What is a Proportional Symbol Map?

- Depicts spatial variations in value or magnitude
- Using proportionally sized point symbols
- May also convey density of phenomena
Spatial Data Characteristics

- Discrete point data
- Data aggregated by discrete areal unit
- May be used to map sampled values of a continuously distributed phenomenon

Aspatial Data Characteristics

- Can use raw or derived data
 - Dent argues derived values can be used to control range of data values
- Normally, the rule of thumb is:
 - raw values for discrete point features
 - derived for data aggregated by discrete areal unit

When Is It Used?

- Used in two circumstances:
 1. When objective is to show spatial variations in value/magnitude at point locations
 - only choice
 2. For mapping areally discrete data represented at a point
 - other alternatives
Not the best choice when?

1. Range of data values is limited
2. Data provided is normalized, can’t get raw
3. Data are interval level with an arbitrary 0 value or have other zero values

Data Range

NOTE: variations in attribute value must be adequately large so that there is significant differences in relative symbol size

Limited variation in symbol size = boring map

Advantages/Disadvantages

Advantages:
- ease of interpretation
- ability to portray distribution of multiple phenomena
- ability to portray multiple attributes of phenomena

Disadvantages:
- inaccurate perception of symbol size
Considerations: Symbol Selection

- Any point symbol that can be scaled may be used.
- Most common is a solid circle:
 - compact
 - easily scaled
 - visually stable
 - no orientation

Considerations: Symbol Selection

- If more than one distribution is represented:
 - Use same symbol style
 - Vary colour hue, not saturation/value
 - Can also use replicative and carefully scaled symbols

Considerations: Symbol Size

- Area is geometric property scaled, not H or W
- Volume in the case of 3-D symbols
 - more compact
 - greater range can be presented
 - **BUT**, perception of relative value/magnitude is poor
 - only use to represent volumetric quantities
Considerations: Symbol Size

- Map-readers consistently underestimate symbol size
- Error increases with size
- Solutions:
 - Legend Design
 - Range graded symbols
 - Apparent magnitude scaling

Range Graded Version

- Data classed
- Standard symbol sets used
- No longer proportional

Range Graded “Proportional” Symbols
Apparent Magnitude Scaling

Adjusts symbol size to account for misinterpretation
- Based on experimental values – not consistent but improved map interpretation

Determining Symbol Size

1. Select minimum symbol size; still visible
2. Verify maximum symbol size is not too large

To be proportional

\[\frac{\text{Area}_1}{\text{Area}_2} = \frac{\text{Value}_1}{\text{Value}_2} \]

Determining Absolute Symbol Size

For a circle, area = \(\pi R^2 \) so,

\[\frac{\pi R_1^2}{\pi R_2^2} = \frac{\text{Value}_1}{\text{Value}_2} \text{ or,} \]

\[\frac{R_1^2}{R_2^2} = \left(\frac{\text{Value}_1}{\text{Value}_2}\right) \text{ or,} \]

\[R_1 / R_2 = \left(\frac{\text{Value}_1}{\text{Value}_2}\right)^{1/2} \text{ or,} \]

\[R_1 / R_2 = \left(\frac{\text{Value}_1}{\text{Value}_2}\right)^{1/2} \]

\[R_1 = R_2 \left(\frac{\text{Value}_1}{\text{Value}_2}\right)^{1/2} \]
Determining Symbol Size

3. Given minimum symbol size and value calculate all other symbols by:
 - E.g. radius of smallest circle = 1.5 cm
 - Value smallest circle = 200
 - Value other circle = 400

 \[R_u = R_s \left(\frac{\text{Value}_u}{\text{Value}_s} \right)^{1/2} \]
 \[R_u = 1.5 \text{ cm} \times \left(\frac{400}{200} \right)^{1/2} \]
 \[R_u = 2.12 \text{ cm} \]

 Note: Apparent scaling would use exponent value of 0.5716; so \(R_u = 2.23 \text{ cm} \)

Determining Symbol Size

For a square symbol:

\[S_u = S_s \left(\frac{\text{Value}_u}{\text{Value}_s} \right)^{1/2} \]

Determining Symbol Size

For replicative symbols
 - area should also be scaled proportional
 - Not height
 - Proper legend design is important
Considerations: Multivariate Symbols

- Symbols may be:
 - segmented (pie charts)
 - colour coded
 - and inset (small circles inside of larger circles)

- in an attempt to portray multiple attributes

Considerations: Symbol Overload

- Complex symbols detract from perception of spatial variations in value
- As a rule, no more than 2 or 3 variables represented with one symbol
 - usually a total amount
 - broken down by category

Considerations: Symbol Placement

- Symbols representing AUs should be:
 - located at geographic centre
 - exceptions to avoid overlap/confusion

- Symbols representing discrete point features:
 - located at absolute position
 - not normally adjusted for placement
Symbols Design

- Cut-outs more aesthetically pleasing; but less accurate
- Transparent circles more accurate; but difficult to identify and differentiate
- Symbols should be foreground objects
- Minimal base map info

Considerations: Legend Design

- Three representative symbols best
 - min, max, and median values
- Nested or stacked
 - Stacked easier to interpret
 - Nested more compact
- Note EAs not reporting
 - or true 0 values

Consideration: Map Projection

- Discrete point features or points representing discrete areal units
 - No particular projection may be required
 - Unless intent is convey density of phenomena
 - then _________ projection should be used
- Discrete areal units
 - Then _________ projection should be used