Temperature	, Atmospheric
Circulation	and Climate
• Temperature Controls	Local Winds
• Global Temp. Patterns	 Ocean Currents
Atmospheric Circulation	Weather and Climate
Primary High and Low	Climate Classification
Pressure Areas	Climographs
Global Circulation Model	. South the
KEY	LEARNING CONCEPTS

1

Importance of Temperature

- Temperature is a major component of climate which impacts:
 - landform processes
 - vegetation
 - soil development
 - seconomic development
 - patterns of human activity culture

Result of four (not five) major differences between physical properties of land and water: evaporation transparency specific heat circulation

• Note: in the book circulation is divided into movement and ocean currents & sea surface temperatures

L	L vs. W: Specific Heat						
Specific he	at of water 42	x greater than	n land				
1		U	at energy slower				
water nears	s slower, and	105505 115 110	at chergy slower				
Stores a mu	ich greater qu	antity of hea	at energy				
Stores a mu	5 1	5	nt energy				
Material	Specific Heat	5					
Material Lead	Specific Heat	Table 2: Specific	heat capacity of building materials				
Material	Specific Heat	Table 2: Specific Material Asphalt Brick	heat capacity of building materials //(g-k) 0.920 0.840				
Material Lead	Specific Heat	Table 2: Specific Material Asphalt	heat capacity of building materials J/(g-k) 0.920				
Material Lead Mercury	Specific Heat 0.031 0.033	Table 2: Specific Material Asphalt Brick Concrete Glass	Upper Upper beat capacity of building materials Jf(g-k) 0.920 0.840 0.840 0.840				
Material Lead Mercury Brass	Specific Heat 0.031 0.033 0.094	Table 2: Specific Material Asphalt Brick Concrete Glass Granite	J/(g-k) 0.920 0.840 0.880 0.840 0.840 0.790 0.840 0				
Material Lead Mercury Brass Copper	Specific Heat 0.031 0.033 0.094 0.095	Table 2: Specific Material Asphalt Brick Concrete Class Granite Gypsum	Line Line <thline< th=""> Line Line <thl< td=""></thl<></thline<>				
Material Lead Mercury Brass Copper Iron or Steel	Specific Heat 0.031 0.033 0.094 0.095 0.113	Table 2: Specific Material Asphalt Brick Concrete Glass Granite Gypsum Marble	Up heat capacity of building materials [/f(sk) 0.840 0.880 0.790 1.090 0.880				
Material Lead Mercury Brass Copper Iron or Steel Glass	Specific Heat 0.031 0.033 0.094 0.095 0.113 0.195	Table 2: Specific Material Asphalt Brick Concrete Class Granite Gypsum	Line Line <thline< th=""> Line Line <thl< td=""></thl<></thline<>				

Global Temperature Patterns

To summarize: temperature patterns can be explained by primary temperatures controls:

- 1. Latitude
- 2. Elevation
- 3. Cloud Cover
- 4. Proximity to Water (L vs. W differences)

Humidex

- Increased heat due to higher humidity
 - More discomfort with high humidity and low wind

