
\qquad
\qquad
\qquad

What is a Proportional Symbol Map?
*Depicts spatial variations in value or magnitude
* Using proportionally sized point symbols
*May also convey density of phenomena

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

* Discrete point data

Data aggregated by discrete areal unit

* May be used to map sampled values of a continuously distributed phenomenon

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Not the best choice when?

1. Range of data values is limited \qquad
2. Data provided is normalized by area
3. Data are interval level and have an arbitrary 0 value

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Considerations: Symbol Selection
※ IF more than one distribution is represented:

- Use same symbol style
- Unless replicative and carefully scaled symbols
- Vary colour hue, not saturation/value
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Considerations: Symbol Size
\nLeftarrow Area is geometric property scaled

Volume in the case of 3-D symbols

- more compact
- greater range can be presented
- BUT, perception of relative value/magnitude is poor
- only use to represent volumetric quantities
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Range Graded Symbols

* Data classed
* Standard symbol sets used
* No longer proportional
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Apparent Magnitude Scaling

\nLeftarrow Adjusts symbol size to account for misinterpretation

* Based on experimental values
- not consistent but improved map interpretation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Determining Symbol Size

1. Select minimum symbol size; still visible
2. Verify maximum symbol size is not too large

To be proportional
Area $_{1} /$ Area $_{2}=$ Value $_{1} /$ Value $_{2}$

Determining Symbol Size

3. Given minimum symbol size and value calculate all other symbols by:

- E.g. radius of smallest circle $=1.5 \mathrm{~cm}$
- Value smallest circle = 200
- Value other circle $=400$
$R_{u}=R_{s}\left[\left(\text { Value }_{u}\right) /\left(\text { Value }_{s}\right)\right]^{1 / 2}$
$\mathrm{R}_{\mathrm{u}}=1.5 \mathrm{~cm} \times[(400) /(200)]^{1 / 2}$
$\mathrm{R}_{\mathrm{u}}=2.12 \mathrm{~cm}$

Note: Apparentscaling would use an exponent value of 0.5716 ; so $\mathrm{Ru}=2.23 \mathrm{~cm}$
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Determining Symbol Size

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Considerations: Symbol Overload

* Complex symbols detract from perception of spatial variations in value
* As a rule, no more than
 two variables represented with one symbol
- usually a total amount
- broken down by category

Considerations: Symbol Placement

\nLeftarrow Symbols representing AUs should be:

- located at geographic centre
- exceptions to avoid overlap/confusion
\nless Symbols representing discrete point features:
- located at absolute position
- not normally adjusted for placement
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Considerations: Legend Design

\nLeftarrow Three representative symbols best

- min, max, and median values
\nLeftarrow Nested or stacked
- Stacked easier to interpret
- Nested more compact
* Note EAs not reporting
- or true 0 values

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Consideration: Map Projection

\nless Discrete point features or points representing discrete areal units

- No particular projection may be required
- Unless density of phenomena is portrayed
- then \qquad projection should be used
* Discrete areal units
- Then \qquad projection should be used

