Geography 38/42:286	\mathbf{r}
GIS 1	
Topic 9: Proportional Symbol Mapping Chapter 9: Chang Chapter 8: Dent	

Spatial Data Characteristics

& Discrete point data

& Data aggregated by discrete areal unit

May be used to map <u>sampled values</u> of a continuously distributed phenomenon

Advantages/Disadvantages

 \sum

& Advantages:

- ease of interpretation
- ability to portray distribution of multiple phenomena
- ability to portray multiple attributes of phenomena

& Disadvantages:

- inaccurate perception of symbol size

Determining Symbol Size

>

)

- 1. Select minimum symbol size; still visible
- 2. Verify maximum symbol size is not too large

To be proportional Area₁/Area₂ = Value₁/Value₂

Determining Absolute Symbol Size For a circle, area = πR^2 so, $\pi R_1^2 / \pi R_2^2$ = Value₁/Value₂ or, R_1^2 / R_2^2 = (Value₁)/(Value₂) or, R_1 / R_2 = [(Value₁)/(Value₂)]^{1/2} or,

 $R_1 = R_2 [(Value_1)/(Value_2)]^{1/2}$

NEXT Up; Other Thematic Mapping Techniques