XX7		1 /	~1	.11	T					т	1						
Wi	n	a	n	111	I e	mp	ber	atu	ire	Ir	ade	X					
FIGURE 5.1.1						Actual	Air Temp	erature in	(°C)								
Wind Chill Temperature Index for various tempera-		Calm	0°	-5°	-10+	-15°	-20°	-25°	-30*	-35*	-40*	-45°	-50*				
tures and wind speeds. [© Environment Canada, 2012.]		8	-2°	-7°	-13°	-19°	-24°	-30°	-36°	-41°	-47°	-53°	-58°				
ter crimoninent canada, 2012.)		10	-3°	-9°	-15°	-21°	-27°	-33°	-39°	-45°	-61°	-57°	-63°				
		15	-4°	-11°	-17°	-23°	-29°	-35°	-41°	-48°	-54*	-60°	-66°				
		20	-5*	-12°	-18°	-24°	-30°	-37°	-43°	-49°	-56*	-62'	-68*				
		25	-6°	-12°	-19°	-25°	-32°	-38°	-44°	~51°	-57*	-64°	-70°				
	-	30	-6°	-13°	-20°	-26°	-33°	-39°	-46°	-52°	-59°	-65°	-72°				
	Mind speed, km-h ⁻¹	35	-7*	-14°	-20°	-27°	-33°	-40°	-47°	-53°	-60°	-66°	-73°				
The traditional value for		peed	beed.	40	-7°	-14°	-21°	-27°	-34°	-41°	-48°	-54°	-61°	-68°	-74°		
"normal" body tempera-		45	-8°	-15°	-21°	-28°	-35°	-42°	-48°	-55°	-62°	-69"	-75°				
ture, 37°C , was set in 1868 using old methods of	Wir	50	-8°	-15°	-22°	-29°	-35°	-42°	-49°	-56°	-63°	-69°	-76°				
neasurement. According to Dr. Philip Mackowiak of		55	-8°	-15°	-22°	-29°	-36°	-43°	-50°	-67°	-63°	-70°	-77°				
the University of Maryland						60	-9°	-16°	-23°	-30°	-36°	-43°	-60°	-57°	-64°	-71°	-78°
School of Medicine, a more accurate modern assessment		65	-9°	-16°	-23°	-30°	-37°	-44°	-51°	-58°	-65°	-72°	-79°				
places normal at 36.8°C		70	-9°	-16°	-23°	-30°	-37°	-44°	-51°	-58°	-65°	-72°	-80*				
th a range of 2.7 C°, r the human population		75	-10°	-17°	-24°	-31°	-38*	-45°	-52"	-59°	-66*	-73°	-80*				
(Journal of the American Medical Association,		80	-10°	-17°	-24°	-31°	-38*	-45"	-52*	-60*	-67*	-74°	-81*				
September 23–30, 1992).		Frostbite	times:	Low	isk of from	stbite [30 min	5	-10 min.	2-	5 min.	2 mir	1.				

Humidex						
TABLE 5.1.2 Comfort Levels and Suggested Activities for Ranges of Humidex						
Range of Humidex (°C) Degree of Comfort						
Less than 29	No discomfort					
30 to 39	Some discomfort; tone down or modify strenuous outdoor activity					
40 to 45 Great discomfort; avoid exertion, curta activity						
Above 45 Dangerous						
Above 54 Heat stroke is imminent						
Source: The Meteorological Service of Canada. Reproduced with the permission of Environment Canada, http://www.gc.ec.gc.ca/meteo/documentation/humidex_e.html.						

Cycla	ones and	Anticyclones
High Pressure	Low Pressure	Pressure gradient + Coriolis + friction forces
Anticyclone	Cyclone	A B
spiral <u>outward</u>	spiral <u>inward</u>	High
clockwise direction	counterclockwis e direction	Northern Hemisphere
Anticyclone	Cyclone	al a
spiral <u>outward</u>	spiral <u>inward</u>	High
counter- clockwise direction	clockwise direction	Southern Hemisphere
	High Pressure Anticyclone spiral <u>outward</u> clockwise direction Anticyclone spiral <u>outward</u> counter- clockwise	Anticyclone Cyclone spiral <u>outward</u> spiral <u>inward</u> clockwise counterclockwise direction e direction Anticyclone Cyclone spiral <u>outward</u> spiral <u>inward</u> spiral <u>outward</u> spiral <u>inward</u> counter- clockwise clockwise direction

Divergence aloft over ITCZ results in upper am flow toward

- atm. flow toward subtropics
 Cool air is <u>forced</u> to
- descend and warms adiabatically (due to increase in pressure)
- High pressure results from descending, diverging air
 - mid-latitude deserts

Chinook Winds

- Occur when strong prevailing winds cross a mountain range
- Air is warmed and dried descending the leeward side
- Warm, dry, windy weather with variable cloudiness

Classification of Climatic Regions

- Genetic classification
 - Based on knowledge of causes of climate
- Empirical classification
 - Based on grouping areas with similar climate data or calculated normals

Koppen-Geiger Classification

- Criteria include measures of:
 - Mathematicae mean monthly temperature
 - mean monthly precipitation
 - and mean annual precipitation
- Does not consider:
 - winds, temperature extremes, precipitation intensity, amount of sunshine, cloud cover, or net radiation

