defined area
 - Good for?
 -
- **Density**
 - Number of points per unit area
 - Good for?
 -

Measures of Central Tendency

- Geometric Centre
- Median Centre
- Centre of Minimum Travel

Measures of Dispersion

- Dispersion is spacing around the mean centre
- Standard Distance
- Standard Deviation Ellipse
SPATIAL ARRANGEMENT (PATTERN)
- Location of points relative to one another
- May result in a pattern
- Typically described as:
 - clustered
 - scattered
 - random

NEAREST NEIGHBOUR ANALYSIS
- Based on measure of mean distance between each point and nearest neighbour
- Basic idea is that mean distance will be:
 - large for scattered patterns
 - small for clustered patterns
 - and somewhere between for random patterns
- Nearest Neighbour Index compares observed mean distance to expected distance

NEAREST NEIGHBOUR ANALYSIS
- Expected distance for a random distribution of points

\[D_{\text{ran}} = 0.5 \left(\frac{N}{A} \right)^{1/2} \]

where:
- \(N \) = number points
- \(A \) = area
NEAREST NEIGHBOUR ANALYSIS

- Nearest neighbour index (NNI) is ratio of observed dist over expected NN dist
 - NNI ranges between 0 and 2.1491
 - NNI = 0 for perfectly clustered points
 - NNI = 2.1491 for perfectly scattered
 - NNI = 1 for perfectly random
 - Limited because it only considers neighbouring pts.

SPATIAL AUTOCORRELATION

- Spatial autocorrelation determines extent to which:
 - occurrence (and value) of one point affects occurrence (and value) of adjacent points
 - Traditionally viewed as a bad thing since it violates assumptions of correlation and regression
 - However, it can also tell us something about the distribution of point features

SPATIAL AUTOCORRELATION

- Moran’s I common measure of spatial autocorrelation
 - If occurrence of a point facilitates or increases probability of occurrence of another point nearby, then I will be closer to +1.0 (clustered)
 - If occurrence decreases probability of another point nearby, I will be closer to -1.0 (scattered)
 - If a point has no influence on the probability of another point being located nearby, I will be closer to 0.0 (random)